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CHAPTER 1 
 

INTRODUCTION 

 
 
The Amiga family of computers consists of several models, each of which has been 
designed on the same premise to provide the user with a low cost computer that features 
high cost performance. The Amiga does this through the use of custom silicon hardware 
that yields advanced graphics and sound features. 
 

There are three distinct models that make up the Amiga computer family: the A500, 
A1000, and A2000. Though the models differ in price and features, they have a common 
hardware nucleus that makes them software compatible with one another. This chapter 
describes the Amiga's hardware components and gives a brief overview of its graphics and 
sound features. 
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COMPONENTS OF THE AMIGA 
 
These are the hardware components of the Amiga: 
 

o Motorola MC68000 16/32 bit main processor. The Amiga also supports the 68010, 
68020, and 68030 processors as an option. 
 
o 512K bytes of internal RAM, expandable to 1 MB on the A500 and A2000. 
 
o 256K bytes of ROM containing a real time, multitasking operating system with sound, 
graphics, and animation support routines. 

 
o Built-in 3.5 inch double sided disk drive. 
 
o Expansion disk port for connecting up to three additional disk drives, which may be 
either 3.5 inch or 5.25 inch, double sided. 
 
o Fully programmable RS-232-C serial port. 
 
o Fully programmable parallel port. 
 
o Two button opto-mechanical mouse. 
 
o Two reconfigurable controller ports (for mice, joysticks, light pens, paddles, or custom 
controllers). 

 
o A professional keyboard with numeric keypad, 10 function keys, and cursor keys. A 
variety of international keyboards are also supported. 
 
o Ports for simultaneous composite video, and analog or digital RGB output. 
 
o Ports for left and right stereo audio from four special purpose audio channels. 
 
o Expansion options that allow you to add RAM, additional disk drives (floppy or hard), 
peripherals, or co-processors. 
 
THE MC6X000 AND THE AMIGA CUSTOM CHIPS 
The Motorola 68000 is a 16/32 bit microprocessor. The system clock speed for NTSC 
Amiga’s is 7.15909 megahertz (PAL 7.09379 MHz). These speeds may vary when using an 

external system clock, such as from a genlock. The 68000 has an address space of 16 
megabytes. In the Amiga, the 68000 can address over 8 megabytes of continuous random 
access memory (RAM). 
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In addition to the 68000, the Amiga contains special purpose hardware known as the 
"custom chips" that greatly enhance system performance. The term "custom chips" refers 
to the 3 integrated circuits which were designed specifically for the Amiga computer. 
These three custom chips (called Agnus, Paula, and Denise) each contain the logic to 

handle a specific set of tasks, such as video, sound, direct memory access (DMA), 
or graphics. 
 
Among other functions, the custom chips provide the following: 
 

 Bitplane generated, high resolution graphics capable of supporting both PAL and 
NTSC video standards. 

 
o On NTSC systems the Amiga typically produces a 320 by 200 non-interlaced 

or 320 by 400 interlaced display in 32 colors and a 640 by 200 non-
interlaced or 640 by 400 interlaced display in 16 colors. 

 
o On PAL systems, the Amiga typically produces a 320 by 256 non-interlaced 

or 320 by 512 interlaced display in 32 colors, and a 640 by 256 non-
interlaced or 640 by 512 interlaced display in 16 colors. 

 
Additional video modes allow for the display of up to 4,096 colors on screen 
simultaneously (hold-and-modify) or provide for larger, higher resolution displays 
(overscan). 
 

 A custom display co-processor that allows changes to most of the special purpose 

registers in synchronization with the position of the video beam. This allows such 
special effects as mid-screen changes to the color palette, splitting the screen into 
multiple horizontal slices each having different video resolutions and color depths, 
beam synchronized interrupt generation for the 68000 and more. The co-processor 
can trigger many times per screen, in the middle of lines, and at the beginning or 
during the blanking interval. The co-processor itself can directly affect most of the 
registers in the other custom chips, freeing the 68000 for general computing tasks. 

 
 32 system color registers, each of which contains a twelve bit number as four bits 

of RED, four bits of GREEN, and four bits of BLUE intensity information. This allows 
a system color palette of 4,096 different choices of color for each register. 

 
 Eight reusable 16 bit wide sprites with up to 15 color choices per sprite pixel (when 

sprites arc paired). A sprite is an easily movable graphics object whose display is 

entirely independent of the background (called a playfield); sprites can be 
displayed over or under this background. A sprite is 16 low resolution pixels wide 
and an arbitrary number of lines tall. After producing the last line of a sprite on the 
screen, a sprite DMA channel may be used to produce yet another sprite image 
elsewhere on screen (with at least one horizontal line between each reuse of a 
sprite processor). Thus, many small sprites can be produced by simply reusing the 
sprite processors appropriately. 

 
 Dynamically controllable inter-object priority, with collision detection. This means 

that the system can dynamically control the video priority between the sprite 
objects and the bitplane backgrounds (playfields). You can control which object or 
objects appear over or under the background at any time. 

 



Additionally, you can use system hardware to detect collisions between objects and have 
your program react to such collisions. 
 
o Custom bit blitter used for high speed data movement, adaptable to bitplane animation. 

The blitter has been designed to efficiently retrieve data from up to three sources, 
combine the data in one of 256 different possible ways, and optionally store the combined 
data in a destination area. This is one of the situations where the 68000 gives up memory 
cycles to a DMA channel that can do the job more efficiently (see below). The bit blitter, in 
a special mode, draws patterned lines into rectangularly organized memory regions at a 
speed of about 1 million dots per second; and it can efficiently handle area fill. 
 

o Audio consisting of four digital channels with independently programmable volume and 
sampling rate. The audio channels retrieve their control and data via direct memory 
access. Once started, each channel can automatically play a specified waveform without 
further processor interaction. Two channels are directed into each of the two stereo audio 
outputs. The audio channels may be linked together to provide amplitude or frequency 
modulation or both forms of modulation simultaneously. 
 
o DMA controlled floppy disk read and write on a full track basis. This means that the 
built-in disk can read over 5600 bytes of data in a single disk revolution (11 sectors of 
512 bytes each). 
 
The internal memory shared by the custom chips and the 68000 CPU is also called "chip 
memory". The original custom chips in the Amiga were designed to be able to physically 
access up to 512K bytes of shared memory. The new version of the Agnus custom chip 

was created which allows the graphics and audio hardware to access up to a full megabyte 
of memory. 
 
The Amiga 500 and 2000 models were designed to be able to accept the new Agnus 
custom chip, called "Fat Agnus", due to its square shape. Hence, the A500 and A2000 
have allocated a chip memory space of 1 MB. This entire 1 MB space is subject to the 
arbitration logic that controls the CPU and custom chip accesses. On the A1000, only the 
first 512K bytes of memory space is shared, chip memory. 
 
These custom chips and the 68000 share memory on a fully interleaved basis. Since the 
68000 only needs to access the memory bus during each alternate clock cycle in order to 
run full speed, the rest of the time the memory bus is free for other activities. The custom 
chips use the memory bus during these free cycles, effectively allowing the 68000 to run 
at full rated speed most of the time. We say "most of the time" because there are some 

occasions when the special purpose hardware steals memory cycles from the 68000, but 
with good reason. Specifically, the coprocessor and the data moving DMA channel called 
the blitter can each steal time from the 68000 for jobs they can do better than the 68000. 
Thus, the system DMA channels are designed with maximum performance in mind. The 
job to be done is performed by the most efficient hardware element available. Even when 
such cycle stealing occurs, it only blocks the 68000's access to the internal, shared 
memory. When using ROM or external memory, the 68000 always runs at full speed. 
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Another primary feature of the Amiga hardware is the ability to dynamically control which 
part of the chip memory is used for the background display. audio, and sprites. The Amiga 
is not limited to a small, specific area of RAM for a frame buffer. Instead, the system 
allows display bitplanes, sprite processor control lists, coprocessor instruction lists, or 

audio channel control lists to be located anywhere within chip memory. 
 
This same region of memory can be accessed by the bit blitter. This means, for example, 
that the user can store partial images at scattered areas of chip memory and use these 
images for animation effects by rapidly replacing on screen material while saving and 
restoring background images. In fact, the Amiga includes firmware support for display 
definition and control as well as support for animated objects embedded within playfields. 

 
VCR AND DIRECT CAMERA INTERFACE 
In addition to the connectors for monochrome composite, and analog or digital RGB 
monitors, the Amiga can be expanded to include a VCR or camera interface. This system 
is capable of synchronizing with an external video source and replacing the system 
background color with the external image. This allows development of fully integrated 
video images with computer generated graphics. Laser disk input is accepted in the same 
manner. 
 
PERIPHERALS 
Floppy disk storage is provided by a built in, 3.5 inch floppy disk drive. Disks are 80 track, 
double sided, and formatted as 11 sectors per track, 512 bytes per sector (over 900,000 
bytes per disk). The disk controller can read and write 320/360K IBM PC (MS-DOS) 
formatted 3.5 or 5.25 inch disks, and 640/720K IBM PC (MS-DOS) formatted 3.5 inch 

disks. External 3.5 inch or 5.25 inch disk drives can be added to the system through the 
expansion connector. Circuitry for some of the peripherals resides on Paula. Other chips 
handle various signals not specifically assigned to any of the custom chips, including 
modem controls, disk status sensing, disk motor and stepping controls, ROM enable, 
parallel input/output interface, and keyboard interface. 
 
The Amiga includes a standard RS-232-C serial port for external serial input/output 
devices. 
 
A keyboard with numeric keypad, cursor controls and 10 function keys is included in the 
base system. For maximum flexibility, both key-down and key-up signals are sent. The 
Amiga also supports a variety of international keyboards. Many other types of controllers 
can be attached through the two controller ports on the base unit. You can use a mouse, 
joystick, keypad, track-ball, light pen, or steering wheel controller in either of the 

controller ports. 
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SYSTEM EXPANDABILITY AND ADAPTABILITY 
New peripheral devices may be easily added to all Amiga models. These devices are 
automatically recognized and used by system software through a well defined, well 
documented linking procedure called AUTOCONFIG. 

 
On the A500 and A1000 models, peripheral devices can be added to the Amiga's 86 pin 
expansion connector, including additional external RAM.  Extra disk units may be added 
from a connector at the rear of the unit. 
 
The A2000 model provides the user with the same features as the A500 or A1000, but 
with the added convenience of simple and extensive expandability. The 86 pin, external 

connector of the A1000 and A500 is not externally accessible on the A2000. Instead, the 
A2000 contains 7 internal slots that allow many types of expansion boards to be quickly 
and easily added inside the machine. These expansion boards may contain coprocessors, 
RAM expansion, hard disk controllers, video or I/O ports. There is also room to mount 
both floppy and hard disks internally. The A2000 also supports the special Bridgeboard 
coprocessor card. This provides a complete IBM PC on a card and allows the Amiga to run 
MS-DOS compatible software, while simultaneously running native Amiga software. 
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ABOUT THE EXAMPLES 
 
The examples in this book all demonstrate direct manipulation of the Amiga hardware. 
However, as a general rule, it is not permissible to directly access the hardware in the 

Amiga unless your software either has full control of the system, or has arbitrated via the 
OS for exclusive access to the particular parts of the hardware you wish to control. 
 
Almost all of the hardware discussed in this manual, most notably the Blitter, Copper, 
playfield, sprite, CIA, trackdisk, and system control hardware, are in either exclusive or 
arbitrated use by portions of the Amiga OS in any running Amiga system. Additional 
hardware, such as the audio, parallel, and serial hardware, may be in use by applications 

which have allocated their use through the system software. 
 
Before attempting to directly manipulate any part of the hardware in the Amiga's 
multitasking environment, your application must first be granted exclusive access to that 
hardware by the operating system library, device, or resource which arbitrates its 
ownership. The operating system functions for requesting and receiving control of parts of 
the Amiga hardware are varied and are not within the scope of this manual. Generally 
such functions, when available, will be found in the library, device, or resource which 
manages that portion of the Amiga hardware in the multitasking environment. The 
following list will help you to find the appropriate operating system functions or 
mechanisms which may exist for arbitrated access to the hardware discussed in this 
manual. 
 
     Copper, Playfield, Sprite, Blitter - graphics.library 

     Audio - audio.device 
     Trackdisk - trackdisk.device, disk.resource 
     Serial - serial.device, misc.resource 
     Parallel - parallel.device, cia.resource, misc.resource 
     Gameport - input.device, gameport.device, potgo.resource 
     Keyboard - input.device, keyboard.device 
     System Control - graphics.library, exec.library (interrupts) 
 
Most of the examples in this book use the hw_examples.i file (see Appendix J) to define 
the chip register names. hw_examples.i uses the system include file hardware/custom.i to 
define the chip structures and relative addresses. The values defined in hardware/custom.i 
and how examples.i are offsets from the base chip register address space. In general, this 
base value is defined as _custom and is resolved during linking from amiga.lib. (_ciaa and 
_ciab are also resolved in this way.) 

 
Normally, the base address is loaded into an address register and the offsets given by 
hardware/custom.i and hw_examples.i are then used to address the correct register. 
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NOTE 
The offset values of the registers are the addresses that the Copper must use to talk to 
the registers. For example, in assembler: 
 

INCLUDE "exec/types.i" 

INCLUDE "hardware/custom.i" 

 

          XREF custom                     ; External reference 

 

  Start:  lea    _custom,a0               ; Use a0 as base register 

          move.w #$7FFF,intena(a0)        ; Disable all interrupts 

 

In C, you would use the structure definitions in hardware/custom.h For 

example: 

 

#include        "exec/types.h" 

#include        "hardware/custom.h" 

 

extern  struct  Custom  custom; 

 

/* You may need to define the above external as 

**  extern struct Custom far custom; 

**  Check you compiler manual. 

*/ 

 

main() 

{ 

custom.intena = 0x7FFF;         /* Disable all interrupts */ 

} 

 

The Amiga hardware include files are generally supplied with your compiler or assembler. 
Listings of the hardware include files may also be found in the Addison-Wesley Amiga ROM 
Kernel Manual "Includes and Autodocs". Generally, the include file label names are very 
similar to the equivalent hardware register list names with the following typical 

differences. 
 
o Address registers which have low word and high word components are generally listed 
as two word sized registers in the hardware register list, with each register name 
containing either a suffix or embedded "L" or "H" for low and high. The include file label 
for the same register will generally treat the whole register as a longword (32 bit) 
register, 
and therefore will not contain the "L" or "H" distinction. 
 
o Related sequential registers which are given individual names with number suffixes in 
the hardware register list, are generally referenced from a single base register definition 
in the include files. For example, the color registers in the hardware list (COLOR00, 
COLOR01, etc.) would be referenced from the "color" label defined in "hardware/custom.i" 
(color+0, color+2, etc.). 

 
o Examples of how to define the correct register offset can be found in the hw_examples.i 
file listed in Appendix J. 
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SOME CAVEATS TO HARDWARE LEVEL PROGRAMMERS 
 
The Amiga is available in a variety of models and configurations, and is further diversified 
by a wealth of add-on expansion peripherals and processor replacements. In addition, 

even standard Amiga hardware such as the keyboard and floppy disks, are supplied by a 
number of different manufacturers and may vary subtly in both their timing and in their 
ability to perform outside of their specified capabilities. 
 
The Amiga operating system is designed to operate the Amiga hardware within spec, 
adapt to different hardware and RAM configurations, and generally provide upward 
compatibility with any future hardware upgrades or "add ons" envisioned by the 

designers. For maximum upward compatibility, it is strongly suggested that programmers 
deal with the hardware through the commands and functions provided by the Amiga 
operating system. 
 
If you find it necessary to program the hardware directly, then it is your responsibility to 
write code which will work properly on various models and configurations. Be sure to 
properly request and gain control of the hardware you are manipulating, and be especially 
careful in the following areas: 
 
Do not jump into ROM. Beware of any example code that calls routines in the $F80000 to 
$FFFFFF range. These are ROM addresses and the ROM routines WILL move with every OS 
revision. The only supported interface to system ROM code is through the provided library, 
device, and resource calls. 
 

Do not modify or depend on the format of any private system structures. This includes the 
poking of copper lists, memory lists, and library bases. 
 
Do not depend on any address containing any particular system structure or type of 
memory. The system modules dynamically allocate their memory space when they are 
initialized. The addresses of system structures and buffers differ with every OS, every 
model, and every configuration, as does the amount of free memory and system stack 
usage. Remember that all data for direct custom chip access must be in CHIP RAM. This 
includes bit images (bitplanes, sprites, etc), sound samples, trackdisk buffers, and copper 
lists. 
 
Do not write spurious data to, or interpret undefined data from currently unused bits or 
addresses in the custom chip space. All undefined bits must be set to zero for writes, and 
ignored on reads. 

 
Do not write data past the current end of custom chip space. Custom chips may be 
extended or enhanced to provide additional registers, or to use currently undefined bits in 
existing registers. 
 
All custom chip registers are read only OR write only. Do not read write only registers, and 
do not write to read only registers. 
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Do not read, write, or use any currently undefined address ranges. The current and future 
usage of such areas is reserved by Commodore and is definitely subject to change. 
 
If you are using the system libraries, devices, and resources, you must follow the defined 

interface. Assembler programmers (and compiler writers) must enter functions through 
the library base jump Tables, with arguments passed as longs and library base address in 
A6. Results returned in D0 must be tested, and the contents of D0-D1/A0-A1 must be 
assumed gone after a system call. 
 
NOTE 
The assembler TAS instruction should not be used in any Amiga program. The TAS 

instruction assumes an indivisible read-modify-write but this can be defeated by system 
DMA. Instead use BSET and BCLR. These instructions perform a test and set operation 
which cannot be interrupted. 
 
TAS is only needed for a multiple CPU system. On a single CPU system, the BSET and 
BCLR instructions are identical to TAS, as the 68000 does not interrupt instructions in the 
middle. BSET and BCLR first test, then set bits. 
 
Do not use assembler instructions which are privileged on any 68000 family processor, 
most notably MOVE SR,<ea> which is privileged on the 68010/20/30. Use the Exec 
function GetCC() instead of MOVE SR, or use the appropriate non-privileged instruction as 
shown below: 
 

            CPU        User Mode        Super Mode 

           68000       MOVE SR,<ea>     MOVE SR,<ea> 

         68010/20/30   MOVE CCR,<ea>    MOVE SR,<ea> 

 

All addresses must be 32 bits. Do not use the upper 8 bits for other data, and do not use 
signed variables or signed math for addresses. Do not execute code on your stack or use 
self-modifying code since such code can be defeated by the caching capabilities of some 
68xxx processors. And never use processor or clock speed dependent software loops for 
timing delays. See Appendix F for information on using an 8520 timer for delays. 
 
NOTE 
When strobing any register which responds to either a read or a write, (for example 
copjmp2) be sure to use a MOVE.W #$00, not CLR.W. The CLR instruction causes a read 
and a clear (two accesses) on a 68000, but only a single access on 68020 and above. This 
will give different results on different processors. 

 
If you are programming at the hardware level, you must follow hardware interfacing 
specifications. All hardware is NOT the same. Do not assume that low level hacks for 
speed or copy protection will work on all drives, or all keyboards, or all systems, or future 
systems. Test your software on many different systems, with different processors, OS, 
hardware, and RAM configurations. 
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Figure 1-1: Block Diagram for the Amiga Computer Family. 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Introduction 11 - 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
- 12 Introduction - 



Chapter 2 
 

COPROCESSOR HARDWARE 
 

 
INTRODUCTION 
The Copper is a general purpose coprocessor that resides in one of the Amiga's custom 
chips. It retrieves is instructions via direct memory access (DMA). The Copper can control 
nearly the entire graphics system, freeing the 68000 to execute program logic; it can also 
directly affect the contents of most of the chip control registers. It is a very powerful tool 
for directing mid-screen modifications in graphics displays and for directing the register 

changes that must occur during the vertical blanking periods. Among other things, it can 
control register updates, reposition sprites, change the color palette, update the audio 
channels, and control the blitter. 
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One of the features of the Copper is its ability to WAIT for a specific video beam position, 
then MOVE data into a system register. During the WAIT period, the Copper examines the 
contents of the video beam position counter directly. This means that while the Copper is 
waiting for the beam to reach a specific position, it does not use the memory bus at all. 

Therefore, the bus is freed for use by the other DMA channels or by the 68000. 
 
When the WAIT condition has been satisfied, the Copper steals memory cycles from either 
the blitter or the 68000 to move the specified data into the selected special-purpose 
register. 
 
The Copper is a two-cycle processor that requests the bus only during odd-numbered 

memory cycles. This prevents collision with audio, disk, refresh, sprites, and most low-
resolution display DMA access, all of which use only the even-numbered memory cycles. 
The Copper, therefore, needs priority over only the 68000 and the blitter (the DMA 
channel that handles animation, line drawing, and polygon filling). 
 
As with all the other DMA channels in the Amiga system, the Copper can retrieve its 
instructions only from the chip RAM area of system memory. 
 
ABOUT THIS CHAPTER 
In this chapter, you will learn how to use the special Copper instruction set to organize 
mid-screen register value modifications and pointer register set-up during the vertical 
blanking interval. The chapter shows how to organize Copper instructions into Copper 
lists, how to use Copper lists in interlaced mode, and how to use the Copper with the 
blitter. The Copper is discussed in this chapter in a general fashion. The chapters that deal 

with playfields, sprites, audio, and the blitter contain more specific suggestions for using 
the Copper. 
 
WHAT IS A COPPER INSTRUCTION? 
 
As a coprocessor, the Copper adds its own instruction set to the instructions already 
provided by the 68000. The Copper has only three instructions, but you can do a lot with 
them: 
 
o WAIT for a specific screen position specified as x and y co-ordinates. 
 
o MOVE n immediate data value into one of the special-purpose registers. 
 
o SKIP the next instruction if the video beam has already reached a specified screen 

position. 
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All Copper instructions consist of two 16-bit words in sequential memory locations. Each 
time the Copper fetches an instruction, it fetches both words. The MOVE and SKIP 
instructions require two memory cycles and two instruction words. Because only the odd 
memory cycles are requested by the Copper, four memory cycle times are required per 

instruction. The WAIT instruction requires three memory cycles and six memory cycle 
times; it takes one extra memory cycle to wake up. 
 
Although the Copper can directly affect only machine registers, it can affect the memory 
by setting up a blitter operation. More information about how to use the Copper in 
controlling the blitter can be found in the sections called "Control Register" and "Using the 
Copper with the Blitter." 

 
The WAIT and MOVE instructions are described below. The SKIP instruction is described in 
the "Advanced Topics" section. 
 
THE MOVE INSTRUCTION 
 
The MOVE instruction transfers data from RAM to a register destination. The transferred 
data is contained in the second word of the MOVE instruction; the first word contains the 
address of the destination register. This procedure is shown in detail in the section called 
"Summary of Copper Instructions." 
 

    FIRST INSTRUCTION WORD (IR1) 

    Bit   0        Always set to 0. 

 

    Bits  8 - 1    Register destination address (DA8-1). 

    Bits 15 - 9    Not used, but should be set to 0. 

 

    SECOND INSTRUCTION WORD (IR2) 

    Bits 15 - 0    16 bits of data to be transferred (moved) to the register 

                   destination. 
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The Copper can store data into the following registers: 
 
o Any register whose address is $20 or above. 
 

o Any register whose address is between $10 and $20 if the Copper danger bit is a 1. The 
Copper danger bit is in the Copper's control register, COPCON, which is described in the 
"Control Register" section. 
 
o The Copper cannot write into any register whose address is lower than $10. 
 
Appendix B contains all of the machine register addresses. 

 
The following example MOVE instructions point bit-plane pointer 1 at $21000 and bit-
plane pointer 2 at S25000.2 
 

     DC.W    $00E0,$0002     ;Move $0002 to register $0E0 (BPL1PTH) 

     DC.W    $00E2,$1000     ;Move $1000 to register $0E2 (BPL1PTL) 

     DC.W    $00E4,$0002     ;Move $0002 to register $0E4 (BPL2PTH) 

     DC.W    $00E6,$5000     ;Move $5000 to register $0E6 (BPL2PTL) 

 

Normally, the appropriate assembler ".i" files are included so that names, rather than 
addresses, may be used for referencing hardware registers. It is strongly recommended 
that you reference all hardware addresses via their defined names in the system include 
files. This will allow you to more easily adapt your software to take advantage of future 
hardware or enhancements. For example: 
 

     INCLUDE "hardware/custom.i" 

 

     DC.W    bplpt+$00,$0002 ;Move $0002 into register $0E0 (BPLlPTH) 

     DC.W    bplpt+$02,$1000 ;Move $1000 into register $0E2 (BPLlPTL) 

     DC.W    bplpt+$04,$0002 ;Move $0002 into regi3ter $0E4 (PL2PTH) 

     DC.W    bplpt+$06,$5000 ;Move $5000 into register $0E6 (BPL2PTL) 

 

For use in the hardware manual examples, we have made a special include file (see 
Appendix J) that defines all of the hardware register names based off of the 
"hardware/custom.i" file. This was done to make the examples easier to read from a 
hardware point of view. Most of the examples in this manual are here to help explain the 
hardware and are, in most cases, not useful without modification and a good deal of 
additional code. 
 
 1 Hexadecimal numbers are distinguished from decimal numbers by the $ prefix. 
 2 All sample code segments are in assembly language. 
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THE WAIT INSTRUCTION 
 
The WAIT instruction causes the Copper to wait until the video beam counters are equal to 
(or greater than) the coordinates specified in the instruction. While waiting, the Copper is 

off the bus and not using memory cycles. 
 
The first instruction word contains the vertical and horizontal coordinates of the beam 
position. The second word contains enable bits that are used to form a "mask" that tells 
the system which bits of the beam position to use in making the comparison. 
 

         FIRST INSTRUCTION WORD (IR1) 

 

         Bit  0      Always set to 1. 

         Bits 15 - 8 Vertical beam position (called VP). 

         Bits  7 - 1 Horizontal beam position (called HP). 

 

 

         SECOND INSTRUCTION WORD (IR2) 

 

         Bit  0      Always set to 0. 

         Bit 15      The blitter-finished-disable bit. 

                     Normally, this bit is a 1. 

                     (See the "Advanced Topics" section below.) 

 

         Bits 14 - 8 Vertical position compare enable bits (called VE). 

         Bits 7 - 1  Horizontal position compare enable bits (called HE). 

 

The following example WAIT instruction waits for scan line 150 ($96) with the horizontal 
position masked off. 
 

        DC.W    $9601,$FF00     ; Wait for line 150, 

                                ; ignore horizontal counters. 

 

The following example WAIT instruction waits for scan line 255 and horizontal position 

254.  This event will never occur, so the Copper stops until the next vertical blanking 
interval begins. 
 

        DC.W    $FFFF,$FFFE     ; Wait for line 255, 

                                ; H = 254 (ends Copper list). 

 

To understand why position VP=$FF HP=$FE will never occur, you must look at the 

comparison operation of the Copper and the size restrictions of the position information. 
Line number 255 is a valid line to wait for, in fact it is the maximum value that will fit into 
this field. Since 255 is the maximum number, the next line will wrap to zero (line 256 will 
appear as a zero in the 
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comparison.) The line number will never be greater than $FF The horizontal position has a 
maximum value of $E2. This means that the largest number that will ever appear in the 
comparison is $FFE2. When waiting for $FFE2, the line $FF will be reached, but the 
horizontal position $FE will never happen. Thus, the position will never reach $FFFE. 

 
You may be tempted to wait for horizontal position $FE (since it will never happen), and 
put a smaller number into the vertical position field. This will not lead to the desired 
result. The comparison operation is waiting for the beam position to become greater than 
or equal to the entered position. If the vertical position is not $FF, then as soon as 
the line number becomes higher than he entered number, the comparison will evaluate to 
true and the wait will end. 

 
The following notes on horizontal and vertical beam position apply to both the WAIT 
instruction and o the SKIP instruction. The SKIP instruction is described below in the 
"Advanced Topics" section. 
 
HORIZONTAL BEAM POSITION 
The horizontal beam position has a value of $0 to $E2. The least significant bit is not used 
in the comparison, so there are 113 positions available for Copper operations. This 
corresponds to 4 pixels in low resolution and 8 pixels in high resolution. Horizontal 
blanking falls in the range of $0F to $35. The standard screen (320 pixels wide) has an 
unused horizontal portion of $04 to $47 (during which only the background color is 
displayed). 
 
All lines are not the same length in NTSC. Every other line is a long line (228 color clocks, 

0-$E3), with the others being 227 color clocks long. In PAL, they are all 227 long. The 
display sees all these lines as 227 1/2 color clocks long, while the copper sees alternating 
long & short lines. 
 
VERTICAL BEAM POSITION 
The vertical beam position can be resolved to one line, with a maximum value of 255. 
There are actually 262 NTSC (312 PAL) possible vertical positions. Some minor 
complications can occur if you want something to happen within these last six or seven 
scan lines. Because there are only eight bits of resolution for vertical beam position 
(allowing 256 different positions), one of the simplest ways to handle this is shown below. 
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        INSTRUCTION                                EXPLANATION 

 

 

[ ... other instructions ... ] 

 

WAIT for position (0,255)                     At this point, the vertical 

                                              counter appears to wrap to 0 

                                              because the comparison works 

                                              on the least significant bits  

                                              of the vertical count. 

 

WAIT for any horizontal position with         Thus the total of 256+6 = 262 

vertical position 0 through 256, covering     lines of video beam travel 

the last 6 lines of the scan before vertical  during which Copper 

blanking occurs.                              instructions can be executed. 

 

NOTE 
The vertical is like the horizontal - as there are alternating long and short lines, there are 
also long and short fields (interlace only). In NTSC, the fields are 262, then 263 lines and 

in PAL, 312,313. 
 
This alteration of lines & fields produces the standard NTSC 4 field repeating pattern: 
 
     short field ending on short line 
     long field ending on long line 
     short field ending on long line 

     long field ending on short line 
     & back to the beginning... 
 
1 horizontal count takes 1 cycle of the system clock. (Processor is twice this) 
 
     NTSC- 3,579,545 Hz 
     PAL- 3,546,895 Hz 

     genlocked- basic clock frequency plus or minus about 2%. 
 
THE COMPARISON ENABLE BITS 
Bits 14-1 are normally set to all 1s. The use of the comparison enable bits is described 
later in the "Advanced Topics " section. 
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USING THE COPPER REGISTERS 
 
There are several machine registers and strobe addresses dedicated to the Copper: 
 

o Location registers 
 
o Jump address strobes 
 
o Control register 
 
LOCATION REGISTERS 

The Copper has two sets of location registers: 
 
            COP1LCH High 3 bits of first Copper list address. 
            COP1LCL Low 16 bits of first Copper list address. 
            COP2LCH High 3 bits of second Copper list address. 
            COP2LCL Low 16 bits of second Copper list address. 
 
In accessing the hardware directly, you often have to write to a pair of registers that 
contains the address of some data. The register with the lower address always has a 
name ending in "H" and contains the most significant data, or high 3 bits of the address. 
The register with the higher address has a name ending in "L" and contains the least 
significant data, or low 15 bits of the address. Therefore, you write the 18-bit address by 
moving one long word to the register whose name ends in "H." This is because when you 
write long words with the 68000, the most significant word goes in the lower addressed 

word. 
 
In the case of the Copper location registers, you write the address to COP1LCH. In the 
following text, for simplicity, these addresses are referred to as COP1LC or COP2LC. 
 
The Copper location registers contain the two indirect jump addresses used by the 
Copper. The Copper fetches its instructions by using its program counter and increments 
the program counter after each fetch. When a jump address strobe is written, the 
corresponding location register is loaded into the Copper program counter. This causes the 
Copper to jump to a new location, from which its next instruction will be fetched. 
Instruction fetch continues sequentially until the Copper is interrupted by another jump 
address strobe. 
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NOTE 
At the start of each vertical blanking interval, COP1LC is automatically used to start the 
program counter. That is, no matter what the Copper is doing, when the end of vertical 
blanking occurs, the Copper is automatically forced to restart its operations at the address 

contained in COP1LC. 
 
JUMP STROBE ADDRESS 
When you write to a Copper strobe address, the Copper reloads its program counter from 
the corresponding location register. The Copper can write its own location registers and 
strobe addresses to perform programmed jumps. For instance, you might MOVE an 
indirect address into the COP2LC location register. Then, any MOVE instruction that 

addresses COPJMP2 strobes this indirect address into the program counter. 
 
There are two jump strobe addresses: 
 
         COPJMP1 Restart Copper from address contained in COP1LC. 
         COPJMP2 Restart Copper from address contained in COP2LC. 
 
CONTROL REGISTER 
The Copper can access some special-purpose registers all of the time, some registers only 
when a special control bit is set to a 1, some registers not at all. The registers that the 
Copper can always affect are numbered $20 through $FF inclusive. Those it cannot affect 
at all are numbered $00 to $0F  inclusive. (See Appendix B for a list of registers 
in address order.) The Copper control register is within this group ($00 to $0F). Thus it 
takes deliberate action on the part of the 68000 to allow the Copper to write into a 

specific range of the special-purpose registers. 
 
The Copper control register, called COPCON, contains only one bit, bit #1. This bit, called 
CDANG (for Copper Danger Bit) protects all registers numbered between $10 and $1F 
inclusive.  This range includes the blitter control registers. When CDANG is 0, these 
registers cannot be written by the Copper. When CDANG is 1, these registers can be 
written by the Copper. Preventing the Copper from accessing the blitter control registers 
prevents a "runaway" Copper (caused by a poorly formed instruction list) from 
accidentally affecting system memory. 
 
NOTE 
The CDANG bit is cleared after a reset. 
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PUTTING TOGETHER A COPPER INSTRUCTION LIST 
 
The Copper instruction list contains all the register resetting done during the vertical 
blanking interval and the register modifications necessary for making mid-screen 

alterations. As you are planning what will happen during each display field, you may find it 
easier to think of each aspect of the display as a separate subsystem, such as playfields, 
sprites, audio, interrupts, and so on. Then you can build a separate list of things that must 
be done for each sub-system individually at each video beam position. 
 
When you have created all these intermediate lists of things to be done, you must merge 
them together into a single instruction list to be executed by the Copper once for each 

display frame. The alternative is to create this all-inclusive list directly, without the 
intermediate steps. 
 
For example, the bit-plane pointers used in playfield displays and the sprite pointers must 
be rewritten during the vertical blanking interval so the data will be properly retrieved 
when the screen display starts again. This can be done with a Copper instruction list that 
does the following: 
 
     WAIT until first line of the display 
     MOVE data to bit-plane pointer 1 
     MOVE data to bit-plane pointer 2 
     MOVE data to sprite pointer 1 
     and so on 
 

As another example, the sprite DMA channels that create movable objects can be re-used 
multiple times during the same display field. You can change the size and shape of the 
reuses of a sprite; however, every multiple reuse normally uses the same set of colors 
during a full display frame. 
You can change sprite colors mid-screen with a Copper instruction list that waits until the 
last line of the first use of the sprite processor and changes the colors before the first line 
of the next use of the same sprite processor: 
 
     WAIT for first line of display 
     MOVE firstcolor1 to COLOR 17 
     MOVE firstcolor2 to COLOR 18 
     MOVE firstcolor3 to COLOR 19 
     WAIT for last line +1 of sprite's first use 
     MOVE secondcolor1 to COLOR 17 

     MOVE secondcolor2 to COLOR 18 
     MOVE secondcolor3 to COLOR 19 
     and so on 
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As you create Copper instruction lists, note that the final list must be in the same order as 
that in which the video beam creates the display. The video beam traverses the screen 
from position (0,0) in the upper left hand corner of the screen to the end of the display 
(226,262) NTSC (or (226,312) PAL) in the lower right hand corner. The first 0 in (0,0) 

represents the x position. The second 0 represents the y position. For example, an 
instruction that does something at position (0,100) should come after an instruction that 
affects the display at position (0,60). 
 
NOTE 
Given the form of the WAIT instruction, you can sometimes get away with not sorting the 
list in strict video beam order. The WAIT instruction causes the Copper to wait until the 

value in the beam counter is equal to or greater than the value in the instruction. 
 
This means, for example, if you have instructions following each other like this: 
 
     WAIT for position (64,64) 
     MOVE data 
     WAIT for position (60,60) 
     MOVE data 
 
The Copper will perform both moves, even though the instructions are out of sequence. 
The "greater than" specification prevents the Copper from locking up if the beam has 
already passed the specified position. A side effect is that the second MOVE below will be 
performed: 
 

     WAIT for position (60,60) 
     MOVE data 
     WAIT for position (60,60) 
     MOVE data 
 
At the time of the second WAIT in this sequence, the beam counters will be greater than 
the position shown in the instructions. Therefore, the second MOVE will also be performed. 
 
Note also that the above sequence of instructions could just as easily be 
 
     WAIT for position (60,60) 
     MOVE data 
     MOVE data 
 

because multiple MOVEs can follow a single WAIT. 
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COMPLETE SAMPLE COPPER LIST 
The following example shows a complete Copper list. This list is for two bitplanes-one at 
$21000 and one at $25000. At the top of the screen, the color registers are loaded with 
the following values: 
 

          REGISTER    COLOR 

 

          COLOR00     white 

          COLOR01     red 

          COLOR02     green 

          COLOR03     blue 

 

At line 150 on the screen, the color registers are reloaded: 
 

          REGISTER    COLOR 

 

          COLOR00     black 

          COLOR01     yellow 

          COLOR02     cyan 

          COLOR03     magenta 

 

The complete Copper list follows. 

 

; 

; Notes: 

;       1. Copper lists must be in CHIP ram. 

;       2. Bitplane addresses used in the example are arbitrary. 

;       3. Destination register addresses in copper move instructions 

;          are offsets from the base address of the custom chips. 

;       4. As always, hardware manual examples assume that your 

;          application has taken full control of the hardware, 

;          and is not conflicting with operating system use of 

;          the same hardware. 

;       5. Many of the examples just pick memory addresses to 

;          be used. Normally you would need to allocate the 

;          required type of memory from the system with AllocMem() 

;       6. As stated earlier, the code examples are mainly to help 

;          clarify the way the hardware works. 

;       7. The following INCLUDEs are required by all example code 

;          in this chapter. 

; 

          INCLUDE "exec/types.i" 

          INCLUDE "hardware/custom.i" 

          INCLUDE "hardware/dmabits.i" 

          INCLUDE "hardware/hw_examples.i" 
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COPPERLIST: 

; 

; Set up pointers to two bit planes 

; 

     DC.W    BPL1PTH,$0002      ;Move S0002 into register $0E0 (BPL1PTH) 

     DC.W    BPL1PTL,$1000      ;Move $1000 into register $0E2 (BPL1PTL) 

     DC.W    BPL2PTH,$0002      ;Move $0002 into register $0E4 (BPL2PTH) 

     DC.W    BPL2PTL,$5000      ;Move $5000 into register $0E6 (BPL2PTL) 

; 

; Load color registers 

; 

     DC.W    COLOR00,$0FFF      ;Move white into register $180 (COLOR00 

     DC.W    COLOR01,$0F00      ;Move red into register $182 (COLOR01) 

     DC.W    COLOR02,$00F0      ;Move green into register $189 (COLOR02) 

     DC.W    COLOR03,$000F      ;Move blue into register $186 (COLOR03) 

; 

; Specify 2 lo-res bitplanes 

; 

     DC.W    BPLCON0,$2200      ;2 lores planes, color on 

; 

; Wait for line 150 

; 

     DC.W    $9601,$FF00        ;Wait for line 150, ignore horiz. position 

; 

; Change color registers mid-display 

; 

     DC.W    COLOR00,$0000      ;Move black into register $0180 (COLOR00) 

     DC.W    COLOR01,$0FF0      ;Move yellow into register $0182 (COLOR01) 

     DC.W    COLOR02,$00FF      ;Move cyan into register $0184 (COLOR02) 

     DC.W    COLOR03,$0F0F      :Move magenta into register $0186 (COLOR03) 

; 

;  End Copper list by waiting for the impossible 

; 

     DC.W    $FFFF,$FFFE        ;Wait for line 255, H = 254 (never happens) 

 

For more information about color registers, see Chapter 3, "Playfield 

Hardware." 

 

LOOPS AND BRANCHES 
Loops and branches in Copper lists are covered in the "Advanced Topics" section below. 
 
 
STARTING AND STOPPING THE COPPER 
 
 
STARTING THE COPPER AFTER RESET 
At power-on or reset time, you must initialize one of the Copper location registers 
(COP1LC or COP2LC) and write to its strobe address before Copper DMA is tuned on. This 
ensures a known start address and known state. Usually, COP1LC is used because this 

particular register is reused during each vertical blanking time. The following sequence of 
instructions shows how to 
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initialize a location register. It is assumed that the user has already 

created the correct Copper instruction list at location "mycoplist." 

 

; 

; Install the copper list 

; 

     LEA    CUSTOM,a1           ; a1 = address of custom chips 

     LEA    MYCOPLIST(pc),a0    ; Address of our copper list 

     MOVE.L a0,COP1LC(a1)       ; Write whole longword address 

     MOVE.W COPJMP1(a1),d0      ; Causes copper to load PC from COP1LC 

; 

; Then enable copper and raster dma 

; 

     MOVE.W  #(DMAF SETCLR!DMAF_COPPER!DMAF_RASTER!DMAF_MASTER),DMACON(a1) 

; 

 

Now, if the contents of COP1LC are not changed, every time vertical blanking occurs the 
Copper will restart at the same location for each subsequent video screen. This forms a 
repeatable loop which, if the list is correctly formulated, will cause the displayed screen to 

be stable. 
 
STOPPING THE COPPER 
No stop instruction is provided for the Copper. To ensure that it will stop and do nothing 
until the screen display ends and the program counter starts again at the top of the 
instruction list, the last instruction should be to WAIT for an event that cannot occur. A 
typical instruction is to WAIT for VP = $FF and HP = $FE. An HP of greater than $E2 is not 

possible. When the screen display ends and vertical blanking starts, the Copper will 
automatically be pointed to the top of its instruction list, and this final WAIT instruction 
never finishes. 
 
You can also stop the Copper by disabling its ability to use DMA for retrieving instructions 
or placing data. The register called DMACON controls all of the DMA channels. Bit7, 
COPEN, enables Copper DMA when set to 1. 

 
For information about controlling the DMA, see Chapter 7, "System Control Hardware." 
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ADVANCED TOPICS 
 
 
THE SKIP INSTRUCTION 

The SKIP instruction causes the Copper to skip the next instruction if the video beam 
counters are equal to or greater than the value given in the instruction. 
 
The contents of the SKIP instructions words are shown below. They are identical to the 
WAIT instruction, except that bit 0 of the second instruction word is a 1 to identify this as 
a SKIP instruction. 
 

         FIRST INSTRUCTION WORD (IR1) 

 

         Bit  0      Always set to 1. 

 

         Bits 15 - 8 Vertical position (called VP). 

 

         Bits  7 - 1 Horizontal position (called HP). 

 

                     Skip if the beam counter is equal to or 

                     greater than these combined bits 

                     (bits 15 through 1). 

 

         SECOND INSTRUCTION WORD (IR2) 

 

         Bit  0      Always set to 1. 

 

         Bit  15     The blitter-finished-disable bit. 

                     (See "Using the Copper with the 

                     Blitter" below.) 

 

         Bits 14 - 8 Vertical position compare enable bits (called VE). 

 

         Bits 7 - 1  Horizontal position compare enable bits (called HE). 

 

The notes about horizontal and vertical beam position found in the discussion of the WAIT 
instruction apply also to the SKIP instruction. 
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The following example SKIP instruction skips the instruction following it if VP (vertical 
beam position) is greater than or equal to 100 ($64). 
 

      DC.W   $6401,$FF01    ; If VP >= 100, 

                            ; skip next instruction (ignore HP) 

 

COPPER LOOPS AND BRANCHES AND COMPARISON ENABLE 
You can change the value in the location registers at any time and use this value to 
construct loops in the instruction list. Before the next vertical blanking time, however, the 
COP1LC registers must be repointed to the beginning of the appropriate Copper list. The 
value in the COP1L location registers will be restored to the Copper's program counter at 
the start of the vertical blanking period. 
 
Bits 14-1 of instruction word 2 in the WAIT and SKIP instructions specify which bits of the 
horizontal and vertical position are to be used for the beam counter comparison. The 
position in instruction word 1 and the compare enable bits in instruction word 2 are tested 
against the actual beam counters before any further action is taken. A position bit in 
instruction word 1 is used in comparing the positions with the actual beam counters if and 

only if the corresponding enable bit in instruction word 2 is set to 1. If the corresponding 
enable bit is 0, the comparison is always true. For instance, if you care only about the 
value in the last four bits of the vertical position, you set only the last four compare 
enable bits, bits (11-8) in instruction word 2. 
 
Not all of the bits in the beam counter may be masked. If you look at the description of 
the IR2 (second instruction word) you will notice that bit 15 is the blitter-finished-disable 
bit. This bit is not part of the beam counter comparison mask, it has its own meaning in 
the Copper WAIT instruction. Thus, you cannot mask the most significant bit in WAIT or 
SKIP instructions. In most situations this limitation does not come into play, however, the 
following example shows how to deal with it. 
 
This example will instruct the Copper to issue an interrupt every 16 scan lines. It might 
seem that the way to do this would be to use a mask of $0F and then compare the result 

with $0F. This should compare "true" for $1F, $2F, $3F, etc. Since the test is for greater 
than or equal to, this would seem to allow checking for every 16th scan line. However, the 
highest order bit cannot be masked, so it will always appear in the comparisons. When the 
Copper is waiting for $0F and the vertical position is past 128 (hex $80), this test will 
always be true. In this case, the minimum value in the comparison will be $80, which is 
always greater than $0F, and the interrupt will happen on every scan line. Remember, the 
Copper only checks for greater than or equal to. 
 
In the following example, the Copper lists have been made to loop. The COP1LC and 
COP2LC values are either set via the CPU or in the Copper list before this section of 
Copper code. Also, it is assumed that you have correctly installed an interrupt server for 
the Copper interrupt that will be generated every 16 lines. Note that these are non-
interlaced scan lines. 
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HOW IT WORKS: 
Both loops are, for the most part, exactly the same. In each, the Copper waits until the 
vertical position register has $?F (? is any hex digit) in it, at which point we issue a 
Copper interrupt to the Amiga hardware. To make sure that the Copper does not loop 

back before the vertical position has changed and cause another interrupt on the same 
scan line, wait for the horizontal position to be $E2 alter each interrupt. Position $E2 is 
horizontal position 113 for the Copper and the last real horizontal position available. This 
will force the Copper to the next line before the next WAIT. The loop is executed by 
writing to the COPJMP1 register. This causes the Copper to jump to the address that was 
initialized in COP1LC. 
 

The masking problem described above makes this code fail after vertical position 127. A 
separate loop must be executed when vertical position is greater than or equal 127. When 
the vertical position becomes greater than or equal to 127, the first loop instruction is 
skipped, dropping the Copper into the second loop. The second loop is much the same as 
the first, except that it waits for $?F with the high bit set (binary 1xxx1111). This is true 
for both the vertical and the horizontal WAIT instructions. To cause the second loop, write 
to the COPJMP2 register. The list is put into an infinite wait when VP >= 255 so that it will 
end before the vertical blank. At the end of the vertical blanking period COP1LC is written 
to by the operating system, causing the first loop to start up again. 
 
NOTE 
The COP1LC register is written at the end of the vertical blanking period by a graphics 
interrupt handler which is in the vertical blank interrupt server chain. As long as this 
server is intact, COP1LC will be correctly strobed at the end of each vertical blank. 
 

; 

; This is the data for the Copper list. 

; 

; It is assumed that COPPERL1 is loaded into COP1LC and 

; that COPPERL2 is loaded into COP2LC by some other code. 

; 

COPPERL1: 

     DC.W    $0F01,$8F00     ; Wait for VP=0xxxllll 

     DC.W    INTREQ,$8010    ; Set the copper interrupt bit 

 

     DC.W    $00E3,$80FE     ; Wait for Horizontal $E2 

                             ; This is so the line gets finished before 

                             ; we check if we are there (The wait above) 

 

     DC.W    $7F01,$7F01     ; Skip if VP>=127 

     DC.W    COPJMP1,$0      ; Force a jump to COP1LC 

 

COPPERL2: 

     DC.W    $8F01,$8F00     ; Wait for Vp=1xxx1111 

     DC.W    INTREQ,$8010    ; Set the copper interrupt bit... 

 

     DC.W    $80E3,$80FE     ; Wait for Horizontal $E2 

                             ; This is so the line gets finished before 

                             ; we check if we are there  (The wait above) 

 

     DC.W    $FF01, $FE01    : Skip if VP>=255 
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     DC.W    COPJMP2,$0      ; Force a jump to COP2LC 

 

; Whatever cleanup copper code that might be needed here... 

; Since there are 262 lines in NTSC, and we stopped at 255, there is a 

; bit of time available 

 

     DC.W    $FFFF,$FFFE     ; End of Copper list 

 

USING THE COPPER IN INTERLACED MODE 
An interlaced bit-plane display has twice the normal number of vertical lines on the 
screen. 
Whereas a normal NTSC display has 262 lines, an interlaced NTSC display has 524 lines. 
PAL has 312 lines normally and 625 in interlaced mode. In interlaced mode, the video 
beam scans the screen twice from top to bottom, displaying, in the case of NTSC, 262 
lines at a time. During the first scan, the odd-numbered lines are displayed. During the 
second scan, the even-numbered lines are displayed and interlaced with the odd- 
numbered ones. The scanning circuitry thus treats an interlaced display as two display 
fields, one containing the even-numbered lines and one containing the odd-numbered 
lines. Figure 2-1 shows how an interlaced display is stored in memory. 
 

 

      Odd Field               Even field 

       (time t)            (time t+16.6ms)         Data in memory 

                                                    _____________ 

                                                   |             | 

                                                   |      1      | 

                                                   |_____________| 

                                                   |             | 

    _____________          _____________           |      2      | 

   |             |        |             |          |_____________| 

   |      1      |        |      2      |          |             | 

   |_____________|        |_____________|          |      3      | 

   |             |        |             |          |_____________| 

   |      3      |        |      4      |          |             | 

   |_____________|        |_____________|          |      4      | 

   |             |        |             |          |_____________| 

   |      5      |        |      6      |          |             | 

   |_____________|        |_____________|          |      5      | 

                                                   |_____________| 

                                                   |             | 

                                                   |      6      | 

                                                   |_____________| 

 

                Figure 2-1: (Interlaced Bit-Plane in RAM) 

 

 

The system retrieves data for bit-plane displays by using pointers to the starting address 
of the data in memory. As you can see, the starting address for the even-numbered fields 
is one line greater than the starting address for the odd-numbered fields. Therefore, the 
bit-plane pointer must contain a different value for alternate fields of the interlaced 
display. 
 
Simply, the organization of the data in memory matches the apparent organization on the 
screen (i.e., odd and even lines are interlaced together). This is accomplished by having a 
separate Copper instruction list for each field to manage displaying the data. 
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To get the Copper to execute the correct list, you set an interrupt to the 68000 just after 
the first line of the display. When the interrupt is executed, you change the contents of 
the COP1LC location register to point to the second list. Then, during the vertical blanking 
interval, COP1LC will be automatically reset to point to the original list. 

 
For more information about interlaced displays, see Chapter 3, "Playfield Hardware." 
 
USING THE COPPER WITH THE BLITTER 
If the Copper is used to start up a sequence of blitter operations, it must wait for the 
blitter-finished interrupt before starting another blitter operation. Changing blitter 
registers while the blitter is operating causes unpredictable results. For just this purpose, 

the WAIT instruction includes an additional control bit, called BFD (for blitter 
finished disable). Normally, this bit is a 1 and only the beam counter comparisons control 
the WAIT. 
 
When the BFD bit is a 0, the logic of the Copper WAIT instruction is modified. The Copper 
will WAIT until the beam counter comparison is true and the blitter has finished. The 
blitter has finished when the blitter-finished flag is set. This bit should be unset with 
caution. It could possibly prevent some screen displays or prevent objects from being 
displayed correctly. 
 
For more information about using the blitter, see Chapter 6, "Blitter Hardware." 
 
THE COPPER AND THE 68000 
On those occasions when the Copper's instructions do not suffice, you can interrupt the 

68000 and use its instruction set instead. The 68000 can poll for interrupt flags set in the 
INTREQ register by various devices. To interrupt the 68000, use the Copper MOVE 
instruction to store a 1 into the following bits of INTREQ: 
 

Table 2-1: Interrupting the 68000 

 

     BITNUMBER    NAME       FUNCTION 

 

     15           SET/CLR    Set/Clear control bit. Determines 

                             if bits written with a 1 get set 

                             or cleared. 

 

      4           COPEN      Co-processor interrupting 68000. 

 

See Chapter 7, "System Control Hardware," for more information about interrupts. 
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SUMMARY OF COPPER INSTRUCTIONS 
 
The Table below shows a summary of the bit positions for each of the Copper instructions. 
See Appendix A for a summary of all registers. 
 

  Table 2-2: Copper Instruction Summary 

 

             Move             Wait             Skip 

  Bit#    IR1     IR2      IR1     IR2      IR1    IR2 

 

   15      X     RD15      VP7     BFD      VP7    BFD 

   14      X     RD14      VP6     VE6      VP6    VE6 

   13      X     RD13      VPS     VES      VPS    VES 

   12      X     RD12      VP4     VE4      VP4    VE4 

   11      X     RD11      VP3     VE3      VP3    VE3 

   10      X     RD10      VP2     VE2      VP2    VE2 

   09      X     RD09      VP1     VE1      VP1    VE1 

   08     DA8    RD08      VP0     VE0      VP0    VE0 

   07     DA7    RD07      HP8     HE8      HP8    HE8 

   06     DA6    RD06      HP7     HE7      HP7    HE7 

   05     DAS    RD05      HP6     HE6      HP6    HE6 

   04     DA4    RD04      HPS     HES      HPS    HES 

   03     DA3    RD03      HP4     HE4      HP4    HE4 

   02     DA2    RD02      HP3     HE3      HP3    HE3 

   01     DA1    RD01      HP2     HE2      HP2    HE2 

   00      0     RD00       1       0        1      1 

 

X   = don't care, but should be a 0 for upward compatibility 

IR1 = first instruction word 

IR2 = second instruction word 

DA  = destination address 

RD  = RAM data to be moved to destination register 

VP  = vertical beam position bit 

HP  = horizontal beam position bit 

VE  = enable comparison (mask bit) 

HE  = enable comparison (mask bit) 

BFD = blitter-finished disable 
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Chapter 3 
 

PLAYFIELD HARDWARE 
 

 
INTRODUCTION 
The screen display consists of two basic parts, playfields, which are sometimes called 
backgrounds, and sprites, which are easily movable graphics objects. This chapter 
describes how to directly access hardware registers to form playfields. 
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This chapter begins with a brief overview of playfield features, including definitions of 
some fundamental terms, and continues with the following major topics: 
 
o Forming a single "basic" playfield, which is a playfield the same size as the display 

screen. This section includes concepts that are fundamental to forming any playfield. 
 
o Forming a dual-playfield display in which one playfield is superimposed upon another. 
This procedure differs from that of forming a basic playfield in some details. 
 
o Forming playfields of various sizes and displaying only part of a larger playfield. 
 

o Moving playfields by scrolling them vertically and horizontally. 
 
o Advanced topics to help you use playfields in special situations. 
 
For information about movable sprite objects, see Chapter 4, "Sprite Hardware." There are 
also movable playfield objects, which are subsections of a playfield. To move portions of a 
playfield, you use a technique called playfield animation, which is described in Chapter 6, 
"Blitter Hardware". 
 
PLAYFIELD FEATURES 
The Amiga produces its video displays with raster display techniques. The picture you see 
on the screen is made up of a series of horizontal video lines displayed one after the 
other. Each horizontal video line is made up of a series of pixels. You create a graphic 
display by defining one or more bit-planes in memory and filling them with "1"s and "0"s 

The combination of the "1"s and "0"s will determine the colors in your display. 
 
Each line represents one sweep of an electron beam which is "painting" the picture as it 
goes along. 
 

        ________________________________________ 

  |    |                                        | 

  |    |  --->----->----->----->----->---->---  | 

  |    |  ____________________________________  | 

  |    |  ____________________________________  | 

  |    |  ____________________________________  | 

  |    |            __________________          | 

  |    |            __________________          | 

  |    |                                        | 

  |    |              VIDEO PICTURE             | 

  |    |            __________________          | 

  |    |            __________________          | 

  |    |  ____________________________________  | 

  |    |  ____________________________________  | 

  |    |  _____________________________________ | 

  |    |  ____________________________________  | 

 \ /   |________________________________________| 

 

 

         Figure 3-1:  How the Video display picture is produced 

 

VIDEO PICTURE     
The video beam produces each line by sweeping from left to right. It produces the full 
screen by sweeping the beam from the top to the bottom, one line at a time. 
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The video beam produces about 262 video lines from top to bottom, of which 200 
normally are visible on the screen with an NTSC system. With a PAL system, the beam 
produces 312 lines, of which 256 are normally visible. Each complete set of lines 
(262/NTSC or 312/PAL) is called a display field. The field time, i.e. the time required for a 

complete display field to be produced, is approximately 1/60th of a second for an NTSC 
system and approximately 1/50th of a second for PAL. Between display fields, the video 
beam traverses the lines that are not visible on the screen and returns to the top of the 
screen to produce another display field. 
 
The display area is defined as a grid of pixels. A pixel is a single picture element, the 
smallest addressable part of a screen display. The drawings below show what a pixel is 

and how pixels form displays. 
 

   _______________________ 

  |       _               | 

  |      |_| <----------------------- The picture is formed from many 

  |               _       |           elements.  Each element is called 

  |             _|_|_     |           a pixel. 

  |            |_|_|_|    | 

  |            |_|_|_| <------------- Pixels are used together to build 

  |_______________________|           larger graphic objects. 

 

   ___________________________     ____________________________ 

  |                           |   |                            | 

  |                           |   |                            | 

  | <------ 320 pixels -----> |   | <------ 640 pixels ------> | 

  |                           |   |                            | 

  |                           |   |                            | 

  |                           |   |                            | 

  |                           |   |                            | 

  |___________________________|   |____________________________| 

 

  In normal resolution mode,      In high resolution mode, 

  320 pixels fill a horizontal    640 pixels fill a horizontal 

  line.                           line. 

 

 

                      Figure 3-2: What Is a Pixel? 

 

 

The Amiga offers a choice in both horizontal and vertical resolutions. Horizontal resolution 

can be adjusted to operate in low resolution or high resolution mode. Vertical resolution 
can be adjusted to operate in interlaced or non-interlaced mode. 
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o In low-resolution mode, the normal playfield has a width of 320 pixels. 
 
o High-resolution mode gives finer horizontal resolution 640 pixels in the same physical 
display area. 

 
o In non-interlaced mode, the normal NTSC playfield has a height of 200 video lines. The 
normal mal PAL screen has a height of 256 video lines. 
 
o Interlaced mode gives finer vertical resolution 400 lines in the same physical display 
area in NTSC and 512 for PAL. 
 

These modes can be combined, so you can have, for instance, an interlaced, high-
resolution display. 
 
Note that the dimensions referred to as "normal" in the previous paragraph are nominal 
dimensions and represent the normal values you should expect to use. Actually, you can 
display larger playfields; the maximum dimensions are given in the section called "Bit-
Planes and Playfields of All Sizes." Also, the dimensions of the playfield in memory are 
often larger than the playfield displayed on the screen. You choose which part of this 
larger memory picture to display by specifying a different size for the display window. 
 
A playfield taller than the screen can be scrolled, or moved smoothly, up or down. A 
playfield wider than the screen can be scrolled horizontally, from left to right or right to 
left. Scrolling is described in the section called "Moving (Scrolling) Playfields." 
 

In the Amiga graphics system, you can have up to thirty-two different colors in a single 
playfield, using normal display methods. You can control the color of each individual pixel 
in the playfield display by setting the bit or bits that control each pixel. A display formed 
in this way is called a bit-mapped display. 
 
For instance, in a two-color display, the color of each pixel is determined by whether a 
single bit is on or off. If the bit is 0, the pixel is one user-defined color, if the bit is 1, the 
pixel is another color. For a four-color display, you build two bit-planes in memory. When 
the playfield is displayed, the two bit-planes are overlapped, which means that each pixel 
is now two bits deep. You can combine up to five bit-planes in this way. Displays made up 
of three, four, or five bit-planes allow a choice of eight, sixteen, or thirty-two colors, 
respectively. 
 
The color of a pixel is always determined by the binary combination of the bits that define 

it. When the system combines bit-planes for display, the combination of bits formed for 
each pixel corresponds to the number of a color register. This method of colouring pixels 
is called color indirection. The Amiga has thirty-two color registers, each containing bits 
defining a user selected color (from a total of 4,096 possible colors). 
 
Figure 3-3 shows how the combination of up to five bit-planes forms a code that selects 
which one of the thirty-two registers to use to display the color of a playfield pixel. 
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   _______________________________ 

  |      _ 

  |     |_|  Bit plane 5 

  |   ____________________________          __ 

  |  |     _                               |0 |_     -------- 

  |  |    |_|  Bit plane 4                 |_|0 |_          | 

  |  |   _________________________           |_|1 |_        \__ See below 

  |  |  |    _                                 |_|1 |_      / 

  |  |  |   |_|  Bit plane 3                     |_|1 |     | 

  |  |  |   ______________________                 |__| ----- 

     |  |  |   _ 

     |  |  |  |_|  Bit plane 2 

     |  |  |   ___________________ 

        |  |  |  _ 

        |  |  | |_|  Bit plane 1 

        |  |  | 

           |  |  ^ 

           |  |  | 

              |  | 

              |  \-------------- One pixel 

 

 

     Bits from planes 5,4,3,2,1 

 

                 Color Registers 

              _______________________ 

             |                       | 

      00000  |                       | 

             |_______________________| 

             |                       | 

      00001  |                       | 

             |_______________________| 

             |                       | 

      00010  |                       | 

             |_______________________| 

             |                       | 

      00011  |                       | 

             |_______________________| 

             |                       | 

      00100  |                       | 

             |_______________________| 

             |                       | 

             |           |           | 

             |           |           | 

      -----  |          \|/          | 

             |                       | 

             |_______________________| 

             |                       | 

      11111  |                       | 

             |_______________________| 

 

 

                Figure 3-3: How Bit-planes select a Color 

 

 

Values in the highest numbered bit-plane have the highest significance in the binary 
number. As shown in Figure 3-4, the value in each pixel in the highest-numbered bit-
plane forms the leftmost digit of the number. The value in the next highest-numbered bit-
plane forms the next bit, and so on.   
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Sample data for 4 pixels 

 

   a   b   c   d 

 

   1   1   0   0             Data in Bit-Plane 5 Most Significant 

   1   0   1   0             Data in Bit-Plane 4 

   1   0   0   1             Data in Bit-Plane 3 

   0   1   1   1             Data in Bit-Plane 2 

   0   0   1   0             Data in Bit-Plane 1 Least Significant 

 

   a  Value 6  COLOR 6 

   b  Value 11 COLOR 11 

   c  Value 18 COLOR 18 

   d  Value 28 COLOR 28 

 

        Figure 34: Significance of Bit-Plane Data in Selecting Colors 

 

 

You also have the choice of defining two separate playfields, each formed from up to three 
bit planes. Each of the two playfields uses a separate set of eight different colors. This is 
called dual-playfield mode. 
 
FORMING A BASIC PLAYFIELD 
 
To get you started, this section describes how to directly access hardware registers to 
form a single basic playfield that is the same size as the video screen. Here, "same size" 

means that the playfield is the same size as the actual display window. This will leave a 
small border between the playfield and the edge of the video screen. The playfield usually 
does not extend all the way to the edge of the physical display. 
 
To form a playfield, you need to define these characteristics: 
 
o Height and width of the playfield and size of the display window (that is, how much of 
the playfield actually appears on the screen). 
 
o Color of each pixel in the playfield. 
 
o Horizontal resolution. 
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o Vertical resolution, or interlacing. 
 
o Data fetch and modulo, which tell the system how much data to put on a horizontal line 
and how to fetch data from memory to the screen. 

 
In addition, you need to allocate memory to store the playfield, set pointers to tell the 
system where to find the data in memory, and (optionally) write a Copper routine to 
handle redisplay of the playfield. 
 
HEIGHT AND WIDTH OF THE PLAYFIELD 
To create playfield that is the same size as the screen, you can use a width of either 320 

pixels or 640 pixels, depending upon the resolution you choose. The height is either 200 
or 400 lines for NTSC, 256 or 512 lines for PAL, depending upon whether or not you 
choose interlaced mode. 
 
BIT-PLANES AND COLOR 
You define playfield color by: 
 
1. Deciding how many colors you need and how you want to color each pixel. 
 
2. Loading the colors into the color registers. 
 
3. Allocating memory for the number of bit-planes you need and setting a pointer to each 
bit-plane. 
 

4. Writing instructions to place a value in each bit in the bit-planes to give you the correct 
color. 
 
Table 3-1 shows how many bit-planes to use for the color selection you need. 
 

 

                   Number of  Number of 

                    Colors    Bit-Planes 

 

                     1- 2         1 

                     3- 4         2 

                     5- 8         3 

                     9-16         4 

                    17-32         5 

 

                  Table 3-1: Colors in a single playfield. 
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THE COLOR TABLE 
The color Table contains 32 registers, and you may load a different color into each of the 
registers. Here is a condensed view of the contents of the color Table: 
 

    Table 3-2: Portion of the Color Table 

 

    Register Name  Contents          Meaning 

 

       COLOR00     12 bits   User-defined color for The 

                             background area and borders. 

 

       COLOR01     12 bits   User-defined color number 1 

                             (For example, the alternate color 

                             selection for a two-color playfield). 

 

       COLOR02     12 bits   User-defined color number 2. 

 

       etc 

 

       etc 

 

       COLOR31     12 bits   User-defined color number 31. 

 

COLOR00 is always reserved for the background color. The background color shows in any 
area on the display where there is no other object present and is also displayed outside 
the defined display window, in the border area. 

 
NOTE 
If you are using the optional genlock board for video input from a camera, VCR, or laser 
disk, the background color will be replaced by the incoming video display. 
 
Twelve bits of color selection allow you to define, for each of the 32 registers, one of 
4,096 possible colors, as shown in Table 3-3. 
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     Table 3-3: Contents of the Color Registers 

 

     Bits 

 

     Bits 15 -12 Unused 

     Bits 11 - 8 Red 

     Bits  7 - 4 Green 

     Bits  3 - 0 Blue 

 

Table 3-4 shows some sample color register bit assignments and the resulting colors. At 
the end of the chapter is a more extensive list. 
 

 

    Table 3-4: Sample Color Register Contents 

 

    Contents of the             Resulting 

    Color Register                Color 

 

        $fff                      White 

        $6fe                      Sky blue 

        $db9                      Tan 

        $000                      Black 

 

Some sample instructions for loading color registers are shown below: 
 

    LEA    CUSTOM,a0               ; Get base address of custom hardware... 

    MOVE.W #$FFF,COLOR00(a0)       ; Load white into color register 0 

    MOVE.W #$6FE,COLOR01(a0)       ; Load sky blue into color register 1 

 

NOTE 
The color registers are write-only. Only by looking at the screen can you find out the 
contents of each color register. As a standard practice, then, for these and certain other 
write-only registers, you may wish to keep a "back-up" RAM copy. As you write to the 
color register itself, you should update this RAM copy. If you do so, you will always know 
the value each register contains. 
 
SELECTING THE NUMBER OF BIT-PLANES 
After deciding how many colors you want and how many bit-planes are required to give 
you those colors, you tell the system how many bit-planes to use. 
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You select the number of bit-planes by writing the number into the register BPLCON0 (for 
Bit Plane Control Register 0) The relevant bits are bits 14, 13, and 12, named BPU2, 
BPU1, and BPU0 (for "Bit Planes Used"). Table 3-5 shows the values to write to these bits 
and how the system assigns bit-plane numbers. 
 

      Table 3-5: Setting the Number of Bit-Planes 

 

            Number of   Name(s) of 

     Value  Bit-Planes  Bit-Planes 

 

      000     None * 

      001       1       PLANE 1 

      010       2       PLANES 1 and 2 

      011       3       PLANES 1 - 3 

      100       4       PLANES 1 - 4 

      101       5       PLANES 1 - 5 

      110       6       PLANES 1 - 6 ** 

      111       7       Value not used. 

 

* Shows only a background color; no playfield is visible. 

 

** Sixth bit-plane is used only in dual-playfield mode and in hold-and- 

modify mode (described in the section called "Advanced Topics"). 

 

NOTE 
The bits in the BPLCON0 register cannot be set independently. To set any one bit, you 

must reload them all. 
 
The following example shows how to tell the system to use two low-resolution bit-planes. 
 

    MOVE.W #$2200,BPLCON0+CUSTOM ; Write to it 

 

Because register BPLCON0 is used for setting other characteristics of the display and the 
bits are not independently, the example above also sets other parameters (all of these 

parameters are described later in the chapter). 
 
o Hold-and-modify mode is turned off. 
 
o Single-playfield mode is set. 
 
o Composite video color is enabled. (Not applicable in all models.) 
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o Genlock audio is disabled. 
 
o Light pen is disabled. 
 

o Interlaced mode is disabled. 
 
o External resynchronization is disabled. (genlock) 
 
SELECTING HORIZONTAL AND VERTICAL RESOLUTION 
Standard home television screens are best suited for low-resolution displays. Low-
resolution mode provides 320 pixels for each horizontal line. High-resolution monochrome 

and RGB monitors can produce displays in high-resolution mode, which provides 640 
pixels for each horizontal line. If you define an object in low-resolution mode and then 
display it in high-resolution mode, the object will be only half as wide. 
 
To set horizontal resolution mode, you write to bit 15, HIRES, in register BPLCON0: 
 
High-resolution modewrite 1 to bit 15. 
Low-resolution modewrite 0 to bit 15. 
 
Note that in high-resolution mode, you can have up to four bit-planes in the playfield and, 
therefore, up to 16 colors. 
 
Interlaced mode allows twice as much data to be displayed in the same vertical area as in 
non-interlaced mode. This is accomplished by doubling the number of lines appearing on 

the video screen. The following Table shows the number of lines required to fill a normal, 
non-overscan screen. 
 

     Table 3-6: Lines in a Normal Playfield 

 

                    NTSC PAL 

     ----------------------- 

     Non-interlaced 200  256 

     Interlaced     400  512 

 

In interlaced mode, the scanning circuitry vertically offsets the start of every other field by 
half a scan line. 
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line 1_________________________ 

   | _________________________ |\ 

   | _________________________ | \ 

   |        _________          |  \ 

   |         Field 1           |   \   __________________ 

   |        _________          |    \ |___|______________|___Line 1 

   | _________________________ |     >|___|______________|___ 

   | _________________________ |    / |   |              |   Line 2 

   |___________________________|   /  |   | Video display| 

                                  /   |   |  (400 lines) | 

line 1_________________________  /    |   |              | 

   | _________________________ |      |__\|/_____________| 

   | _________________________ | 

   |        _________          | 

   |         Field 2           |      (same physical space as used 

   |        _________          |       by a 200 line noninterlaced 

   | _________________________ |       display) 

   | _________________________ | 

   |___________________________| 

 

 

                         Figure 3-5: Interlacing 

 

 

Even though interlaced mode requires a modest amount of extra work in setting registers 
(as you will see later on in this section), it provides fine tuning that is needed for certain 
graphics effects. Consider the diagonal line in Figure 3-6 as it appears in non-interlaced 

and interlaced modes. Interlacing eliminates much of the jaggedness or "staircasing" in 
the edges of the line. 
 

 
 

 

 

Figure 3-6: Effect of Interlaced Mode on Edges of Objects 

 

 

When you use the special blitter DMA channel to draw lines or polygons onto an interlaced 
playfield, the playfield is treated as one display, rather than as odd and even fields. 
Therefore, you still get the smoother edges provided by interlacing.       
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To set interlaced or non-interlaced mode, you write to bit 2, LACE, in register BPLCON0: 
 
    Interlaced mode write 1 to bit 2. 
    Non-interlaced mode write 0 to bit 2. 

 
As explained above in "Setting the Number of Bit-Planes," bits in BPLCON0 are not 
independently set.  
 
The following example shows how to specify high-resolution and interlaced modes. 
 

    MOVE.W #$A204,BPLCON0+CUSTOM ; Write to it 

 

The example above also sets the following parameters that are also controlled through 
register BPLCON0: 
 
o High-resolution mode is enabled. 
 
o Two bit-planes are used. 
 
o Hold-and-modify mode is disabled. 
 
o Single-playfield mode is enabled. 
 
o Composite video color is enabled. 
 

o Genlock audio is disabled. 
 
o Light pen is disabled. 
 
o Interlaced mode is enabled. 
 
o External resynchronization is disabled. 

 
The amount of memory you need to allocate for each bit-plane depends upon the 
resolution modes you have selected, because high-resolution or interlaced playfields 
contain more data and require larger bit-planes. 
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ALLOCATING MEMORY FOR BIT-PLANES 
After you set the number of bit-planes and specify resolution modes, you are ready to 
allocate memory. A bit-plane consists of an end-to-end sequence of words at consecutive 
memory locations.  When operating under the Amiga operating system, use a system call 

such as AllocMem() to remove a block of memory from the free list and make it available 
to the program. If the machine has been taken over, simply reserve an area of memory 
for the bit-planes. Next, set the bit plane pointer registers (BPLxPTH/BPLxPTL) to point to 
the starting memory address of each bitplane you are using. The starting address is the 
memory word that contains the bits of the upper left-hand corner of the bit-plane. 
 
Table 3-6 shows how much memory is needed for basic playfields. You may need to 

balance your color and resolution requirements against the amount of available memory 
you have. 
 

             Table 3-7: Playfield Memory Requirements, NTSC 

 

                                             Number of Bytes 

             Picture Size     Modes           per Bit-Plane 

 

             320 X 200     Low-resolution,        8,000 

                           non-interlaced 

 

             320 X 400     Low-resolution,       16,000 

                           interlaced 

 

             640 X 200     High-resolution,      16,000 

                           non-interlaced 

 

             640 X 400     High-resolution,      32,000 

                           interlaced 
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Table 3-8: Playfield Memory Requirements, PAL 

 

                                              Number of Bytes 

             Picture Size     Modes           per Bit-Plane 

 

             320 X 256     Low-resolution,        8,192 

                           non-interlaced 

 

             320 X 512     Low-resolution,       16,384 

                           interlaced 

 

             640 X 256     High-resolution,      16,384 

                           non-interlaced 

 

             640 X 512     High-resolution,      32,768 

                           interlaced 

 

NTSC EXAMPLE OF BIT PLANE SIZE 
For example, using a normal, NTSC, low-resolution, non-interlaced display with 320 pixels 

across each display line and a total of 200 display lines, each line of the bit-plane requires 
40 bytes (320 bits divided by 8 bits per byte = 40). Multiply the 200 lines times 40 bytes 
per line to get 8,000 bytes per bit-plane as given above. 
 
A low-resolution, non-interlaced playfield made up of two bit-planes requires 16,000 bytes 
of memory area. The memory for each bit-plane must be continuous, so you need to have 
two 8,000-byte blocks of available memory. 
 
Figure 3-7 shows an 8,000-byte memory area organized as 200 lines of 40 bytes each, 
providing 1 bit for each pixel position in the display plane. 
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   _____________                            _____________ 

  | | | | | | | |  _____________________\  | | | | | | | | 

  |_|_|_|_|_|_|_|                       /  |_|_|_|_|_|_|_| 

  Mem. Location N                          Mem. location N+38 

 

   _____________                            _____________ 

  | | | | | | | |  _____________________\  | | | | | | | | 

  |_|_|_|_|_|_|_|                       /  |_|_|_|_|_|_|_| 

  Mem. Location N+40          |            Mem. location N+78 

                              | 

                              | 

                              | 

                              | 

   _____________             \|/            _____________ 

  | | | | | | | |  ___________V_________\  | | | | | | | | 

  |_|_|_|_|_|_|_|                       /  |_|_|_|_|_|_|_| 

  Mem. Location N+7960                     Mem. location N+7998 

 

 

          Figure 3-7: Memory Organization for a Basic Bit-Plane 

 

 

Access to bit-planes in memory is provided by two address registers, BPLxPTH and 
BPLxPTL, for each bit-plane (12 registers in all). The "x" position in the name holds the 
bit-plane number; for example BPL1PTH and BPL1PTL hold the starting address of PLANE 
1. Pairs of registers with names ending in PTH and PTL contain 19-bit addresses. 68000 
programmers may treat these as one 32-bit address and write to them as one long word. 

You write to the high-order word, which is the register whose name ends in "PTH." 
 
The example below shows how to set the bit-plane pointers. Assuming two 
bit-planes, one at $21000 and the other at $25000, the processor sets 
BPL1PT to $21000 and BPL2PT to $25000. Note that this is usually the 
Copper's task. 
 

; 

; Since the bit plane pointer registers are mapped as a full 680x0 long- 

; word data, we can store the addresses with a 32-bit move... 

; 

    LEA    CUSTOM,a0               ; Get base address of custom hardware... 

    MOVE.L $21000,BPL1PTH(a0)      ; Write bit-plane 1 pointer 

    MOVE.L $25000,BPL2PTH(a0)      ; Write bit-plane 2 pointer 

 

Note that the memory requirements given here are for the playfield only. You may need 
to allocate additional memory for other parts of the display, sprites, audio, animation and 
for your application programs. Memory allocation for other parts of the display is 
discussed in the chapters describing those topics. 
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CODING THE BIT-PLANES FOR CORRECT COLORING 
After you have specified the number of bit-planes and set the bit-plane pointers, you can 
actually write the color register codes into the bit-planes. 
 

A ONE-OR TWO-COLOR PLAYFIELD 
For a one-color playfield, all you need do is write "0"s in all the bits of the single bit-plane 
as shown in the example below. This code fills a low-resolution bit-plane with the 
background color (COLOR00) by writing all "0"s into its memory area. The bit-plane starts 
at $21000 and is 8,000 bytes long. 
 

        LEA    $21000,a0        ; Point at bit-plane 

        MOVE.W #2000,d0         ; Write 2000 longwords = 8000 bytes 

LOOP:   MOVE.L #0,(a0)+         ; Write out a zero 

        DBRA   d0,LOOP          ; Decrement counter and loop until done 

 

For a two-color playfield, you define a bit-plane that has "0"s where you want the 
background color and "1"s where you want the color in register 1. The following example 
code is identical to the last example, except the bit-plane is filled with $FF00FF00 instead 
of all 0's. This will produce two colors. 
 

         LEA    $21000,a0        ; Point at bit-plane 

         MOVE.W #2000,d0         ; Write 2000 longwords = 8000 bytes 

LOOP:    MOVE.L #$FF00FF00,(a0)+ ; Write out $FF00FF00 

         DBRA   d0,LOOP          ; Decrement counter & loop until done 

 

A PLAYFIELD OF THREE OR MORE COLORS 
For three or more colors, you need more than one bit-plane. The task here is to define 
each bit-plane in such a way that when they are combined for display, each pixel contains 
the correct combination of bits. This is a little more complicated than a playfield of one 
bit-plane. The following examples show a four-color playfield, but the basic idea and 
procedures are the same for playfields containing up to 32 colors. 
 
Figure 3-8 shows two bit-planes forming a four-color playfield: 
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Figure 3-8: Combining Bit-planes 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

You place the correct "1"s and "0"s in both bit-planes to give each pixel in the picture 
above the correct color. 
 
In a single playfield you can combine up to five bit-planes in this way. Using five bit-
planes allows a choice of 32 different colors for any single pixel. The playfield color 
selection charts at the end of this chapter summarize the bit combinations for playfields 
made from four and five bit-planes. 
 
DEFINING THE SIZE OF THE DISPLAY WINDOW 

After you have completely defined the playfield, you need to define the size of the display  
window, which is the actual size of the on-screen display. Adjustment of display window 
size affects the entire display area, including the border and the sprites, not just the 
playfield. You cannot display objects outside of the defined display window. Also, the size 
of the border around the playfield depends on the size of the display window. 
 
The basic playfield described in this section is the same size as the screen display area 
and also the same size as the display window. This is not always the case; often the 
display window is smaller than the actual "big picture" of the playfield as defined in 
memory (the raster). A display window that is smaller than the playfield allows you to 
display some segment of a large 
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playfield or scroll the playfield through the window. You can also define display windows 
larger than the basic playfield. These larger playfields and different-sized display windows 
are described in The section below called "Bit-Planes and Display Windows of All Sizes." 
 

You determine the size of the display window by specifying the vertical and horizontal 
positions at which the window starts and stops and writing these positions to the display 
window registers. The resolution of vertical start and stop is one scan line. The resolution 
of horizontal start and stop is one low-resolution pixel. Each position on the screen defines 
the horizontal and vertical position of some pixel, and this position is specified by the x 
and y coordinates of the pixel. This document shows the x and y coordinates in this form: 
(x,y). Although the coordinates begin at (0,0) in the upper left-hand corner of the screen, 

the first horizontal position normally used is $81 and the first vertical position is $2C. The 
horizontal and vertical starting positions are the same both for NTSC and for PAL. 
 
The hardware allows you to specify a starting position before ($81,$2C), but part of the 
display may not be visible. The difference between the absolute starting position of (0,0) 
and the normal starling position of ($81,$2C) is the result of the way many video display 
monitors are designed. To overcome the distortion that can occur at the extreme edges of 
the screen, the scanning beam sweeps over a larger area than the front face of the screen 
can display. A starting position of ($81,$2C) centers a normal size display, leaving a 
border of eight low-resolution pixel  around The display window. Figure 3-9 shows the 
relationship between the normal display window, the visible screen area, and the area 
actually covered by the scanning beam. 
 

 

             (0,0) 

            /      ($81,$2C) 

           /______/____________________________ 

          |   ___/__________________________   | 

          |  |  /_________________________  |\ | 

          |  | |   /\                     | | \| 

          |  | |<--|-------320----------->| |  \ 

          |  | |   |                      | |  |\ 

          |  | |   |200                   | |  | \Visible screen 

          |  | |   |                      | |  |          boundaries 

          |  | |   |                      | |  | 

          |  | |___\/_____________________| |  | 

          |  |__\________________________/__|  | 

          |______\_____________________ /______| 

                  \                    / 

                   \_____Display _____/ 

                    window starting & 

                    stopping positions 

 

 

              Figure 3-9: Positioning the On-screen Display 
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SETTING THE DISPLAY WINDOW STARTING POSITION 
A horizontal starting position of approximately $81 and a vertical starting position of 
approximately $2C centers the display on most standard television screens. If you select 
high-resolution mode (640 pixels horizontally) or interlaced mode (400 lines NTSC, 512 

PAL) the starting position does not change. The starting position is always interpreted in 
low-resolution, non-interlaced mode. In other words, you select a starting position that 
represents the correct coordinates in low-resolution, non-interlaced mode. 
 
The register DIWSTRT (for "Display Window Start") controls the display window starting 
position. This register contains both the horizontal and vertical components of the display 
window starting positions, known respectively as HSTART and VSTART. The following 

example sets DIWSTRT for a basic playfield. You write $2C for VSTART and $81 for 
HSTART. 
 

    LEA    CUSTOM,a0               ; Get base address of custom hardware... 

    MOVE.W #$2C81,DIWSTRT(a0)      ; Display window start register... 

 
SETTING THE DISPLAY WINDOW STOPPING POSITION 
You also need to set the display window stopping position, which is the lower right-hand 
corner of the display window. If you select high-resolution or interlaced mode, the 
stopping position does not change. Like the starting position, it is interpreted in low-
resolution, non-interlaced mode. 
 
The register DIWSTOP (for Display Window Stop) controls the display window stopping 
position. This register contains both the horizontal and vertical components of the display 

window stopping positions, known respectively as HSTOP and VSTOP. The instructions 
below show how to set HSTOP and VSTOP for the basic playfield, assuming a starting 
position of ($81,$2C). Note that the HSTOP value you write is the actual value minus 256 
($100). The HSTOP position is restricted to the right-hand side of the screen. The normal 
HSTOP value is ($1C1) but is written as ($Cl). HSTOP is the same both for NTSC and for 
PAL. 
 

The VSTOP position is restricted to the lower half of the screen. This is accomplished in 
the hardware by forcing the MSB of the stop position to be the complement of the next 
MSB. This allows for a VSTOP position greater than 256 ($100) using only 8 bits. 
Normally, the VSTOP is set to ($F4) for NTSC, ($2C) for PAL. 
 
    The normal NTSC DIWSTRT is ($2C81). 
    The normal NTSC DIWSTOP is ($F4C1). 

 
    The normal PAL DIWSTRT is ($2C81). 
    The normal PAL DIWSTOP is ($2CC1). 
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The following example sets DIWSTOP for a basic playfield to $F4 for the vertical position 
and $C1 for the horizontal position. 
 

    LEA    CUSTOM,a0               ; Get base address of custom hardware... 

    MOVE.W #$F4C1,DIWSTOP(a0)      ; Display window stop register... 

 

 

      Table 3-9: DIWSTRT AND DIWSTOP Summary. 

 

            -Nominal Values-      -Possible Values- 

              NTSC     PAL         MIN         MAX 

    DIWSTRT: 

      VSTART  $2C      $2C         $00         $FF 

      HSTART  $81      $81         $00         $FF 

 

    DIWSTOP: 

      VSTOP   $F4      $2C (=$12C) $80         $7F (=$17F) 

      HSTOP   $C1      $C1         $00 (=$100) $FF (=$1FF) 

 

TELLING THE SYSTEM HOW TO FETCH AND DISPLAY DATA 
After defining the size and position of the display window, you need to give the system the 
on screen location for data fetched from memory. To do this, you describe the horizontal 
positions where each line starts and stops and write these positions to the data-fetch 
registers. The data-fetch registers have a four-pixel resolution (unlike the display window 
registers, which have a one-pixel resolution). Each position specified is four pixels from 
the last one. Pixel 0 is position 0; pixel 4 is position 1, and so on. 
 
The data-fetch start and display window starting positions interact with each other. It is 
recommended that data-fetch start values be restricted to a programming resolution of 16 
pixels (8 clocks in low-resolution mode, 4 clocks in high-resolution mode). The hardware 
requires some time after the first data fetch before it can actually display the data. As a 
result, there is a difference between the value of window start and data-fetch start of 4.5 
color clocks. 

 
    The normal low-resolution DDFSTRT is ($0038). 
    The normal high-resolution DDFSTRT is ($003C). 
 
Recall that the hardware resolution of display window start and stop is twice the hardware 
resolution of data fetch: 
 

          $81 

          ---  -8.5=$38 

           2 

 

 

          $81 

          ---  -4.5=$3c 

           2 
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The relationship between data-fetch start and stop is; 
 
    DDFSTRT = DDFSTOP-(8*(word count-1))for low resolution 
 

    DDFSTRT = DDFSTOP-(4*(word count-2))for high resolution 
 
The normal low-resolution DDFSTOP is ($00D0). The normal high-resolution DDFSTOP is 
($00D4) 
 
The following example sets data-fetch start to $0038 and data-fetch stop to $00D0 for a 
basic playfield. 
 

    LEA    CUSTOM,a0               ; Point to base hardware address 

    MOVE.W #$0038,DDFSTRT(a0)      ; Write to DDFSTRT 

    MOVE.W #$00D0,DDFSTOP(a0)      ; Write to DDFSTOP 

 

You also need to tell the system exactly which bytes in memory belong on each horizontal 
line of the display. To do this, you specify the modulo value. Modulo refers to the number 
of bytes in memory between the last word on one horizontal line and the beginning of the 
first word on the next line. Thus, the modulo enables the system to convert bit-plane data 
stored in linear form (each data byte at a sequentially increasing memory address) into 
rectangular form (one "line" of sequential data followed by another line). For the basic 
playfield, where the playfield in memory is the same size as the display window, the 
modulo is zero because the memory area contains exactly the same number of bytes as 
you want to display on the screen. Figures 3-10 and 3-11 show the basic bit-plane layout 

in memory and how to make sure the correct data is retrieved. 
 
The bit-plane address pointers (BPLxPTH and BPLxPTL) are used by the system to fetch 
the data to the screen. These pointers are dynamic; once the data fetch begins, the 
pointers are continuously incremented to point to the next word to be fetched (data is 
fetched two bytes at a  time). When the end-of-line condition is reached (defined by the 
data-fetch register, DDFSTOP) the modulo is added to the bit-plane pointers, adjusting 
the pointer to the first word to be fetched for the next horizontal line. 
 

Data for Line 1: 

Location:            START      START+2      START+4    .....START+38 

                    Leftmost    Next Word    Next Word     Last Display 

                  Display Word                                 Word 

                                                                 ^ 

Screen data fetch stops (DDFSTOP) for                            | 

each horizontal line after the last word  <----------------------| 

on the line has been fetched. 

 

Figure 3-10: Data Fetched for the First Line When Modulo = 0 
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After the first line is fetched, the bit-plane pointers BPLxPTH and BPLxPTL contain the 
value START+40. The modulo (in this case, 0) is added to the current value of the pointer, 
so when the pointer begins the data fetch for the next line, it fetches the data you want 
on that line. The data for the next line begins at memory location START+40. 
 

Data for Line 2: 

Location:            START+40    START+42     START+44   .....START+78 

                     Leftmost    Next Word    Next Word     Last Display 

                   Display Word                                 Word 

 

    Figure 3-11: Data Fetched for the Second Line When Modulo = 0 

 

 

Note that the pointers always contain an even number, because data is fetched from the 
display a word at a time. 
 
There are two modulo registers, BPL1MOD for the odd-numbered bit-planes and BPL2MOD 
for the even-numbered bit-planes. This allows for differing modules for each playfield in 
dual-playfield mode. For normal applications, both BPL1MOD and BPL2MOD will be the 
same. 
 
The following example sets the modulo to 0 for a low-resolution playfield with one bit-
plane. The bit-plane is odd-numbered. 
 

    MOVE.W #0,BPL1MOD+CUSTOM     ; Set modulo to 0 

 

DATA FETCH IN HIGH-RESOLUTION MODE 
When you are using high-resolution mode to display the basic playfield, you need to fetch 
80 bytes for each line, instead of 40. 
 
MODULO IN INTERLACED MODE 
For interlaced mode, you must redefine the modulo, because interlaced mode uses two 
separate scanning’s of the video screen for a single display of the playfield. During the 

first scanning, the odd-numbered lines are fetched to the screen; and during the second 
scanning, the even-numbered lines are fetched. 
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The bit-planes for a full-screen-sized, interlaced display are 400 NTSC (512 PAL), rather 
than 200 NTSC (256 PAL), lines long. Assuming that the playfield in memory is the normal 
320 pixels wide, data for the interlaced picture begins at the following locations (these are 
all byte addresses): 

 
        Line 1 START 
        Line 2 START+40 
        Line 3 START+80 
        Line 4 START+120 
 
and so on. Therefore, you use a modulo of 40 to skip the lines in the other field. For odd 

fields, the bit-plane pointers begin at START. For even fields, the bit-plane pointers begin 
at START+40 
 
You can use the Copper to handle resetting of the bit-plane pointers for interlaced 
displays. 
 
DISPLAYING AND REDISPLAYING THE PLAYFIELD 
You start playfield display by making certain that The bit-plane pointers are set and bit-
plane DMA is turned on. You turn on bit-plane DMA by writing a 1 to bit BPLEN in the 
DMACON (for DMA control) register. See Chapter 7, "System Control Hardware," for 
instructions on setting this register. 
 
Each time The playfield is redisplayed, you have to reset the bit-plane pointers. Resetting 
is necessary because the pointers have been incremented to point to each successive 

word in memory and must be repointed to the first word for the next display. You write 
Copper instructions to handle the redisplay or perform this operation as part of a vertical 
blanking task. 
 
ENABLING THE COLOR DISPLAY 
The stock A1000 has a color composite output and requires bit 9 set in BPLCON0 to create 
a color composite display signal. Without the addition of specialized hardware, the A500 
and A2000 cannot generate color composite output. 
 
NOTE 
The color burst enable does not affect the RGB video signal. RGB video is correctly 
generated regardless of the output of the composite video signal. 
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BASIC PLAYFIELD SUMMARY 
The steps for defining a basic playfield are summarized below: 
 
1. Define Playfield Characteristics 

 
   a. Specify height in lines: 
 
      o For NTSC: 
 
        * 200 for non-interlaced mode. 
 

        * 400 for interlaced mode. 
 
      o For PAL: 
 
        * 256 for non-interlaced mode. 
 
        * 512 for interlaced mode. 
 
 
    b. Specify width in pixels: 
 
      o 320 for low-resolution mode. 
 
      o 640 for high-resolution mode. 

 
 
    c. Specify color for each pixel: 
 
      o Load desired colors in color table registers. 
 
      o Define color of each pixel in terms of the binary value that points 
        at the desired color register. 
 
      o Build bit-planes. 
 
      o Set bit-plane registers. 
 
        * Bits 12-14 in BPLCON0 - number of bit-planes (BPU2 - BPU0). 

 
        * BPLxPTH - pointer to bit-plane starting position in memory                    
                    (written as a long word). 
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  d. Specify resolution: 
 
      o Low resolution: 
 

        * 320 pixels in each horizontal line. 
 
        * Clear bit 15 in register BPLCON0 (HIRES). 
 
      o High resolution: 
 
        * 640 pixels in each horizontal line. 

 
        * Set bit 15 in register BPLCON0 (HIRES). 
 
   e. Specify interlaced or non-interlaced mode: 
 
      o Interlaced mode: 
 
        * 400 vertical lines for NTSC, 512 for PAL. 
 
        * Set bit 2 in register BPLCON0 (LACE). 
 
      o Non-interlaced mode: 
 
        * 200 vertical lines for NTSC, 256 for PAL. 

 
        * Clear bit 2 in BPLCON0 (LACE). 
 
2. Allocate Memory. To calculate data-bytes in the total bit-planes, use the following 
formula: Bytes per line * lines in playfield * number of bit-planes 
 
3. Define Size of Display Window. 
 
      o Write start position of display window in DIWSTRT: 
 
        * Horizontal position in bits 0 through 7 (low-order bits). 
 
        * Vertical position in bits 8 through 15 (high-order bits). 
 

      o Write stop position of display window in DIWSTOP: 
 
        * Horizontal position in bits 0 through 7. 
 
        * Vertical position in bits 8 through 15. 
 

                          

 

 

 

 

 

 

 

 

 

 

 

- Playfield Hardware 58 - 



4. Define Data Fetch. Set registers DDFSTRT and DDFSTOP: 
 
      o For DDFSTRT, use the horizontal position as shown in "Setting the 
        Display Window Starting Position." 

 
      o For DDFSTOP, use the horizontal position as shown in "Setting the 
        Display Window Stopping Position." 
 
5. Define Modulo. Set registers BPL1MOD and BPL2MOD. Set modulo to 0 for non-
interlaced, 40 for interlaced. 
 

6. Write Copper Instructions To Handle Redisplay. 
 
7. Enable Color Display. For the A1000: set bit 9 in BPLCON0 to enable the color display 
on a composite video monitor. RGB video is not affected. Only the A1000 has color 
composite video output, other machines cannot enable this feature using standard 
hardware. 
 
EXAMPLES OF FORMING BASIC PLAYFIELDS 
The following examples show how to set the registers and write the coprocessor lists for 
two different playfields. 
 
The first example sets up a 320 x 200 playfield with one bit-plane, which is located at 
$21000. Also, a Copper list is set up at $20000. 
 

This example relies on the include file "hw examples.i", which is found in Appendix J. 
 

    LEA    CUSTOM,a0                ; a0 points at custom chip 

    MOVE.W #$1200,BPLCON0(a0)       ; One bit-plane, enable composite color 

    MOVE.W #0,BPLCON1(a0)           ; Set horizontal scroll value to 0 

    MOVE.W #0,BPL1MOD(a0)           ; Set modulo to 0 for all odd bit-planes 

    MOVE.W #$0038,DDFSTRT(a0)       ; Set data-fetch start to $38 

    MOVE.W #$00D0,DDFSTOP(a0)       ; Set data-fetch stop to $D0 

    MOVE.W #$2C81,DIWSTRT(a0)       ; Set DIWSTRT to $2C81 

    MOVE.W #$F4C1,DIWSTOP(a0)       ; Set DIWSTOP to $F4Cl 

    MOVE.W #$0F00,COLOR00(a0)       ; Set background color to red 

    MOVE.W #$0FF0,COLOR01(a0)       ; Set color register 1 to yellow 

; 

; Fill bit-plane with $FF00FF00 to produce stripes 

; 

    MOVE.L #$21000,a1               ; Point at beginning of bit-plane 

    MOVE.L #$FF00FF00,d0            ; We will write $FF00FF00 long words 

    MOVE.W #2000,d1                 ; 2000 long words = 8000 bytes 

; 

LOOP: 

    MOVE.L d0,(a1)+                 ; Write a long word 

    DBRA   d1,LOOP                  ; Decrement counter and loop until done 

; 

; Set up Copper list at $20000 

; 

    MOVE.L #$20000,a1               ; Point at Copper list destination 

    LEA    COPPERL(pc).a2           ; Point a2 at Copper list data 
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CLOOP: 

    MOVE.L (a2),(a1)+               ; Move a word 

    CMPI.L #$FFFFFFFE,(a2)+         ; Check for last longword of Copper list 

    BNE    CLOOP                    ; Loop until entire copper list i9 moved 

; 

; Point Copper at Copper list 

; 

    MOVE.L #$20000,COP1LCH(a0)      ; Write to Copper location register 

    MOVE.W COPJMP1(a0),d0           ; Force copper to $20000 

; 

; Start DMA 

; 

    MOVE.W #(DMAF_SETCLR!DMAF_COPPER!DMAF_RASTER!DMAF_MASTER),DMACON(a0) 

                                    ; Enable bit-plane and Copper DMA 

    BRA ....                        ; Go do next task 

; 

; This is the data for the Copper list. 

; 

COPPERL: 

    DC.W BPL1PTH,$0002              ; Move $0002 to address $0E0 (BPL1PTH) 

    DC.W BPL1PTL,$1000              ; Move $1000 to address $0E2 (BPL1PTL) 

    DC.W $FFFF,$FFFE                ; End of Copper list 

 

The second example sets up a high-resolution, interlaced display with one bitplane. This 
example also relies on the include file "hw_examples.i", which is found in Appendix J. 
 

    LEA    CUSTOM,a0                ; Address of custom chips 

    MOVE.W #$9204,BPLCON0(a0)       ; Hires, one bit-plane, interlaced 

    MOVE.W #0,BPLCON1(a0)           ; Horizontal scroll value 0 

    MOVE.W #80,BPL1MOD(a0)          ; Modulo = 80 for odd bit-planes 

    MOVE.W #80,BPL2MOD(a0)          ; Ditto for even bit-planes 

    MOVE.W #$003C,DDFSTRT(a0)       ; Set data-fetch start for hires 

    MOVE.W #$00D4,DDFSTOP(a0)       ; Set data-fetch stop 

    MOVE.W #$2C81,DIWSTRT(a0)       ; Set display window start 

    MOVE.W #$F4C1,DIWSTOP(a0)       ; Set display window stop 

; 

; Set up color registers 

; 

    MOVE.W #$000F,COLOR00(a0)       ; Background color = blue 

    MOVE.W #$0FFF,COLOR01(a0)       ; Foreground color = white 

 

;Set up bit-plane at S20000 

 

    LEA    $20000,a1                ; Point a1 at bit-plane 

    LEA    CHARLIST(pc),a2          ; a2 points at character data 

    MOVE.W #400,d1                  ; Write 400 lines of data 

    MOVE.W #20,d0                   ; Write 20 long words per line 

L1: 

    MOVE.L (a2),(a1)+               ; Write a long word 

    DBRA   d0,L1                    ; Decrement counter and loop until full 

 

    MOVE.W #20,d0                   ; Reset long word counter 

    ADDQ.L #4,a2                    ; Point at next word in char list 

    CMPI.L #$FFFFFFFF,(a2)          ; End of char list? 

    BNE    L2 

    LEA    CHARLIST(pc),a2          ; Yes, reset a2 to beginning of list 

L2: 

    DBRA   d1,L1                    ; Decrement line counter and loop until 

                                    ; done 

  

; 



; Start DMA 

; 

 

   MOVE.W #(DMAF_SETCLR!DMAF_RASTER!DMAF_MASTER),DMACON(a0) 

                         ; Enable bit-plane DMA only, no Copper 

 

; Because this example has no Copper list, it sits in a 

; loop waiting for the vertical blanking interval. When it 

; comes, you check the LOF ( long frame  bit in VPOSR. If 

; LOF = 0, this is a short frame and the bit-plane pointers 

; are set to point to S20050. If LOF = 1, then this is a 

; long frame and the bit-plane pointers are set to point to 

; $20000. This keeps the long and short frames in the 

; right relationship to each other. 

 

VLOOP: 

    MOVE.W INTREQR(a0),d0           ; Read interrupt requests 

    AND.W  #$0020,d0                ; Mask off all but vertical blank 

    BEQ    VLOOP                    ; Loop until vertical blank comes 

    MOVE.W #$0020,INTREQ(a0)        ; Reset vertical interrupt 

    MOVE.W VPOSR(a0),d0             ; Read LOF bit into d0 bit 15 

    BPL    VL1                      ; If LOF = 0, jump 

    MOVE.L #$20000,BPL1PTH(a0)      ; LOF = 1, point to $20000 

    BRA    VLOOP                    ; Back to top 

VL1: 

    MOVE.L #$20050,BPL1PTH(a0)      ; LOF = 0, point to $20050 

    BRA    VLOOP                    ; Back to top 

; 

; Character list 

; 

CHARLIST: 

    DC.L   $18FC3DF0,$3C6666D8,$3C66C0CC,$667CC0CC 

    DC.L   $7E66C0CC,$C36666D8,$C3FC3DF0,$00000000 

    DC.L   $FFFFFFFF 
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FORMING A DUAL-PLAYFIELD DISPLAY 
For more flexibility in designing your background display, you can specify two playfields 
instead of one. In dual-playfield mode, one playfield is displayed directly in front of the 
other. For example, a computer game display might have some action going on in one 

playfield in the back-ground, while the other playfield is showing a control panel in the 
foreground. You can then change either the foreground or the background without having 
to redesign the entire display. You can also move the two playfields independently. 
 
A dual-playfield display is similar to a single-playfield display, differing only in these 
aspects: 
 

o Each playfield in a dual display is formed from one, two or three bit planes. 
 
o The colors in each playfield (up to seven plus transparent) are taken from different sets 
of color registers. 
 
o You must set a bit to activate dual-playfield mode. 
 
Figure 3-12 shows a dual-playfield display. 
 
In Figure 3-12, one of the colors in each playfield is "transparent" (color 0 in playfield 1 
and color 8 in playfield 2). You can use transparency to allow selected features of the 
background playfield to show through. 
 
In dual-playfield mode, each playfield is formed from up to three bitplanes. Color registers 

0 through 7 are assigned to playfield 1, depending upon how many bit-planes you use. 
Color registers 8 through 15 are assigned to playfield 2. 
 
BIT-PLANE ASSIGNMENT IN DUAL-PLAYFIELD MODE 
 
The three odd-numbered bit-planes (1, 3, and 5) are grouped together by the hardware 
and may be used in playfield 1. Likewise, the three even-numbered bit-planes (2, 4, and 
6) are grouped together and may be used in playfield 2. The bit-planes are assigned 
alternately to each playfield, as shown in Figure 3-13. 
 
NOTE 
In high-resolution mode, you can have up to two bit-planes in each playfield, bit-planes 1 
and 3 in playfield 1 and bit-planes 2 and 4 in playfield 2. 
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Figure 3-12: A dual Playfield display. 
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 Number of Bitplanes 

    "turned on"          Playfield 1*       Playfield 2* 

 

         0                   None               None 

 

                          __________ 

         1               |1         | 

                         |__________| 

                          __________         __________ 

         2               |1         |       |2         | 

                         |__________|       |__________| 

                          __________         __________ 

         3               |1 ________|_      |2         | 

                         |_|3         |     |__________| 

                           |__________| 

                          __________         __________ 

         4               |1 ________|_      |2 ________|_ 

                         |_|3         |     |_|4         | 

                           |__________|       |__________| 

                          __________         __________ 

         5               |1 ________|_      |2 ________|_ 

                         |_|3 ________|_    |_|4         | 

                           |_|5         |     |__________| 

                             |__________| 

                          __________         __________ 

         6               |1 ________|_      |2 ________|_ 

                         |_|3 ________|_    |_|4 ________|_ 

                           |_|5         |     |_|6         | 

                             |__________|       |__________| 

 

     *NOTE:  Either playfield may be placed "in front of" or 

             "behind" the other using the "swap-bit" 

 

 

       Figure 3-13: How Bitplanes are assigned to duel playfields. 
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COLOR REGISTERS IN DUAL-PLAYFIELD MODE 
When you are using dual playfields, the hardware interprets color numbers for playfield 1 
from the bit combinations of bit-planes 1, 3, and 5. Bits from PLANE 5 have the highest 
significance and form the most significant digit of the color register number. Bits from 

PLANE O have the lowest significance. These bit combinations select the first eight color 
registers from the color palette as shown in Table 3-10. 
 

    Table 3-10: Playfield 1 Color Registers Low-resolution Mode 

 

             PLAYFIELD 1 

 

          Bit           Color 

      Combination      Selected 

 

          000      Transparent mode 

          001           COLOR1 

          010           COLOR2 

          011           COLOR3 

          100           COLOR4 

          101           COLORS 

          110           COLOR6 

          111           COLOR7 

 

The hardware interprets color numbers for playfield 2 from the bit combinations of bit-
planes 2, 4, and 6. Bits from PLANE 6 have the highest significance. Bits from PLANE 2 
have the lowest significance. These bit combinations select the color registers from the 
second eight colors in the color Table as shown in Table 3-11. 
 

    Table 3  Playfield 2 Color Registers Low-resolution Mode 

 

             PLAYFIELD 2 

 

          Bit           Color 

      Combination      Selected 

 

          000      Transparent mode 

          001           COLOR09 

          010           COLOR10 

          011           COLOR11 

          100           COLOR12 

          101           COLOR13 

          110           COLOR14 

          111           COLOR15 
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Combination 000 selects transparent mode, to show the color of whatever object (the 
other playfield, a sprite, or the background color) may be "behind" the playfield. 
 
Table 3-12 shows the color registers for high-resolution, dual-playfield mode. 
 

    Table 3-12: Playfields 1 and 2 Color Registers- High-resolution Mode 

 

            PLAYFIELD 1 

 

          Bit           Color 

      Combination      Selected 

 

          00       Transparent mode 

          01            COLOR1 

          10            COLOR2 

          11            COLOR3 

 

            PLAYFIELD 2 

 

          Bit           Color 

      Combination      Selected 

 

          00        Transparent mode 

          01            COLOR09 

          10            COLOR10 

          11            COLOR11 

 

DUAL-PLAYFIELD PRIORITY AND CONTROL 
Either playfield 1 or 2 may have priority; that is, either one may be displayed in front of 
the other. Playfield 1 normally has priority. The bit known as PF2PRI (bit 6) in register 
BPLCON2 is used to control priority. When PF2PRI = 1, playfield 2 has priority over 
playfield 1. When PF2PRI = 0, playfield 1 has priority. 
 
You can also control the relative priority of playfields and sprites. Chapter 7, "System 

Control Hardware" shows you how to control the priority of these objects. 
 
You can control the two playfields separately as follows: 
 
o They can have different-sized representations in memory, and different portions of each 
one can be selected for display. 
 

o They can be scrolled separately. 
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NOTE 
You must take special care when scrolling one playfield and holding the other stationary. 
When you are scrolling low-resolution playfields, you must fetch one word more than the 
width of the playfield you are trying to scroll (two  words more in high-resolution mode) in 

order to provide some data to display, when the actual scrolling takes place. Only one 
data-fetch start register and one data-fetch stop register are available, and these are 
shared by both playfields. If you want to scroll one playfield and hold the other, you must 
adjust the data-fetch start and data-fetch stop to handle the playfield being scrolled. 
Then, you must adjust the modulo and the bit-plane pointers of the playfield that is not 
being scrolled to maintain its position on the display. In low-resolution mode, you adjust 
the pointers by -2 and the modulo by -2. In high-resolution mode, you adjust the pointers 

by -4 and the modulo by -4. 
 
ACTIVATING DUAL PLAY-FIELD MODE 
Writing a 1 to bit 10 (called DBLPF) of the bit-plane control register BPLCON0 selects dual-
playfield mode. Selecting dual-playfield mode changes both the way the hardware groups 
the bit-planes for color interpretation all odd-numbered bit-planes are grouped together 
and all even-numbered bit-planes are grouped together, and the way hardware can move 
the bit-planes on the screen. 
 
DUAL PLAYFIELD SUMMARY 
The steps for defining dual playfields are almost the same as those for defining the basic 
playfield.  Only in the following steps does the dual-playfield creation process differ from 
that used for the basic playfield. 
 

o Loading colors into the registers. Keep in mind that color registers 0-7 are used by 
playfield 1 and registers 8 through 15 are used by playfield 2 (if there are three bit-planes 
in each playfield). 
 
o Building bit-planes. Recall that playfield 1 is formed from PLANES 1, 3, and 5 and 
playfield 2 from PLANES 2, 4, and 6. 
 
o Setting the modulo registers. Write the modulo to both BPLlMOD and BPL2MOD as you 
will be using both odd- and even-numbered bit-planes. 
 
These steps are added: 
 
o Defining priority. If you want playfield 2 to have priority, set bit 6 (PF2PRI) in BPLCON2 
to 1. 

 
o Activating dual-playfield mode. Set bit 10 (DBLPF) in BPLCON0 to 1. 
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BIT-PLANES AND DISPLAY WINDOWS OF ALL SIZES 
 
You have seen how to form single and dual playfields in which the playfield in memory is 
the same size as the display window. This section shows you how to define and use a 

playfield whose big picture in memory is larger than the display window, how to define 
display windows that are larger or smaller than the normal playfield size, and how to 
move the display window in the big picture. 
 
WHEN THE BIG PICTURE IS LARGER THAN THE DISPLAY WINDOW 
If you design a memory picture larger than the display window, you must choose which 
part of it to display. Displaying a portion of a larger playfield differs in the following ways 

from displaying the basic playfields described up to now: 
 
o If the big picture in memory is larger than the display window, you must respecify the 
modules. The modulo must be some value other than 0. 
 
o You must allocate more memory for the larger memory picture. 
 
SPECIFYING THE MODULO 
For a memory picture wider than the display window, you need to respecify the modulo so 
that the correct data words are fetched for each line of the display. As an example, 
assume the display window is the standard 320 pixels wide, so 40 bytes are to be 
displayed on each line. The big picture in memory, however, is exactly twice as wide as 
the display window, or 80 bytes wide. Also, assume that you wish to display the left half 
of the big picture. Figure 3-14 shows the relationship between the big picture and the 

picture to be displayed. 
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        START                                                START+78 

              ------------------------------------------------- 

              |      Width of the Bit-Plane Defined in RAM    | 

              |                       |                       | 

              | Width of defined      |                       | 

              | screen on which       |                       | 

              | bit-plane data is     |                       | 

              | to appear             |                       | 

              |                       |                       | 

              ------------------------------------------------- 

 

Figure 3-14: Memory Picture Larger than the Display 

 

Because 40 bytes are to be fetched for each line, the data fetch for line 1 is as shown in 
Figure 3-15. 
 

Data for Line 1: 

 

Location:            START      START+2      START+4    .....START+38 

                    Leftmost   Next Word    Next Word      Last Display 

                  Display Word                                Word 

                                                                ^ 

Screen data fetch stops (DDFSTOP) for                           | 

each horizontal line after the last word -----------------------| 

on the line has been fetched. 

 

Figure 3-15: Data Fetch for the First Line When Modulo = 40 

 

 

At this point, BPLxPTH and BPLxPTL contain the value START+40. The modulo, which is 
40, is added to the current value of the pointer so that when it begins the data fetch for 
the next line, it fetches the data you intend for that line. The data fetch for line 2 is shown 
in Figure 3-16. 
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Data for Line 2: 

 

Location:         START+80    START+82   START+84...    START+118 

                  Leftmost   Next Word   Next Word     Last Display 

                Display Word                               Word 

 

Figure 3-16: Data Fetch for the Second Line When Modulo = 40 

 

To display the right half of the big picture, you set up a vertical blanking routine to start 
the bit-plane pointers at location START+40 rather than START with the modulo remaining 
at 40. The data layout is shown in Figures 3-17 and 3-18. 
 

Data for Line 1: 

 

Location             START+40   START+42   START-44...   START+78 

                     Leftmost   Next Word  Next Word   Last Display 

                   Display Word                             Word 

 

    Figure 3-17: Data Layout for First Line Right Half of Big Picture 

 

 

Now, the bit-plane pointers contain the value START+80. The modulo (40) is added to the 
pointers so that when they begin the data fetch for the second line, the correct data is 
fetched. 
 

Data for Line 2: 

 

Location:           START+120   START+122   START+124...   START+158 

                     Leftmost   Next Word   Next Word     Last Display 

                   Display Word                               Word 

 

   Figure 3-18: Data Layout for Second Line Right Half of Big Picture 

 

Remember, in high-resolution mode, you need to fetch twice as many bytes as in low-

resolution mode. For a normal-sized display, you fetch 80 bytes for each horizontal line 
instead of 40. 
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SPECIFYING THE DATA FETCH 
The data-fetch registers specify the beginning and end positions for data placement on 
each horizontal line of the display. You specify data fetch in the same way as shown in the 
section called "Forming a Basic Playfield." 

 
MEMORY ALLOCATION 
For larger memory pictures, you need to allocate more memory. Here is a formula for 
calculating memory requirements in general: 
 
bytes per line * lines in playfield * # of bit-planes 
 

Thus, if the wide playfield described in this section is formed from two bit-planes, it 
requires: 
 
80 * 200 * 2 = 32,000 bytes of memory 
 
Recall that this is the memory requirement for the playfield alone. You need more memory 
for any sprites, animation, audio, or application programs you are using. 
 
SELECTING THE DISPLAY WINDOW STARTING POSITION 
The display window starting position is the horizontal and vertical co-ordinates of the 
upper left-hand corner of the display window. One register, DIWSTRT, holds both the 
horizontal and vertical coordinates, known as HSTART and VSTART. The eight bits 
allocated to HSTART are assigned to the first 256 positions, counting from the leftmost 
possible position. Thus, you can start the display window at any pixel position within this 

range. 
 

                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Playfield Hardware 71 - 



FULL SCREEN AREA 
 

                 0                  255                 361 

                --------------------------------------------- 

                |                    |                      | 

                |  HSTART of DISPLAY |                      | 

                |  WINDOW occurs in  |                      | 

                |  this region.      |                      | 

                |                    |                      | 

                --------------------------------------------- 

 

          Figure 3-19: Display Window Horizontal Starting Position 

 

The eight bits allocated to VSTART are assigned to the first 256 positions counting down 
from the top of the display. 
 

FULL SCREEN AREA 

                --------------------------------------------- 0 

                |                                         ^ | 

                |                                         | | 

                |                  Vstart of display window | 

                |                     occurs in this region | 

                |                                       __v_|___255 

                |                             (NTSC)____________262 

                |                                           | 

                --------------------------------------------- 

 

          Figure 3-20: Display Window Vertical Starting Position 

 

 

Recall that you select the values for the starting position as if the display were in low-
resolution, non-interlaced mode. Keep in mind, though, that for interlaced mode the 
display window should be an even number of lines in height to allow for equal-sized odd 
and even fields. 

 
To set the display window starting position, write the value for HSTART into bits 0 through 
7 and the value for VSTART into bits 8 through 15 of DIWSTRT. 
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SELECTING THE STOPPING POSITION 
The stopping position for the display window is the horizontal and vertical coordinates of 
the lower right-hand corner of the display window. One register, DIWSTOP, contains both 
coordinates, known as HSTOP and VSTOP. 

 
See the notes in the "Forming a Basic Playfield" section for instructions on setting these 
registers. 
 

 

FULL SCREEN AREA 

 

                 0                  255                 361 

                ------------------------------------------------ 

                |                      |                       | 

                |                      |   HSTOP of DISPLAY    | 

                |                      |   WINDOW occurs in    | 

                |                      |   this region.        | 

                |                      |                       | 

                ------------------------------------------------ 

 

Figure 3-21: Display Window Horizontal Stopping Position 

 

 

Select a value that represents the correct position in low-resolution, non-interlaced mode. 
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FULL SCREEN AREA 
                --------------------------------------------- 0 

                |                                           | 

                |          _________________________________|___128 

                |     Vstop of display                      | 

                |     window occurs in                      | 

                |     the region. |             (NTSC)______|___262 

                |                 |                         | 

                |                 |                         | 

                --------------------------------------------- 

 

          Figure 3-22: Display Window Vertical Stopping Position 

 

 

To set the display window stopping position, write HSTOP into bits 0 through 7 and VSTOP 
into bits 8 through 15 of DIWSTOP. 
 
MAXIMUM DISPLAY WINDOW SIZE 
The maximum size of a playfield display is determined by the maximum number of lines 
and the maximum number of columns. Vertically, the restrictions are simple. No data can 
be displayed in the vertical blanking area. The following Table shows the allowable vertical 
display area. 
 

    Table 3-13: Maximum Allowable Vertical Screen Video 

 

      Vertical Blank     NTSC                    PAL 

 

         Start            0                       0 

         Stop             $15 (21)                $1D (29) 

 

                          NTSC      NTSC          PAL       PAL 

                         Normal    Interlaced    Normal Interlaced 

      Displayable lines 

       of screen video    241       483           283       567 

                                    =525-(21*2)             =625-(29*2) 

 

Horizontally, the situation is similar. Strictly speaking, the hardware sets a rightmost limit 
to DDFSTOP of ($D8) and a leftmost limit to DDFSTRT of ($18).  This gives a maximum of 
25 words fetched in low-resolution mode. In high-resolution mode the maximum here is 
49 words, 
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because the rightmost limit remains ($D8) and only one word is fetched at this limit. 
However, horizontal blanking actually limits the displayable video to 368 low-resolution 
pixels (23 words). These numbers are the same both for NTSC and for PAL. In addition, it 
should be noted that using a data-fetch start earlier than ($38) will disable some sprites. 
 

    Table 3-14: Maximum Allowable Horizontal Screen Video 

 

                           LoRes          HiRes 

 

      DDFSTRT (standard)   $0038          $003C 

      DDFSTOP (standard)   $00D0          $00d4 

 

      DDFSTRT (hw limits)  $0018          $0018 

      DDFSTOP (hw limits)  $00D8          $00D8 

 

      max words fetched    25             49 

      max display pixels   368 (low res) 

 

MOVING (SCROLLING) PLAYFIELDS 

 
If you want a background display that moves, you can design a playfield larger than the 
display window and scroll it. If you are using dual playfields, you can scroll them 
separately. 
 
In vertical scrolling, the playfield appears to move smoothly up or down on the screen. All 
you need do for vertical scrolling is progressively increase or decrease the starting address 
for the bit-plane pointers by the size of a horizontal line in the playfield. This has the 
effect of showing a lower or higher part of the picture each field time. 
 
In horizontal scrolling the playfield appears to move from right-to-left or left-to-right on 
the screen. Horizontal scrolling works differently from vertical scrolling you must arrange 
to fetch one more word of data for each display line and delay the display of this data. 
 

For either type of scrolling, resetting of pointers or data-fetch registers can be handled by 
the Copper during the vertical blanking interval. 
 
VERTICAL SCROLLING 
You can scroll a playfield upward or downward in the window. Each time you display the 
playfield, the bit-plane pointers start at a progressively higher or lower place in the big 
picture in memory. As the value of the pointer increases, more of the lower part of the 
picture is shown and the picture appears to scroll upward. As the value of the pointer 
decreases, more of the upper part 
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is shown and the picture scrolls downward. On an NTSC system, with a display that has 
200 vertical lines, each step can be as little as 1/200th of the screen. In interlaced mode 
each step could be 1/400th of the screen if clever manipulation of the pointers is used, 
but it is recommended that scrolling be done two lines at a time to maintain the odd/even 

field relationship. Using a PAL system with 256 lines on the display, the step can be 
1/256th of a screen, or 1/512th of a screen in interlace. 
 

 

 
 

 

Figure 3-23: Vertical Scrolling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To set up a playfield for vertical scrolling you need to form bit-planes tall enough to allow 
for the amount of scrolling you want, write software to calculate the bit-plane pointers for 
the scrolling you want, and allow for the Copper to use the resultant pointers. 
 
Assume you wish to scroll a playfield upward one line at a time. To accomplish this, before 
each field is displayed, the bit-plane pointers have to increase by enough to ensure that 
the pointers begin one line lower each time. For a normal-sized, low-resolution display in 

which the modulo is 0, the pointers would be incremented by 40 bytes each time. 
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HORIZONTAL SCROLLING 
You can scroll playfields horizontally from left to right or right to left on the screen. You 
control the speed of scrolling by specifying the amount of delay in pixels. Delay means 
that an extra word of data is fetched but not immediately displayed. The extra word is 

placed just to the left of the window's leftmost edge and before normal data fetch. As the 
display shifts to  the right, the bits in this extra word appear on-screen at the left-hand 
side of the window as bits on the right-hand side disappear off-screen. For each pixel of 
delay, the on-screen data shifts one pixel to the right each display field. The greater the 
delay, the greater the speed of scrolling. You can have up to 15 pixels of delay. In high-
resolution mode, scrolling is in increments of 2 pixels. Figure 3-24 shows how the delay 
and extra data fetch combine to cause the scrolling effect. 

 
To set up a playfield for horizontal scrolling, you need to; 
 
o Define bit-planes wide enough to allow for the scrolling you need. 
 
o Set the data-fetch registers to correctly place each horizontal line, including the extra 
word, on the screen. 
 
o Set the delay bits. 
 
o Set the modulo so that the bit-plane pointers begin at the correct word for each line. 
 
o Write Copper instructions to handle the changes during the vertical blanking interval. 
 

SPECIFYING DATA FETCH IN HORIZONTAL SCROLLING 
The normal data-fetch start for non-scrolled displays is ($38). If horizontal scrolling is 
desired, then the data fetch must start one word sooner (DDFSTRT = $0030). 
Incidentally, is will disable sprite 7. DDFSTOP remains unchanged. Remember that the 
settings of the data-fetch registers affect both playfields. 
 
SPECIFYING THE MODULO IN HORIZONTAL SCROLLING 
As always, the modulo is two counts less than the difference between the address of the 
next word you want to fetch and the address of the last word that was fetched. As an 
example for horizontal scrolling, let us assume a 40-byte display in an 80-byte "big 
picture." Because horizontal scrolling requires a data fetch of two extra bytes, the data for 
each line will be 42 bytes long. 
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Figure 3-24: Horizontal Scrolling 
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              START                START+38               START+78 

                 ______________________________________________ 

                |                      |                       | 

                |  Display             |                       | 

                |  window              |                       | 

                |  width               |                       | 

                |                      |                       | 

                |                      |                       | 

                |                      |                       | 

                | <--------- Memory Picture Width -----------> | 

                |______________________|_______________________| 

 

Figure 3-25: Memory Picture Larger Than the Display Window 

 

 

 

Data for Line 1: 

 

       Location:     START     START+2      START+4...   START+40 

                   Leftmost   Next Word    Next Word    Last Display 

                 display word                               word 

 

Figure 3-26: Data for Line 1 - Horizontal Scrolling 

 

 

 

At this point, the bit-plane pointers contain the value START+42. Adding the modulo of 38 

gives the correct starting point for the next line. 
 

Data for Line 2: 

 

       Location:    START+80   START+82    START+84    START+120 

                    Leftmost   Next Word  Next Word  Last Display 

                  Display Word                           word 

 

Figure 3-27: Data for Line 2 Horizontal Scrolling 

 

 

In the BPLxMOD registers you set the modulo for each bit-plane used. 
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SPECIFYING AMOUNT OF DELAY 
The amount of delay in horizontal scrolling is controlled by bits 7-0 in BPLCON1. You set 
the delay separately for each playfield; bits 3-0 for playfield 1 (bit-planes 1, 3, and 5) and 
bits 7-4 for playfield 2 (bit-planes 2, 4, and 6). 

 
NOTE 
Always set all six bits, even if you have only one playfield. Set 3-0 and 7-4 to the same 
value if you are using only one playfield. 
 
The following example sets the horizontal scroll delay to 7 for both playfields. 
 

    MOVE.W #$77,BPLCON1+CUSTOM 

 

SCROLLED PLAYFIELD SUMMARY 
The steps for defining a scrolled playfield are the same as those for defining the basic 
playfield, except for the following steps: 
 
o Defining the data fetch. Fetch one extra word per horizontal line and start it 16 pixels 
before the normal (unscrolled) data-fetch start. 
 
o Defining the modulo. The modulo is two counts less than when there is no scrolling. 
 
These steps are added: 
 
o For vertical scrolling, reset the bit-plane pointers for the amount of the scrolling 

increment. Reset BPLxPTH and BPLxPTL during the vertical blanking interval. 
 
o For horizontal scrolling, specify the delay. Set bits 7-0 in BPLCON1 for 0 to 15 bits of 
delay. 
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ADVANCED TOPICS 
 
This section describes features that are used less often or are optional. 
 

INTERACTIONS AMONG PLAYFIELDS AND OTHER OBJECTS 
Playfields share the display with sprites. Chapter 7, "System Control Hardware," shows 
how playfields can be given different video display priorities relative to the sprites and 
how playfields can collide with (overlap) the sprites or each other. 
 
HOLD-AND-MODIFY MODE 
This is a special mode that allows you to produce up to 4,096 colors on the screen at the 

same time. Normally, as each value formed by the combination of bit-planes is selected, 
the data contained in the selected color register is loaded into the color output circuit for 
the pixel being written on the screen. Therefore, each pixel is colored by the contents of 
the selected color register. 
 
In hold-and-modify mode, however, the value in the color output circuitry is held, and one 
of the three components of the color (red, green, or blue) is modified by bits coming from 
certain preselected bit-planes. After modification, the pixel is written to the screen. 
 
The hold-and-modify mode allows very fine gradients of color or shading to be produced 
on the screen. For example, you might draw a set of 16 vases, each a different color, 
using all 16 colors in the color palette. Then, for each case, you use hold-and-modify to 
very finely shade or highlight or add a completely different color to each of the vases. 
Note that a particular hold-and-modify pixel can only change one of the three color values 

at a time. Thus, the effect has a limited control. 
 
In hold and modify mode, you use all six bit-planes. Planes 5 and 6 are used to modify the 
way bits from planes 1- 4 are treated, as follows: 
 
o If the 6-5 bit combination from planes 6 and 5 for any given pixel is 00, normal color 
selection procedure is followed. Thus, the bit combinations from planes 4-1, in that order 
of significance, are used to choose one of 16 color registers (registers 0 - 15). 
 
o If only five bit-planes are used, the data from the sixth plane is automatically supplied 
with the value as 0. 
 
o If the 6-5 bit combination is 01, the color of the pixel immediately to the left of this pixel 
is duplicated and then modified. The bit-combinations from planes 4-1 are used to replace 

the four "blue" bits in the corresponding color register. 
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o If the 6-5 bit combination is 10, the color of the pixel immediately to the left of this pixel 
is duplicated and then modified. The bit-combinations from planes 4 -1 are used to 
replace the four "red" bits. 
 

o If the 6-5 bit combination is 11, the color of the pixel immediately to the left of this pixel 
is duplicated and then modified. The bit-combinations from planes 4 -1 are used to 
replace the four "green" bits. 
 
Using hold-and-modify mode, it is possible to get by with defining only one color register, 
which is COLOR0, the color of the background. You treat the entire screen as a 
modification of that original color, according to the scheme above. 

 
Bit 11 of register BPLCON0 selects hold-and-modify mode. The following bits in BPLCON0 
must be set for hold-and-modify mode to be active: 
 
o Bit HOMOD, bit 11, is 1. 
 
o Bit DBLPF, bit 10, is 0 (single-playfield mode specified). 
 
o Bit HIRES, bit 15, is 0 (low-resolution mode specified). 
 
o Bits BPU2, BPUI, and BPU0 - bits 14, 13, and 12, are 101 or 110 (five or six bit-planes 
active). 
 
The following example code generates a six-bit-plane display with hold-and-modify mode 

turned on. All 32 color registers are loaded with black to prove that the colors are being 
generated by hold-and-modify. The equates are the usual and are not repeated here. 
 

; First, set up the control registers. 

; 

    LEA    CUSTOM,a0                 ; Point a0 at custom chips 

    MOVE.W #$6A00,BPLCON0(a0)        ; Six bit-planes, hold-and-modify mode 

    MOVE.W #0,BPLCON1(a0)            ; Horizontal scroll = 0 

    MOVE.W #0,BPL1MOD(a0)            ; Modulo for odd bit-planes = 0 

    MOVE.W #0,BPL2MOD(a0)            ; Ditto for even bit-planes 

    MOVE.W #$0038,DDFSTRT(a0)        ; Set data-fetch start 

    MOVE.W #$00D0,DDFSTOP(a0)        ; Set data-fetch stop 

    MOVE.W #$2C81,DIWSTRT(a0)        ; Set display window start 

    MOVE.W #$F4C1,DIWSTOP(a0)        ; Set display window stop 

; 

;Set all color registers = black to prove that hold-and-modify mode is ;  

;working 

; 

    MOVE.W #32,d0                    ; Initialize counter 

    LEA    CUSTOM+COLOR00,a1         ; Point al at first color register 

CREGLOOP: 

    MOVE.W #$0000,(a1)+              ; Write black to a color register 

    DBRA   d0,CREGLOOP               ; Decrement counter and loop till done 

; 

; Fill six bit-planes with an easily recognizable pattern. 

; 

; NOTE: This is just for example use. Normally these bit planes would 

;       need to be allocated from the system MEMF_CHIP memory pool. 

; 
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    MOVE.W  #2000,d0                ; 2000 longwords per bit-plane 

    MOVE.L  #$21000,a1              ; Point a1 at bit-plane 1 

    MOVE.L  #$23000,a2              ; Point a2 at bit-plane 2 

    MOVE.L  #$25000,a3              ; Point a3 at bit-plane 3 

    MOVE.L  #$27000,a4              ; Point a4 at bit-plane 4 

    MOVE.L  #$29000,a5              ; Point a5 at bit-plane 5 

    MOVE.L  #$2B000,a6              ; Point a6 at bit-plane 6 

FPLLOOP: 

    MOVE.L  #$55555555,(a1)+        ; Fill bit-plane 1 with $55555555 

    MOVE.L  #$33333333,(a2)+        ; Fill bit-plane 2 with $33333333 

    MOVE.L  #$0F0F0F0F,(a3)+        ; Fill bit-plane 3 with $0F0F0F0F 

    MOVE.L  #$00FF00FF,(a4)+        ; Fill bit-plane 4 with $00FF00FF 

    MOVE.L  #$CF3CF3CF,(a5)+        ; Fill bit-plane 5 with $CF3CF3CF 

    MOVE.L  #$3CF3CF3C,(a6)+        ; Fill bit-plane 6 with $3CF3CF3C 

    DBRA    d0,FPLLOOP              ; Decrement counter & loop till done 

; 

; Set up a Copper list at $20000. 

; 

; NOTE: As with the bit planes, the copper list location should be allocated 

;       from the system MEMF_CHIP memory pool. 

; 

    MOVE.L #$20000,a1               ; Point al at Copper list dest 

    LEA    COPPERL(pc),a2           ; Point a2 at Copper list image 

CLOOP: 

    MOVE.L (a2),(a1)+               ; Move a long word 

    CMPI.L #$FFFFFFFE,(a2)+         ; Check for end of Copper list 

    BNE    CLOOP                    ; Loop until entire Cop list moved 

; 

;Point Copper at Copper list 

; 

    MOVE.L #$20000,COP1LCH(a0)      ; Load Copper jump register 

    MOVE.W COPJMP1(a0),d0           ; Force load into Copper P.C. 

; 

; Start DMA. 

; 

    MOVE.W #$8380,DMACON(a0)        ; Enable bit-plane and Copper DMA 

 

    BRA ....next stuff to do 

; 

; Copper list for six bit-planes. Bit-plane 1 is at $21000; 2 is at $23000; 

; 3 is at $25000; 4 is at $27000; 5 is at $29000; 6 is at $2B000. 

; 

; NOTE: These bit-plane addresses are for example purposes only. 

;       See note above. 

; 

COPPERL: 

    DC.W   BPL1PTH,$0002            ; Bit-plane 1 pointer = $21000 

    DC.W   BPL1PTL,$1000 

    DC.W   BPL2PTH,$0002            ; Bit-plane 2 pointer = $23000 

    DC.W   BPL2PTL,$3000 

    DC.W   BPL3PTH,$0002            ; Bit-plane 3 pointer = $25000 

    DC.W   BPL3PTL,$5000 

    DC.W   BPL4PTH,$0002            ; Bit-plane 4 pointer = $27000 

    DC.W   BPL4PTL,$7000 

    DC.W   BPL5PTH,$0002            ; Bit-plane 5 pointer = $29000 

    DC.W   BPL5PTL,$9000 

    DC.W   BPL6PTH,$0002            ; Bit-plane 6 pointer = $2B000 

    DC.W   BPL6PTL,$B000 

    DC.W   $FFFF,$FFFE              ; Wait or the impossible, i.e., quit 
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FORMING A DISPLAY WITH SEVERAL DIFFERENT PLAYFIELDS 
The graphics library provides the ability to split the screen into several "ViewPorts", each 
with its own colors and resolutions. See the Amiga ROM Kernel Manual for more 
information. 

 
USING AN EXTERNAL VIDEO SOURCE 
An optional board that provides genlock is available for the Amiga. Genlock allows you to 
bring in your graphics display from an external video source (such as a VCR, camera, or 
laser disk player). When you use genlock, the background color is replaced by the display 
from this external video source. For more information, see the instructions furnished with 
the optional board. 

 
SUMMARY OF PLAYFIELD REGISTERS 
This section summarizes the registers used in this chapter and the meaning of their bit 
settings. The color registers are summarized in the next section. See Appendix A for a 
summary of all registers. 
 
BPLCON0 - Bit Plane Control 

 

NOTE 

Bits in this register cannot be independently set. 

 

    Bit 0 - unused 

 

    Bit 1 - ERSY (external synchronization enable) 

        1 = External synchronization enabled (allows genlock synchronization 

              to occur) 

        0 = External synchronization disabled 

 

    Bit 2 - LACE (interlace enable) 

        1 = interlaced mode enabled 

        0 = non-interlaced mode enabled 

 

    Bit 3 - LPEN (light pen enable) 

 

    Bits 4-7 not used (make 0) 
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    Bit 8 - GAUD (genlock audio enable) 

        1 = Genlock audio enabled 

        0 = Genlock audio disabled (in blanking periods, this bit goes out 

            on the pixel switch 

 

    Bit 9 - COLOR ON (color enable) 

        1 = composite video color-burst enabled 

        0 = composite video color-burst disabled 

 

   Bit 10 - DBLPF (double-playfield enable) 

        1 = dual playfields enabled 

        0 = single playfield enabled 

 

   Bit 11 - HOMOD (hold-and-modify enable) 

        1 = hold-and-modify enabled 

        0 = hold-and-modify disabled 

 

   Bits 14, 13,12 - BPU2, BPU1, BPU0 

        Number of bit-planes used. 

 

        000 = only a background color 

        001 = 1 bit-plane, PLANE 1 

        010 = 2 bit-planes, PLANES 1 and 2 

        011 = 3 bit-planes, PLANES 1- 3 

        100 = 4 bit-planes, PLANES 1- 4 

        101 = 5 bit-planes, PLANES 1- 5 

        110 = 6 bit-planes, PLANES 1- 6 

        111 not used 

 

   Bit 15 - HIRES (high-resolution enable) 

        1 = high-resolution mode 

        0 = low-resolution mode 

 

BPLCON1 - Bit-plane Control 

 

   Bits 3-0 - PF1H(3-0) 

        Playfield 1 delay 

 

   Bits 7-4 - PF2H(3-0) 

        Playfield 2 delay 

 

   Bits 15-8 not used 
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BPLCON2 - Bit-plane Control 

 

   Bit 6 - PF2PRI 

 

           1 = Playfield 2 has priority 

           0 = Playfield 1 has priority 

 

   Bits 0-5 Playfield sprite priority 

 

   Bits 7-15 not used 

 

DDFSTRT - Data-fetch Start 

   (Beginning position for data fetch) 

 

   Bits 15-8 - not used 

 

   Bits  7-2 - pixel position H8-H3 

 

   Bits  1-0 only respected in HiRes Mode. 

 

   Bits  1-0 - not used 

 

DDFSTOP - Data-fetch Stop 

   (Ending position for data fetch) 

 

   Bits 15-8 - not used 

 

   Bits 7-2 - pixel position H8-H3 

       Bit H3 only respected in HiRes Mode. 

 

   Bits 1-0 - not used 

 

BPLxPTH - Bit-plane Pointer 

   (Bit-plane pointer high word, where x is the bit-plane number) 

 

BPLxPTL - Bit-plane Pointer 

   (Bit-plane pointer low word, where x is the bit-plane number) 

 

DIWSTRT - Display Window Start 

   (Starting vertical and horizontal coordinates) 

 

   Bits 15-8 - VSTART (V7-V0) 

   Bits 7-0 - HSTART (H7-H0) 
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DIWSTOP - Display Window Stop 

   (Ending vertical and horizontal coordinates) 

 

   Bits 15-8 - VSTOP (V7-V0) 

 

   Bits 7-0 - HSTOP (H7-H0) 

 

BPL1MOD - Bit-plane Modulo 

   (Odd-numbered bit-planes, playfield 1) 

 

BPL2MOD - Bit-plane Modulo 

   (Even-numbered bit-planes, playfield 2) 

 

SUMMARY OF COLOR SELECTION 
 
This section contains summaries of playfield color selection including color register 
contents, example colors, and the differences in color selection in high-resolution and low-
resolution modes. 
 
COLOR REGISTER CONTENTS 
Table 3-15 shows the contents of each color register. All color registers are write-only. 
 

    Table 3-15: Color register contents 

 

         Bits         Contents 

 

         15-12   (Unused - set to 0) 

         11- 8          Red 

          7- 4          Green 

          3- 0          Blue 
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SOME SAMPLE COLOR REGISTER CONTENTS 
Table 3-16 shows a variety of colors and the hexadecimal values to load into the color 
registers for these colors. 
 

Table 3-16: Some Register Values and Resulting Colors 

 

    Value  Color                   Value  Color 

 

    $FFF   White                   $1FB   Light aqua 

    $D00   Brick red               $6FE   Sky blue 

    $F00   Red                     $6CE   Light blue 

    $F80   Red-orange              $00F   Blue 

    $F90   Orange                  $61F   Bright blue 

    $FB0   Golden orange           $06D   Dark blue 

    $FD0   Cadmium yellow          $91F   Purple 

    $FF0   Lemon yellow            $ClF   Violet 

    $BF0   Lime green              $FlF   Magenta 

    $8E0   Light green             $FAC   Pink 

    $0F0   Green                   $DB9   Tan 

    $2C0   Dark green              $C80   Brown 

    $0B1   Forest green            $A87   Dark brown 

    $0BB   Blue green              $CCC   Light grey 

    $0DB   Aqua                    $999   Medium grey 

                                   $000   Black 

 

COLOR SELECTION IN LOW-RESOLUTION MODE 
Table 3-17 shows playfield color selection in low-resolution mode. If the bit combinations 

from the playfields are as shown, the color is taken from the color register number 
indicated. 
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Table 3-17: Low-resolution Color Selection 

 

             Singe Playfield             Dual Playfields 

     Normal Mode        Hold-and-modify Mode            Color Register 

 (Bit-planes 5,4,3,2,1)  (Bit-planes 4,3,2,1)               Number 

 

                                           Playfield 1 

                                         Bit-planes 5,3,1 

 

        00000                   0000                000            0 * 

        00001                   0001                001            1 

        00010                   0010                010            2 

        00011                   0011                011            3 

        00100                   0100                100            4 

        00101                   0101                101            5 

        00110                   0100                110            6 

        00111                   0111                111            7 

 

                                           Playfield 2 

                                         Bit-planes 6,4,2 

 

        01000                   1000                000 **         8 

        01001                   1001                001            9 

        01010                   1010                010           10 

        01011                   1011                011           11 

        01100                   1100                100           12 

        01101                   1101                101           13 

        01110                   1110                110           14 

        01111                   1111                111           15 

        10000                    |                   |            16 

        10001                    |                   |            17 

        10010                    |                   |            18 

        10011                    |                   |            19 

        10100                   NOT                 NOT           20 

        10101                   USED                USED          21 

        10110                    IN                  IN           22 

        10111                   THIS                THIS          23 

        11000                   MODE                MODE          24 

        11001                    |                   |            25 

        11010                    |                   |            26 

        11011                    |                   |            27 

        11100                    |                   |            28 

        11101                    |                   |            29 

        11110                    |                   |            30 

        11111                    |                   |            31 

 

* Color register 0 always defines the background color. 

 

** Selects "transparent" mode instead of selecting color register 8. 
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COLOR SELECTION IN HOLD-AND-MODIFY MODE 
In hold-and-modify mode, the color register contents are changed as shown in Table 3-
18. This mode is in effect only if bit 10 of BPLCON0 = 1. 
 

    Table 3-18: Color Selection in Hold-and-modify Mode 

 

      Bitplane 6  Bitplane 5                       Result 

 

        0           0       Normal operation     (use color register itself) 

        0           1       Hold green and red    B = Bit-plane 4-1 contents 

                    0       Hold green and blue   R = Bit-plane 4-1 contents 

                            Hold blue and red     G = Bit-plane 4-1 contents 

 

COLOR SELECTION IN HIGH-RESOLUTION MODE 
Table 3-19 shows playfield color selection in high-resolution mode. If the bit-combinations 
from the playfields are as shown, the color is taken from the color register number 
indicated. 
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    Table 3-19 High-resolution Color Selection 

 

                    Single                    Dual        Color 

                  Playfield                Playfields    Register 

              Bit-planes 4,3,2,1                          Number 

 

                                          Playfield 1 

                                         Bit-planes 3,1 

 

                     0000                     00 *          0 ** 

                     0001                     01            1 

                     0010                     10            2 

                     0011                     11            3 

                     0100                     |             4 

                     0101                   NOT USED        5 

                     0110                 IN THIS MODE      6 

                     0111                     |             7 

 

                                          Playfield 2 

                                        Bit-planes 4.2 

 

                     1000                      00 *          8 

                     1001                      01            9 

                     1010                      10           10 

                     1011                      11           11 

                     1100                      |            12 

                     1101                   NOT USED        13 

                     1110                 IN THIS MODE      14 

                     1111                      |            15 

 

* Selects "transparent" mode. 

 

** Color register 0 always defines the background color. 
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CHAPTER 4 
 

SPRITE HARDWARE 
 

 
INTRODUCTION 
 
Sprites are hardware objects that are created and moved independently of the playfield 
display and independently of each other. Together with playfields, sprites form the 
graphics display of the Amiga. You can create more complex animation effects by using 
the blitter, which is described in the chapter called "Blitter Hardware." Sprites are 

produced on-screen by eight special-purpose sprite DMA channels. Basic sprites are 16 
pixels wide and any number of lines high. You can choose from three colors for a sprite's 
pixels, and a pixel may also be transparent, 
 
Showing any object behind the sprite. For larger or more complex objects, or for more 
color choices, you can combine sprites. 
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Sprite DMA channels can be reused several times within the same display field. Thus, you 
are not limited to having only eight sprites on the screen at the same time. 
 
ABOUT THIS CHAPTER 

This chapter discusses the following topics: 
 
o Defining the size, shape, color, and screen position of sprites. 
 
o Displaying and moving sprites. 
 
o Combining sprites for more complex images, additional width, or additional colors. 

 
o Reusing a sprite DMA channel multiple times within a display field to create more than 
eight sprites on the screen at one time. 
 
FORMING A SPRITE 
 
To form a sprite, you must first define it and then create a formal data structure in 
memory. You define a sprite by specifying its characteristics: 
 
o On-screen width of up to 16 pixels. 
 
o Unlimited height. 
 
o Any shape. 

 
o A combination of three colors, plus transparent. 
 
o Any position on the screen. 
 
SCREEN POSITION 
A sprite's screen position is defined as a set of X,Y coordinates. Position (0,0), where X = 
0 and Y = 0, is the upper left-hand corner of the display. You define a sprite's location by 
specifying the coordinates of its upper left-hand pixel. Sprite position is always defined as 
though the display modes were low-resolution and non-interlaced. The X,Y coordinate 
system and definition of a sprite's position are graphically represented in Figure 4-1. 
Notice that because of display overscan, position (0,0) (that is, X = 0, Y = 0) is not 
normally in a viewable region of the screen. 
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   (0,0) 

        \                                  Visible screen area 

         \_______________________        / 

         |                |             / 

         |    ____________|____________/ 

         |   |            Y            | 

         |   |            |            | 

         |   |            |______      | 

         |-------X--------|  /\  |     | 

         |   |            |__\/__|     | 

         |   |                         | 

         |   |                         | 

 

            Figure 4-1: (Defining Sprite On-screen Position) 

 

 

The amount of viewable area is also affected by the size of the playfield display window 
(defined by the values in DDFSTRT, DDFSTOP, DIWSTRT, DIWSTOP, etc.). See the 
"Playfield Hardware" chapter for more information about overscan and display windows. 

 
HORIZONTAL POSITION 
A sprite's horizontal position (X value) can be at any pixel on the screen from 0 to 447. To 
be visible, however, an object must be within the boundaries of the playfield display 
window. In the examples in this chapter, a window with horizontal positions from pixel 64 
to pixel 383 is used (that is, each line is 320 pixels long). Larger or smaller windows can 
be defined as  required, but it is recommended that you read the "Playfield Hardware" 

chapter before attempting to do so. A larger area is actually scanned by the video beam 
but is not usually visible on the screen. 
 
If you specify an X value for a sprite that takes it outside the display window, then part or 
all of the sprite may not appear on the screen. This is sometimes desirable; such a sprite 
is said to be "clipped. " 
 

To make a sprite appear in its correct on-screen horizontal position in the display window, 
simply add its left offset to the desired X value. In the example given above, this would 
involve adding 64 to the X value. For example, to make the upper leftmost pixel of a 
sprite appear at a position 94 pixels from the left edge of the screen, you would perform 
this calculation: 
 
Desired X position + horizontal-offset of display window = 94 + 64 = 158 
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Thus, 158 becomes the X value, which will be written into the data structure. 
 
NOTE 
The X position represents the location of the very first (leftmost) pixel in the full 16-bit-

wide sprite. This is always the case, even if the leftmost pixels are specified as 
transparent and do not appear on the screen. 
 
If the sprite shown in Figure 4-2 were located at an X value of 158, the actual image 
would begin on-screen four pixels later at 162. The first four pixels in this sprite are 
transparent and allow the background to show through. 
 

 
 

Figure 4-2: (Position of Sprites) 

 

 

 

 

 

 

VERTICAL POSITION 
You can select any position from line 0 to line 262 for the topmost edge of the sprite. In 
the examples in this chapter, an NTSC window with vertical positions from line 44 to line 
243 is used. This allows the normal display height of 200 lines in non-interlaced mode. If 
you specify a vertical position (Y value) of less than 44 (i.e., above the top of the display 
window) the top edge of the sprite may not appear on screen. 

 
To make a sprite appear in its correct on-screen vertical position, add the Y value to the 
desired position. Using the above numbers, add 44 to the desired Y position. For example, 
to make the upper leftmost pixel appear 25 lines below the top edge of the screen, 
perform this calculation: 
 

Desired Y position + vertical-offset of the display window = 25 + 44 = 69 
 
Thus, 69 is the Y value you will write into the data structure. 
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CLIPPED SPRITES 
As noted above, sprites will be partially or totally clipped if they pass across or beyond the 
boundaries of the display window. The values of 64 (horizontal) and 44 (vertical) are 
"normal" for a centred display on a standard NTSC video monitor. See Chapter 3, 

"Playfield Hardware", for more information on display offsets. Information on PAL displays 
will be found there. If you choose other values to establish your display window, your 
sprites will be clipped accordingly. 
 
SIZE OF SPRITES 
Sprites are 16 pixels wide and can be almost any height you wish... as short as one line or 
taller than the screen. You would probably move a very tall sprite vertically to display a 

portion of it at a time. 
 
Sprite size is based on a pixel that is 1/320th of a screen's width, 1/200th of a NTSC 
screen's height, or 1/256 of a PAL screen's height. This pixel size corresponds to the low-
resolution and non-interlaced modes of the normal full-size playfield. Sprites, however, 
are independent of playfield modes of display, so changing the resolution or interlace 
mode of the playfield has no effect on the size or resolution of a sprite. 
 
SHAPE OF SPRITES 
A sprite can have any shape that will fit within the 16-pixel width. You define a sprite's 
shape by specifying which pixels actually appear in each of the sprite's locations. For 
example, Figures 4-3 and 4-4 show a spaceship whose shape is marked by Xs. The first 
Figure shows only the spaceship as you might sketch it out on graph paper. The second 
Figure shows the spaceship within the 16-pixel width. The 0s around the spaceship mark 

the part of the sprite not covered by the spaceship and transparent when displayed. 
 

                                   x x 

                                x x x x x 

                           x x x x x x x x x x 

                           x x x x x x x x x x 

                               x x x x x x 

                                   x x 

 

                      Figure 4-3: Shape of Spaceship 
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                           o o o o x x o o o o o o o o o o 

                           o o x x x x x x o o o o o o o o 

                           x x x x x x x x x x o o o o o o 

                           x x x x x x x x x x o o o o o o 

                           o o x x x x x x o o o o o o o o 

                           o o o o x x o o o o o o o o o o 

 

                  Figure 4-4: Sprite with Spaceship Shape Defined 

 

 

In this example, the widest part of the shape is ten pixels and the shape is shifted to the 
left of the sprite. Whenever the shape is narrower than the sprite, you can control which 
part of the sprite is used to define the shape. This particular shape could also start at any 
of the pixels from 2-7 instead of pixel 1. 
 
SPRITE COLOR 
When sprites are used individually (that is, not "attached" as described under "Attached 
Sprites" later), each pixel can be one of three colors or transparent. Colors are selected in 
much the same manner as playfield colors. 

 
Figure 4-5 shows how the color of each pixel in a sprite is determined. 
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Figure 4-5: (Sprite Color Definition) 

 

 

The 0s and 1s in the two data words that define each line of a sprite in the data structure 
form a binary number. This binary number points to one of the four color registers 
assigned to that particular sprite DMA channel. The eight sprites use system color 
registers 16 - 31. For purposes of color selection, the eight sprites are organized into pairs 
and each pair uses four of the color registers as shown in Figure 4-6. 
 

NOTE 
The color value of the first register in each group of four registers is ignored by sprites. 
When the sprite bits select this register, the "transparent" value is used. 
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Codes 01,10,or 11 select one of three possible registers from the normal color register 
from the normal color register group, from which the actual color data is taken. 
 

                             COLOR REGISTER SET 

                          _________________________ 

                   __    |                  Unused | 16 

                  |   00 |_________________________|    \ 

    Sprite 0 or 1 |   01 |_________________________|     \ 

                  |   10 |_________________________|      \ 

                  |__ 11 |_________________________|       \ 

                   __    |                  Unused | 20     \ 

                  |   00 |_________________________|   \     \ 

    Sprite 2 or 3 |   01 |_________________________|    \     \ 

                  |   10 |_________________________|     \     \ 

                  |__ 11 |_________________________|      \     \ 

                   __    |                  Unused | 24 ---------> Yields 

                  |   00 |_________________________|      /     / Trans- 

    Sprite 4 or 5 |   01 |_________________________|     /     /  parent 

                  |   10 |_________________________|    /     / 

                  |__ 11 |_________________________|   /     / 

                   __    |                  Unused | 28     / 

                  |   00 |_________________________|       / 

    Sprite 6 or 7 |   01 |_________________________|      / 

                  |   10 |_________________________|     / 

                  |__ 11 |_________________________| 31 / 

 

                Figure 4-6: (Color Register Assignments) 

 

 

If you require certain colors in a sprite, you will want to load the sprite's color registers 
with those colors. The "Playfield Hardware" chapter contains instructions on loading color 
registers. 
 
The binary number 00 is special in this color scheme. A pixel whose value is 00 becomes 

transparent and shows the color of any other sprite or playfield that has lower video 
priority. An object with low priority appears "behind" an object with higher priority. Each 
sprite has a fixed video priority with respect to all the other sprites. You can vary the 
priority between sprites and playfields. (See Chapter 7, "System Control Hardware," for 
more information about sprite priority.) 
 

                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 100 Sprite Hardware - 



DESIGNING A SPRITE 
For design purposes, it is convenient to lay out the sprite on paper first.  You can show 
the desired colors as numbers from 0 to 3. For example, the spaceship shown above 
might look like this: 
 

        0000122332210000 

        0001223333221000 

        0012223333222100 

        0001223333221000 

        0000122332210000 

 

The next step is to convert the numbers 0-3 into binary numbers, which will be used to 

build the color descriptor words of the sprite data structure. The section below shows how 
to do this. 
 
BUILDING THE DATA STRUCTURE 
After defining the sprite, you need to build its data structure, which is a series of 16-bit 
words in a contiguous memory area. Some of the words contain position and control 
information and some contain color descriptions. To create a sprite's data structure, you 

need to: 
 
o Write the horizontal and vertical position of the sprite into the first control word. 
 
o Write the vertical stopping position into the second control word. 
 
o Translate the decimal color numbers 0 - 3 in your sprite grid picture into binary color 

numbers. Use the binary values to build color descriptor (data) words and write these 
words into the data structure. 
 
o Write the control words that indicate the end of the sprite data structure. 
 
NOTE 
Sprite data, like all other data accessed by the custom chips, must be loaded into Chip 

RAM. Be sure all of your sprite data structures are word aligned in Chip Memory. 
 
Table 4-1 shows a sprite data structure with the memory location and function of each 
word: 
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    Table 4-1: Sprite Data Structure 

 

      Memory 

     Location      16-bit Word                     Function 

 

      N         Sprite control word 1       Vertical and horizontal start 

                                            position 

      N+1       Sprite control word 2       Vertical stop position 

      N+2       Color descriptor low word   Color bits for line 1 

      N+3       Color descriptor high word  Color bits for line 1 

      N+4       Color descriptor low word   Color bits for line 2 

      N+5       Color descriptor high word  Color bits for line 2 

                        . 

                        . 

                        . 

                End-of-data words           Two words indicating 

                                            the next usage of this sprite 

 

All memory addresses for sprites are word addresses. You will need enough contiguous 
memory to provide room for two words for the control information, two words for each 
horizontal line in the sprite, and two end-of-data words. 
 
Because this data structure must be accessible by the special-purpose chips, you must 
ensure that this data is located within chip memory. 
 
Figure 4-7 shows how the data structure relates to the sprite. 
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Figure 4-7 PART ONE: (Data Structure Layout) 

 

   
 

Figure 4-7 PART TWO: (Data Structure Layout) 

 

 

  /|\   <------------- 16 Bits -----------> 

   |     _________________________________----\    _ Each group of words 

   |    |                                 |   |   /  defines one vertical 

   |    |          VSTART, HSTART         |   |  /   usage of a sprite. 

   |    |_________________________________|   | /    Contains starting 

        |                                 |   |/     location & physical 

   I    |       VSTOP, control bits       |   |      appearance of this 

   N    |_________________________________|   |      sprite image. 

   C     _________________________________ ___|___ 

   R    |                                 |   |   | 

   E    |     Low word of data, line 1    |   |   | 

   A    |_________________________________|   |   | 

   S    |                                 |   |   |\ 

   I    |    High word of data, line 1    |   |   | \ 

   N    |_________________________________|   |   |  \_ Pairs of words 

   G      _____                               |   |     containing color 

          _____ Data describing central       |   |     information for 

   A      _____ lines of this sprite.         |   |     pixel lines. 

   D     _________________________________    |   | 

   D    |                                 |   |   | 

   R    |   low word of data, last line   |   |   | 

   E    |_________________________________|   |   | 

   S    |                                 |   |   | 

   S    |  High word of data, last line   |   |   | 

   E    |_________________________________|___|___| 

   S                                      ____| 

         _________________________________ 

   |    |                                 |\ 

   |    | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \ 

   |    |_________________________________|  \_ Last word pair contains 

   |     _________________________________      all zeros if this sprite 

   |    |                                 |     processor is to be used 

   |    | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |     only once vertically in 

  \|/   |_________________________________|     the display frame. 

   V 
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SPRITE CONTROL WORD 1: SPRxPOS 
This word contains the vertical (VSTART) and horizontal (HSTART) starting position for the 
sprite. This is where the topmost line of the sprite will be positioned. 
 

    Bits 15-8 contain the low 8 bits of VSTART 

    Bits  7-0 contain the high 8 bits of HSTART 

 

SPRITE CONTROL WORD 2: SPRxCTL 
This word contains the vertical stopping position of the sprite on the screen (i.e., the line 
AFTER the last displayed row of the sprite). It also contains some data having to do with 
sprite attachment, which is described later on. 
 
                                      SPRxCTL 

 

                 Bits 15-8          The low eight bits of VSTOP 

                 Bit  7             (Used in attachment) 

                 Bits 6-3           Unused (make zero) 

                 Bit  2             The VSTART high bit 

                 Bit  1             The VSTOP high bit 

                 Bit  0             The HSTART low bit 

 

The value (VSTOP - VSTART) defines how many scan lines high the sprite will 
be when it is displayed. 
 
SPRITE COLOR DESCRIPTOR WORDS 
It takes two color descriptor words to describe each horizontal line of a sprite; the high-

order word and the low-order word. To calculate how many color descriptor words you 
need, multiply the height of the sprite in lines by 2. The bits in the high-order color 
descriptor word contribute the left most digit of the binary color selector number for each 
pixel; the low-order word contributes the rightmost digit. 
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To form the color descriptor words, you first need to form a picture of the sprite, showing 
the color of each pixel as a number from 0 - 3. Each number represents one of the colors 
in the sprite's color registers. For example, here is the spaceship sprite again: 
 

        0000122332210000 

        0001223333221000 

        0012223333222100 

        0001223333221000 

        0000122332210000 

 

Next, you translate each of the numbers in this picture into a binary number. The first line 
in binary is shown below. The binary numbers are represented vertically with the low digit 

in the top line and the high digit right below it. This is how the two color descriptor words 
for each sprite line are written in memory. 
 

        0000100110010000 <---LowSpriteWord 

        0000011111100000 <---HighSpriteWord 

 

The first line above becomes the color descriptor low word for line 1 of the sprite. The 
second line becomes the color descriptor high word. In this fashion, you translate each 
line in the sprite into binary 0s and 1s. See Figure 4-7.  Each of the binary numbers 
formed by the combination of the two data words for each line refers to a specific color 
register in that particular sprite channel's segment of the color Table. Sprite channel 0, for 
example, takes its colors from registers 17 - 19. The binary numbers corresponding to the 
color registers for sprite DMA channel 0 are shown in Table 4-2. 
 

    Table 4-2: Sprite Color Registers 

 

      BINARY NUMBER COLOR REGISTER NUMBER 

 

          00          Transparent 

          01              17 

          10              18 

          11              19 

 

Recall that binary 00 always means transparent and never refers to a color except 
background. 
 
END-OF-DATA WORDS 
When the vertical position of the beam counter is equal to the VSTOP value in the sprite 
control words, the next two words fetched from the sprite data structure are written into 
the sprite control registers instead of being sent to the color registers. These two words 
are interpreted by the 
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hardware in the same manner as the original words that were first loaded into the control 
registers. If the VSTART value contained in these words is lower than the current beam 
position, this sprite will not be reused in this display field. For consistency, the value 0 
should be used for both words when ending the usage of a sprite. Sprite reuse is 

discussed later. 
 
The following data structure is for the spaceship sprite. It will be located at V = 65 and H 
= 128 on the normally visible part of the screen. 
 

SPRITE: 

    DC.W   $6D60, $7200     ;VSTART, HSTART, VSTOP 

    DC.W   $0990, $07E0     ;First pair of descriptor words 

    DC.W   $13C8, $0FF0 

    DC.W   $23C4, $1FF8 

    DC.W   $13C8, $0FF0 

    DC.W   $0990, $07E0 

    DC.W   $0000, $0000     ;End of sprite data 

 

DISPLAYING A SPRITE 

 
After building the data structure, you need to tell the system to display it. This section 
describes the display of sprites in "automatic" mode. In this mode, once the sprite DMA 
channel begins to retrieve and display the data, the display continues until the VSTOP 
position is reached. Manual mode is described later on in this chapter. 
 
The following steps are used in displaying the sprite: 
 
1. Decide which of the eight sprite DMA channels to use (making certain that the chosen 
channel is available). 
 
2. Set the sprite pointers to tell the system where to find the sprite data. 
 
3. Turn on sprite direct memory access if it is not already on. 

 
4. For each subsequent display field, during the vertical blanking interval, rewrite the 
sprite pointers. 
 
CAUTION 
If sprite DMA is turned off while a sprite is being displayed (that is, after VSTART but 
before VSTOP), the system will continue to display the line of sprite data that was most 
recently fetched. This causes a vertical bar to appear on the screen. It is recommended 
that sprite DMA be turned off only during vertical blanking or during some portion of the 
display where you are sure that no sprite is being displayed. 
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SELECTING A DMA CHANNEL AND SETTING THE POINTERS 
In deciding which DMA channel to use, you should take into consideration the colors 
assigned to the sprite and the sprite's video priority. 
 

The sprite DMA channel uses two pointers to read in sprite data and control words. During 
the vertical blanking interval before the first display of the sprite, you need to write the 
sprite's memory address into these pointers. The pointers for each sprite are called 
SPRxPTH and SPRxPTL, where "x" is the number of the sprite DMA channel. SPRxPTH 
contains the high three bits of the memory address of the first word in ,the sprite and 
SPRxPTL contains the low sixteen bits. The least significant bit of SPRxPTL is ignored, as 
sprite data must be word aligned. Thus, only fifteen bits of SPRxPTL are used. As usual, 

you can write a long word into SPRxPTH. 
 
In the following example the processor initializes the data pointers for sprite 0. Normally, 
this is done by the Copper. The sprite is at address $20000. 
 

    MOVE.L #$20000,SPR0PTH+CUSTOM ;Write S20000 to sprite 0 pointer... 

 

These pointers are dynamic; they are incremented by the sprite DMA channel to point first 
to the control words, then to the data words, and finally to the end-of-data words. After 
reading in the sprite control information and storing it in other registers, they proceed to 
read in the color descriptor words. The color descriptor words are stored in sprite data 
registers, which are used by the sprite DMA channel to display the data on screen. For 
more information about how the sprite DMA channels handle the display, see the 
"Hardware Details" section below. 

 
RESETTING THE ADDRESS POINTERS 
For one single display field, the system will automatically read the data structure and 
produce the sprite on-screen in the colors that are specified in the sprite's color registers. 
If you want the sprite to be displayed in subsequent display fields, you must rewrite the 
contents of the sprite pointers during each vertical blanking interval. This is necessary 
because during the display field, the pointers are incremented to point to the data which is 

being fetched as the screen display progresses. 
 
The rewrite becomes part of the vertical blanking routine, which can be handled by 
instructions in the Copper lists. 
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SPRITE DISPLAY EXAMPLE 
This example displays the spaceship sprite at location V = 65, H = 128. Remember to 
include the file "hw_examples.i", located in Appendix J. 
 

; First, we set up a single bit-plane. 

; 

   LEA CUSTOM,a0                    ; Point a0 at custom chips 

   MOVE.W #$1200,BPLCON0(a0)        ; 1 bit-plane color is on 

   MOVE.W #$0000,BPL1MOD(a0)        ; Modulo = 0 

   MOVE.W #$0000,BPLCON1(a0)        ; Horizontal scroll value = 0 

   MOVE.W #$0024,BPLCON2(a0)        ; Sprites have priority over playfields 

   MOVE.W #$0038,DDFSTRT(a0)        ; Set data-fetch alert 

   MOVE.W #$00D0,DDFSTOP(a0)        ; Set data-fetch stop 

 

; Display window definitions. 

 

   MOVE.W #$2C81,DIWSTRT(a0)        ; Set display window start 

                                    ; Vertical start in high byte. 

                                    ; Horizontal start * 2 in low byte. 

   MOVE.W #$F4C1,DIWSTOP(a0)        ; Set display window stop 

                                    ; Vertical stop in high byte. 

                                    ; Horizontal stop * 2 in low byte. 

; 

; Set up color registers. 

; 

   MOVE.W #$0008,COLOR00(a0)        ; Background color = dark blue 

   MOVE.W #$0000,COLOR01(a0)        ; Foreground color = black 

   MOVE.W #$0FF0,COLOR17(a0)        ; Color 17 = yellow 

   MOVE.W #$00FF,COLOR18(a0)        ; Color 18 = cyan 

   MOVE.W #$0FOF,COLORl9(a0)        ; Color 19 = magenta 

; 

; Move Copper list to $20000. 

; 

   MOVE.L #$20000,a1                ; Point A1 at Copper list destination 

   LEA    COPPERL(pc),a2            ; Point A2 at Copper list source 

 

CLOOP: 

   MOVE.L (a2),(a1)+                ; Move a long word 

   CMP.L  #$FFFFFFFE,(a2)+          ; Check for end of list 

   BNE    CLOOP                     ; Loop until entire list is moved 

; 

; Move sprite to $25000. 

; 

   MOVE.L #$25000,a1                ; Point A1 at sprite destination 

   LEA    SPRITE(pc),a2             ; Point A2 at sprite source 

 

SPRLOOP: 

   MOVE.L (a2),(a1)+                ; Move a long word 

   CMP.L  #$00000000,(a2)+          ; Check for end of sprite 

   BNE    SPRLOOP                   ; Loop until entire sprite is moved 

; 

; Now we write a dummy sprite to $30000, since all eight sprites are   

; activated 

; at the same time and we're only going to use one. The remaining sprites 

; will point to this dummy sprite data. 

; 

   MOVE.L #$00000000,$30000         ; Write it 

; 

; Point Copper at Copper list. 
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; 

   MOVE.L #$20000,COP1LC(a0) 

; 

; Fill bit-plane with $FFFFFFFF. 

; 

   MOVE.L #$21000,a1                ; Point A1 at bit-plane 

   MOVE.W #l999,d0                ; 2000-1(for dbf) long words = 8000 bytes 

FLOOP 

   MOVE.L #$FFFFFFFF,(al)+          ; Move a long word of $FFFFFFFF 

   DBF    d0,FLOOP                  ; Decrement, repeat until false. 

; 

; Start DMA. 

; 

   MOVE.W d0,COPJMP1(a0)            ; Force load into Copper 

                                    ; program counter 

   MOVE.W #$83A0,DMACON(a0)         ; Bit-plane, Copper, and sprite DMA 

   RTS                              ; ..return to rest of program 

; 

; This is a Copper list for one bit-plane, and 8 sprites. 

; The bit-plane lives at $21000. 

; Sprite 0 lives at $25000; all others live at $30000 (the dummy sprite). 

; 

COPPERL: 

   DC.W   BPL1PTH,$0002             ; Bit plane 1 pointer = $21000 

   DC.W   BPL1PTL,$1000 

   DC.W   SPR0PTH,$0002             ; Sprite 0 pointer = $25000 

   DC.W   SPR0PTL,$5000 

   DC.W   SPR1PTH,$0003             ; Sprite 1 pointer = $30000 

   DC.W   SPR1PTL,$0000 

   DC.W   SPR2PTH,$0003             ; Sprite 2 pointer = $30000 

   DC.W   SPR2PTL,$0000 

   DC.W   SPR3PTH,$0003             ; Sprite 3 pointer = $30000 

   DC.W   SPR3PTL,$0000 

   DC.W   SPR4PTH,$0003             ; Sprite 4 pointerÑ$30000 

   DC.W   SPR4PTL,$0000 

   DC.W   SPR5PTH,$0003             ; Sprite 5 pointer = $30000 

   DC.W   SPR5PTL,$0000 

   DC.W   SPR6PTH,$0003             ; Sprite 6 pointer - S30000 

   DC.W   SPR6PTL,$0000 

   DC.W   SPR7PTH,$0003             ; Sprite 7 pointer = $30000 

   DC.W   SPR7PTL,$0000 

   DC.W   $FFFF,$FFFE               ; End of Copper list 

; 

; Sprite data for spaceship sprite. It appears on the screen at V-65 and 

; H-128. 

; 

SPRITE: 

   DC.W   $6D60,$7200               ; VSTART, HSTART, VSTOP 

   DC.W   $0990,$07E0               ; First pair of descriptor words 

   DC.W   $13C8,$0FF0 

   DC.W   $23C4,$1FF8 

   DC.W   $13C8,$0FF0 

   DC.W   $0990,$07E0 

   DC.W   $0000,$0000               ; End of sprite data 
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MOVING A SPRITE 
 
A sprite generated in automatic mode can be moved by specifying a different position in 
the data structure. For each display field, the data is reread and the sprite redrawn. 

Therefore, if you change the position data before the sprite is redrawn, it will appear in a 
new position and will seem to be moving. 
 
You must take care that you are not moving the sprite (that is, changing control word 
data) at the same time that the system is using that data to find out where to display the 
object. If you do so, the system might find the start position for one field and the stop 
position for the following field as it retrieves data for display. This would cause a "glitch" 

and would mess up the screen. Therefore, you should change the content of the control 
words only during a time when the system is not trying to read them. Usually, the vertical 
blanking period is a safe time, so moving the sprites becomes part of the vertical blanking 
tasks and is handled by the Copper as shown in the example below. 
 
As sprites move about on the screen, they can collide with each other or with either of the 
two playfields. You can use the hardware to detect these collisions and exploit this 
capability for special effects. In addition, you can use collision detection to keep a moving 
object within specified on-screen boundaries. Collision Detection is described in Chapter 7, 
"System Control Hardware." 
 
In this example of moving a sprite, the spaceship is bounced around on the screen, 
changing direction whenever it reaches an edge. 
 

The sprite position data, containing VSTART and HSTART, lives in memory at $25000. 
VSTOP is located at $25002. You write to these locations to move the sprite. Once during 
each frame, VSTART is incremented (or decremented) by 1 and HSTART by 2. Then a new 
VSTOP is calculated, which will be the new VSTART+6. 
 

    MOVE.B #151,d0          ; Initialize horizontal count 

    MOVE.B #194,d1          ; Initialize vertical count 

    MOVE.B #64,d2           ; Initialize horizontal position 

    MOVE.B #44,d3           ; Initialize vertical position 

    MOVE.B #1,d4            ; Initialize horizontal increment value 

    MOVE.B #1,d5            ; Initialize vertical increment value 

; 

; Here we wait for the start of the screen updating. 

; This ensures a glitch-free display. 

; 

    LEA CUSTOM,a0           ; Set custom chip base pointer 

VLOOP: 

    MOVE.B VHPOSR(a0),d6    ; Read Vertical beam position. 

 

; Only insert the following line if you are using a PAL machine. 

;   CMP.B  #$20,d6          ; Compare with end of PAL screen. 

    BNE.S  VLOOP            ; Loop if not end of screen. 

 

; Alternatively you can use the following code: 

; VLOOP: 
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;  MOVE.W INTREQR(a0),d6    ; Read interrupt request word 

;  AND.W  #$0020,d6         ; Mask off all but vertical blank bit 

;  BEQ    VLOOP             ; Loop until bit is a 1 

;  MOVE.W #$0020,INTREQ(a0) ; Vertical bit is on, so reset it 

 

;Please note that this will only work if you have turned OFF the Vertical 

;blanking interrupt enable (not recommended for long periods). 

 

   ADD.B  d4,d2             ; Increment horizontal value 

   SUBQ.B #1,d0             ; Decrement horizontal counter 

   BNE    L1 

   MOVE.B #151,d0           ; Count exhausted, reset to 151 

   EOR.B  #$FE,d4           ; Negate the increment value 

L1: 

   MOVE.B d2,$25001         ; Write new HSTART value to sprite 

   ADD.B  d5,d3             ; Increment vertical value 

   SBQ.B  #1,d1             ; Decrement vertical counter 

   BNE    L2 

   MOVE.B #194,d1           ; Count exhausted, reset to 194 

   EOR.B  #$FE,d5           ; Negate the increment value 

 

L2: 

   MOVE.B d3,$25000         ; Write new VSTART value to sprite 

   MOVE.B d3,d6             ; Must now calculate new VSTOP 

   ADD.B  #6,d6             ; VSTOP always VSTART+6 for spaceship 

   MOVE.B d6,$25002         ; Write new VSTOP to sprite 

   BRA    VLOOP             ; Loop forever 

 

CREATING ADDITIONAL SPRITES 
 
To use additional sprites, you must create a data structure for each one and arrange the 
display as shown in the previous section, naming the pointers SPR1PTH and SPR1PTL for 
sprite DMA channel 1, SPR2PTH and SPR2PTL for sprite DMA channel 2, and so on. 
 
NOTE 
When you enable sprite DMA for one sprite, you enable DMA for all the sprites and place 
them all in automatic mode. Thus, you do not need to repeat this step when using 
additional sprite DMA channels. 
 
Once the sprite DMA channels are enabled, all eight sprite pointers must be initialized to 
either a real sprite or a safe null sprite. An uninitialized sprite could cause spurious sprite 

video to appear. 
 
Remember that some sprites can become unusable when additional DMA cycles are 
allocated to displaying the screen, for example when an extra wide display or horizontal 
scrolling is enabled (see Figure 6-9: DMA Time Slot Allocation). 
 
Also, recall that each pair of sprites takes its color from different color registers, as shown 
in Table 4-3. 
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      Table 4-3: Color Registers for Sprite Pairs 

 

      SPRITE NUMBERS    COLOUR REGISTERS 

      0 and 1           17-19 

      2 and 3           21-23 

      4 and 5           25-27 

      6 and 7           29-31 

 

NOTE 
Some sprites become unusable when additional DMA cycles are allocated to displaying the 
screen, e.g. when enabling an extra wide display or horizontal scrolling. (See Figure 6 
DMA Time Slot Allocation.)ÿ 
 
SPRITE PRIORITY 
When you have more Than one sprite on the screen, you may need to take into 
consideration their relative video priority, that is, which sprite appears in front of or 
behind another. Each sprite has a fixed video priority with respect to all the others. The 
lowest numbered sprite has the highest priority and appears in front of all other sprites; 
the highest numbered sprite has the lowest priority. This is illustrated in Figure 4-8. 

 
NOTE 
See Chapter 7, "System Control Hardware", for more information on sprite priorities. 
                           ____ 

                        __|_  7| 

                     __|_  6|__| 

                  __|_  5|__| 

               __|_  4|__| 

            __|_  3|__| 

         __|_  2|__| 

      __|_  1|__| 

     |   0|__| 

     |____| 

 

                      Figure 4-8: (Sprite Priority) 

 

 

                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 112 Sprite Hardware - 



REUSING SPRITE DMA CHANNELS 
 
Each of the eight sprite DMA channels can produce more than one independently 
controllable image. There may be times when you want more than eight objects, or you 

may be left with fewer than eight objects because you have attached some of the sprites 
to produce more colors or larger objects or overlapped some to produce more complex 
images. You can reuse each sprite DMA channel several times within the same display 
field, as shown in Figure 4-9. 
 

 
Figure 4-9: (Typical Example of Sprite Reuse) 

 

 

In single-sprite usage, two all-zero words are placed at the end of the data structure to 
stop the DMA channel from retrieving any more data for that particular sprite during that 
display field. To reuse a DMA channel, you replace this pair of zero words with another 
complete sprite data structure, which describes the reuse of the DMA channel at a position 
lower on the screen than the first use. You place the two all-zero words at the end, of the 

data structure that contains the information for all usages of the DMA channel. For 
example, Figure 4-10 shows the data structure that describes the picture above. 
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                     SPRITE DISPLAY LIST 

                                            ------\   _ Data describing 

               ________________________________   |  /  the 1st vertical 

 Increasing   |________________________________|  | /    usage of this 

    RAM       |________________________________|  |/    sprite. 

   memory      ________________________________   | 

  addresses   |________________________________|  | 

              |________________________________|  | 

      |                    _________              | 

      |                    _________              | 

      |                    _________              | 

      |        ________________________________   | 

      |       |________________________________|  | 

      |       |________________________________|  | 

      |                                      -----/ 

      | 

      |                                      -----\   _ Data describing 

      |        ________________________________   |  /  the 2nd vertical 

      |       |________________________________|  | /   usage of this 

      |       |________________________________|  |/    sprite. Contents 

      |        ________________________________   |     of vertical start 

      |       |________________________________|  |     word must be at 

      |       |________________________________|  |      least one video 

      |                    _________              |     line below actual 

      |                    _________              |     end of preceding 

      |                    _________              |     usage. 

     \|/       ________________________________   | 

      V       |________________________________|  | 

              |________________________________|  |\ 

                                                  | \ 

                                             -----/  \_ End-of-data words 

                                                        ending the usage 

                                                        of this sprite. 

 

 

         Figure 4-10: (Typical Data Structure for Sprite Re-use) 

 

 

The only restrictions on the reuse of sprites during a single display field is that the bottom 
line of one usage of a sprite must be separated from the top line of the next usage by at 
least one horizontal scan line. This restriction is necessary because only two DMA cycles 
per horizontal scan line are allotted to each of the eight channels. The sprite channel 
needs the time during the blank line to fetch the control word describing the next usage of 
the sprite. 
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The following example displays the spaceship sprite and then redisplays it as a different 
object. Only the sprite data list is affected, so only the data list is shown here. However, 
the sprite looks best with the color registers set as shown in the 
 xample. 
 

    LEA CUSTOM,a0 

    MOVE.W #$0F00,COLOR17(a0)       ; Color 17 red 

    MOVE.W #$0FF0,COLOR18(a0)       ; Color 18 yellow 

    MOVE.W #$0FFF,COLORl9(a0)       ; Color 19 white 

SPRITE: 

    DC.W   $6D60,$7200 

    DC.W   $0990,$07E0 

    DC.W   $13C8,$0FF0 

    DC.W   $23C4,$1FF8 

    DC.W   $13C8,$0FF0 

    DC.W   $0990,$07E0 

    DC.W   $8080,$8D00              ; VSTART, HSTART, VSTOP for new sprite 

    DC.W   $1818,$0000 

    DC.W   $7E7E,$0000 

    DC.W   $7FFE,$0000 

    DC.W   $FFFF,$2000 

    DC.W   $FFFF,$2000 

    DC.W   $FFFF,$3000 

    DC.W   $FFFF,$3000 

    DC.W   $7FFE,$1800 

    DC.W   $7FFE,$0C00 

    DC.W   $3FFC,$0000 

    DC.W   $0FF0,$0000 

    DC.W   $03C0,$0000 

    DC.W   $0180,$ÿ0000 

    DC.W   $0000,$0000              ; End of sprite data 

 

OVERLAPPED SPRITES 
 
For more complex or larger moving objects, you can overlap sprites. Overlapping simply 
mean that the sprites have the same or relatively close screen positions. A relatively close 
screen position can result in an object that is wider than 16 pixels. 
The built-in sprite video priority ensures that one sprite appears to be behind the other 
when sprites are overlapped. The priority circuitry gives the lowest-numbered sprite the 
highest priority and the highest numbered sprite the lowest priority. Therefore, when 
designing displays with overlapped sprites, make sure the "foreground" sprite has a lower 

number than the "background" sprite. In Figure 4-11, for example, the cage should be 
generated by a lower-numbered sprite DMA channel than the monkey. 
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Figure 4-11: overlapping Sprites (Not attached) 

 

 
 

You can create a wider sprite display by placing two sprites next to each other.  For 
instance, Figure 4-12 shows the spaceship sprite and how it can be made twice as large 
by using two sprites placed next to each other. 
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     (128,65) 

        o_____________________ 

        |     _|        |_    | 

        |   _|            |_  | 

        |  |_              _| | 

        |    |_          _|   | 

        |______|________|_____| 

 

     (128,65)              (144,65) 

        o_____________________o_____________________ 

        |         |           |          |          | 

        |       __|           |          |__        | 

        |      |              |             |       | 

        |    __|              |             |__     | 

        |   |                 |                |    | 

        |   |__               |              __|    | 

        |      |              |             |       | 

        |      |__            |           __|       | 

        |         |           |          |          | 

        |_________|___________|__________|__________| 

               Sprite 0               Sprite 1 

 

             Figure 4-12: Placing Sprites Next to Each Other 

 

 

ATTACHED SPRITES 
 
You can create sprites that have fifteen possible color choices (plus transparent) instead 
of three (plus transparent), by "attaching" two sprites. To create attached sprites, you 
must: 
 
o Use two channels per sprite, creating two sprites of the same size and located at the 
same position. 
 

o Set a bit called ATTACH in the second sprite control word. 
 
The fifteen colors are selected from the full range of color registers available to sprites - 
registers 17 through 31. The extra color choices are possible because each pixel contains 
four bits instead of only two as in the normal, unattached sprite. Each sprite in the 
attached pair contributes two bits to the binary color selector number. For example, if you 
are using sprite DMA channels 0 and 1, the high- and low-order color descriptor words for 
line 1 in both data structures are combined into line 1 of the attached object. 
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Sprites can be attached in the following combinations: 
 
    Sprite 1 to sprite 0 
    Sprite 3 to sprite 2 

    Sprite 5 to sprite 4 
    Sprite 7 to sprite 6 
 
Any or all of these attachments can be active during the same displayfield. As an example, 
assume that you wish to have more colors in the spaceship sprite and you are using sprite 
DMA channels 0 and 1. There are five colors plus transparent in this sprite. 
 

    0000154444510000 

    0001564444651000 

    0015676446765100 

    0001564444651000 

    0000154444510000 

 

The first line in this sprite requires the four data words shown in Table 4-4 to form the 
correct binary color selector numbers. 
 

Table 4-4: Data Words for First Line of Spaceship Sprite 

 

                            PIXEL NUMBER 

       15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0 

---------------------------------------------------------------------- 

Line 1  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 

Line 2  0   0   0   0   0   1   1   1   1   1   1   0   0   0   0   0 

Line 3  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 

Line 4  0   0   0   0   1   1   0   0   0   0   1   1   0   0   0   0 

 

The highest numbered sprite (number 1, in this example) contributes the highest order 
bits (left-most) in the binary number. The high-order data word in each sprite contributes 
the leftmost digit. Therefore, the lines above are written to the sprite data structures as 
follows: 
 
    Line 1 Sprite 1 high-order word for sprite line 1 
    Line 2 Sprite 1 low-order word for sprite line 1 
    Line 3 Sprite 0 high-order word for sprite line 1 
    Line 4 Sprite 0 low-order word for sprite line 1 
 

See Figure 4-7 for the order these words are stored in memory. Remember that this data 
is contained in two sprite structures. 
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The binary numbers 0 through 15 select registers 17 through 31 as shown in Table 4-5. 
 

    Table 4-5: Color Registers in Attached Sprites 

 

      Decimal   Binary   ColorRegister 

      Number    Number      Number 

 

        0       0000         16 * 

        1       0001         17 

        2       0010         18 

        3       0011         19 

        4       0100         20 

        5       0101         21 

        6       0110         22 

        7       0111         23 

        8       1000         24 

        9       1001         25 

       10       1010         26 

       11       1011         27 

       12       1100         28 

       13       1101         29 

       14       lll0         30 

       15       1111         31 

 

* Unused; yields transparent pixel. 

 

Attachment is in effect only when the ATTACH bit, bit 7 in sprite control 

word 2, is set to 1 in the data structure for the odd-numbered sprite. So, 

in this example, you set bit 7 in sprite control word 2 in the data 

structure for sprite 1. 

 

When the sprites are moved, the Copper list must keep them both at exactly 

the same position relative to each other. If they are not kept together on 

the screen, their pixels will change color. Each sprite will revert to three 

colors plus transparent, but the colors may be different than if they were 

ordinary, unattached sprites. The color selection for the lower numbered 

sprite will be from color registers 17-19. The color selection for the 

higher numbered sprite will be from color registers 20, 24, and 28. 
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The following data structure is for the six-color spaceship made with two attached sprites. 
 

SPRITE0: 

    DC.W    $6D60,$7200     ;VSTART = 65, HSTART = 128 

    DC.W    $0C30,$0000     ;First color descriptor word 

    DC.W    $1818,$0420 

    DC.W    $342C,$0E70 

    DC.W    $1818,$0420 

    DC.W    $0C30,$0000 

    DC.W    $0000,$0000     ;End of sprite 0 

SPRITE1: 

    DC.W    $6D60,$7280     ;Same as sprite 0 except attach bit on 

    DC.W    $07E0,$0000     ;First descriptor word for sprite 1 

    DC.W    $0FF0,$0000 

    DC.W    $1FF8,$0000 

    DC.W    $0FF0,$0000 

    DC.W    $07E0,$0000 

    DC.W    $0000,$0000     ;End of sprite 1 

 

MANUAL MODE 
 
It is almost always best to load sprites using the automatic DMA channels. Sometimes, 
however, it is useful to load these registers directly from one of the microprocessors. 
Sprites may be activated "manually" whenever they are not being used by a DMA channel. 
The same sprite that is showing a DMA-controlled icon near the top of the screen can also 
be reloaded manually to show a vertical colored bar near the bottom of the screen. Sprites 

can be activated manually even when the sprite DMA is turned off. 
 
You display sprites manually by writing to the sprite data registers SPRxDATB and 
SPRxDATA, in that order. You write to SPRxDATA last because that address "arms'' the 
sprite to be output at the next horizontal comparison. The data written will then be 
displayed on every line, at the horizontal position given in the "H" portion of the position 
registers SPRxPOS and SPRxCTL. If the data is unchanged, the result will be a vertical 
bar. If the data is reloaded for every line, a complex sprite can be produced. 
 
The sprite can be terminated ("disarmed") by writing to the SPRxCTL register. If you write 
to the SPRxPOS register, you can manually move the sprite horizontally at any time, even 
during normal sprite usage. 
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SPRITE HARDWARE DETAILS 
 
Sprites are produced by the circuitry shown in Figure 4-13. This Figure shows in block 
form how a pair of data words becomes a set of pixels displayed on the screen. 

 
The circuitry elements for sprite display are explained below. 
 
o Sprite data registers. The registers SPRxDATA and SPRxDATB hold the bit patterns that 
describe one horizontal line of a sprite for each of the eight sprites. A line is 16 pixels 
wide, and each line is defined by two words to provide election of three colors and 
transparent. 

 
o Parallel-to-serial converters. Each of the 16 bits of the sprite data bit pattern is 
individually sent to the color select circuitry at the time that the pixel associated with that 
bit is being displayed on-screen. 
 
Immediately after the data is transferred from the sprite data registers, each parallel-to-
serial converter begins shifting the bits out of the converter, most significant (leftmost) bit 
first. The shift occurs once during each low-resolution pixel time and continues until all 16 
bits have been transferred to the display circuitry. The shifting and data output does not 
begin again until the next time this converter is loaded from the data registers. 
 
Because the video image is produced by an electron beam that is being swept from left to 
right on the screen, the bit-image of the data corresponds exactly to the image that 
actually appears on the screen (most significant data on the left). 

 
o Sprite serial video data. Sprite data goes to the priority circuit to establish the priority 
between sprites and playfields. 
 
o Sprite position registers. These registers, called SPRxPOS, contain the horizontal 
position value (X value) and vertical position value (Y value) for each of the eight sprites. 
 
o Sprite control registers. These registers, called SPRxCTL, contain the stopping position 
for each of the eight sprites and whether or not a sprite is attached. 
 
o Beam counter. The beam counter tells the system the current location of the video 
beam that is producing the picture. 
 
o Comparator. This device compares the value of the beam counter to the Y value in the 

position register SPRxPOS. If the beam has reached the position at which the leftmost 
upper pixel of the sprite is to appear, the comparator issues a load signal to the serial-to-
parallel converter and the sprite display begins. 
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      _________________ 

     |    Beam counter | 

     |(Horizontal pos.)|                          ____________________ 

     |_________________|                         |SPRxDATA load decode| 

             \  /                                |  (68000 or DMA)    | 

      ________\/_______                          |____________________| 

     |                 | Equal                             | 

     |   Compensator   |______        ___________________  | 

     |_________________|      |      |SPRxPOS load decode| | 

              /\      ________|______|  (68000 or DMA)   | | 

      _______/__\____|_       |      |___________________| | 

     |                 |      |                            | 

     | SPRxPOS (Horiz.)|      |                            | 

     |_________________|      |       <-"ARM SPRITE"->     | 

              /\      ________|____________________________o 

 ____________/  \    |        |___            _______      | 

|                |   |       |AND |-|        |       |     | 

| ___________    |   |        \__/  |--------|Q     S|-----| 

||           \  /    |         |             |       |   _____________ 

||    ________\/_____|_        |         ----|Q     R|--|SPRxCTL load | 

||   |                 |       |             |_______|  |   decode    | 

||   |    SPRxDATA     |       |                        |(68000 or DMA| 

||   |_________________|   ____o                        |_____________| 

||              \  /      |    | 

||         ______\/_______|_   |           _____   ______________ 

||    ____|   Parallel to   |  |                | |Sprite serial | 

|| __|__  |serial converter |-----------------> | |  video data  | 

||  ___   |_________________|  |                | |              | 

||   _     _________________   |                | |   Output to  | 

||        |   Parallel to   |  |                | |video priority| 

||        |serial converter |-----------------> | |     logic    | 

||        |_________________|  |           _____| |______________| 

||            /\          |    | 

||    _______/__\______   |____| 

||   |                 | 

||   |    SPRxDATB     | 

||   |_________________|         ____________________ 

||        /\        ^           |SPRxDATB load decode| 

||       /  \       |___________|(68000 or DMA       | 

||_______|  |                   |____________________| 

| __________| 

|| 

||______________________________________________________________________ 

|_______________________________________________________________________ 

             DATA BUS 

 

 

                  Figure 4-13: Sprite Control Circuitry 

 

 
Figure 4-13 shows the following: 
 
o Writing to the sprite control registers disables the horizontal comparator circuitry. This 
prevents the system from sending any output from the data registers to the serial 
converter or to the screen. 
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o Writing to the sprite A data register enables the horizontal comparator. This enables 
output to the screen when the horizontal position of the video beam equals the horizontal 
value in the position register. 
 

o If the comparator is enabled, the sprite data will be sent to the display, with the 
leftmost pixel of the sprite data placed at the position defined in the horizontal part of 
SPRxPOS. 
 
o As long as the comparator remains enabled, the current contents of the sprite data 
register will be output at the selected horizontal position on a video line. 
 

o The data in the sprite data registers does not change. It is either rewritten by the user 
or modified under DMA control. 
 
The components described above produce the automatic DMA display as follows: When 
the sprites are in DMA mode, the 18-bit sprite pointer register (composed of SPRxPTH and 
SPRxPTL) is used to read the first two words from the sprite data structure. These words 
contain the starting and stopping position of the sprite. Next, the pointers write these 
words into SPRxPOS and SPRxCTL. After this write, the value in the pointers points to the 
address of the first data word (low word of data for line 1 of the sprite.) 
 
Writing into the SPRxCTL register disabled the sprite. Now the sprite DMA channel will 
wait until the vertical beam counter value is the same as the data in the VSTART (Y value) 
part of SPRxPOS. When these values match, the system enables the sprite data access. 
 

The sprite DMA channel examines the contents of VSTOP (from SPRxCTL, which is the 
location of the line after the last line of the sprite) and VSTART (from SPRxPOS) to see 
how many lines of sprite data are to be fetched. Two words are fetched per line of sprite 
height, and these words are written into the sprite data registers. The first word is stored 
in SPRxDATA and the second word in SPRxDATB. 
 
The fetch and store for each horizontal scan line occurs during a horizontal blanking 
interval, far to the left of the start of the screen display. This arms the sprite horizontal 
comparators and allows them to start the output of the sprite data to the screen when the 
horizontal beam count value matches the value stored in the HSTART (X value) part of 
SPRxPOS. 
 
If the count of VSTOP - VSTART equals zero, no sprite output occurs. The next data word 
pair will be fetched, but it will not be stored into the sprite data registers. It will instead 

become the next pair of data words for SPRxPOS and SPRxCTL. 
 
When a sprite is used only once within a single display field, the final pair of data words, 
which follow the sprite color descriptor words, is loaded automatically as the next contents 
of the SPRxPOS and SPRxCTL registers. To stop the sprite after that first data set, the pair 
of words should contain all zeros. 
 
Thus, if you have formed a sprite pattern in memory, this same pattern will be produced 
as pixels automatically under DMA control one line at a time. 
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SUMMARY OF SPRITE REGISTERS 
 
There are eight complete sets of registers used to describe the sprites. Each set consists 
of five registers. Only the registers for sprite O are described here. All of the others are 

the same, except for the name of the register, which includes the appropriate number. 
 
POINTERS 
Pointers are registers that are used by the system to point to the current data being used. 
During screen display, the registers are incremented to point to the data being used as 
the screen display progresses. Therefore, pointer registers must be freshly written during 
the start of the vertical blanking period. 

 
SPR0PTH and SPR0PTL 
This pair of registers contains the 32-bit word address of Sprite 0 DMA data. 
 
Pointer register names for the other sprites are: 
 
    SPR1PTH SPR1PTL 
    SPR2PTH SPR2PTL 
    SPR3PTH SPR3PTL 
    SPR4PTH SPR4PTL 
    SPRSPTH SPRSPTL 
    SPR6PTH SPR6PTL 
    SPR7PTH SPR7PTL 
 

CONTROL REGISTERS 
 
SPR0POS 
This is the sprite 0 position register. The word written into this register controls the 
position on the screen at which the upper left-hand corner of the sprite is to be placed. 
The most significant bit of the first data word will be placed in this position on the screen. 
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NOTE 
 
The sprites have a placement resolution on a full screen of 320 by 200 NTSC (320 by 256 
PAL). The sprite resolution is independent of the bit-plane resolution. 

 
BIT POSITIONS: 
 
o Bits 15-8 specify the vertical start position, bits V7 - V0. 
 
o Bits 7-0 specify the horizontal start position, bits H8 - H1. 
 

NOTE 
This register is normally only written by the lsprite DMA channel itself. See the details 
above regarding the organization of the sprite data. This register is usually updated 
directly by DMA. 
 
SPR0CTL 
This register is normally used only by the sprite DMA channel. It contains control 
information that is used to control the sprite data-fetch process. Bit positions: 
 
o Bits 15-8 specify vertical stop position for a sprite image, bits V7 - V0. 
 
o Bit 7 is the attach bit. This bit is valid only for odd-numbered sprites. It indicates that 
sprites 0, 1 (or 2,3 or 4,5 or 6,7) will, for color interpretation, be considered as paired, 
and as such will be called four bits deep. The odd-numbered (higher number) sprite 

contains bits with the higher binary significance. 
 
During attach mode, the attached sprites are normally moved horizontally and vertically 
together under processor control. This allows a greater selection of colors within the 
boundaries of the sprite itself. The sprites, although attached, remain capable of 
independent motion, however, and they will assume this larger color set only when their 
edges overlay one another. 
 
o Bits 6-3 are reserved for future use (make zero). 
 
o Bit 2 is bit V8 of vertical start. 
 
o Bit 1 is bit V8 of vertical stop. 
 

o Bit 0 is bit H0 of horizontal start. 
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Position and control registers for the other sprites are: 
 
    SPR1POS SPR1CTL 
    SPR2POS SPR2CTL 

    SPR3POS SPR3CTL 
    SPR4POS SPR4CTL 
    SPR5POS SPRSCTL 
    SPR6POS SPR6CTL 
    SPR7POS SPR7CTL 
 
DATA REGISTERS 

The following registers, although defined in the address space of the main processor, are 
normally used only by the display processor. They are the holding registers for the data 
obtained by DMA cycles. 
 
    SPR0DATA, SPR0DATB data registers for Sprite 0 
    SPR1DATA, SPR1DATB data registers for Sprite 1 
    SPR2DATA, SPR2DATB data registers for Sprite 2 
    SPR3DATA, SPR3DATB data registers for Sprite 3 
    SPR4DATA, SPR4DATB data registers for Sprite 4 
    SPR5DATA, SPR5DATB data registers for Sprite 5 
    SPR6DATA, SPR6DATB data registers for Sprite 6 
    SPR7DATA, SPR7DATB data registers for Sprite 7 
 
SUMMARY OF SPRITE COLOR REGISTERS 

 
Sprite data words are used to select the color of the sprite pixels from the system color 
register set as indicated in the following Tables. 
 
If the bit combinations from single sprites are as shown in Table 4-6, then the colors will 
be taken from the registers shown. 
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    Table 4-6: Color Registers for Single Sprites 

 

     SINGLE SPRITES              COLOR 

    Sprite       Value          Register 

 

    0 or 1        00            Not used * 

                  01               17 

                  10               18 

                  11               19 

 

    2 or 3        00            Not used * 

                  01               21 

                  10               22 

                  11               23 

 

    4 or 5        00            Not used * 

                  01               25 

                  10               26 

                  11               27 

 

    6 or 7        00            Not used * 

                  01               29 

                  10               30 

                  11               31 

 

* Selects transparent mode. 
 
If the bit combinations from attached sprites are as shown in Table 4-7, then the colors 
will be taken from the registers shown. 
 

                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Sprite Hardware 127 - 



    Table 4-7: Color Registers for Attached Sprites 

 

         ATTACHED SPRITES 

                          Color 

    Value                Register 

 

    0000         Selects transparent mode 

    0001                    17 

    0010                    18 

    0011                    19 

    0100                    20 

    0101                    21 

    0110                    22 

    0111                    23 

    1000                    24 

    1001                    25 

    1010                    26 

    1011                    27 

    1100                    28 

    1101                    29 

    1110                    30 

    1111                    31 

 

INTERACTIONS AMONG SPRITES AND OTHER OBJECTS 
Playfields share the display with sprites. Chapter 7, "System Control Hardware," shows 
how playfields can be given different video display priorities relative to the sprites and 
how playfields can collide with (overlap) the sprites or each other.                           
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CHAPTER 5 
 

AUDIO HARDWARE 
 

 
INTRODUCTION 
This chapter shows you how to directly access the audio hardware to produce sounds. The 
major topics in this chapter are: 
 
o A brief overview of how a computer produces sound. 
 

o How to produce simple steady and changing sounds and more complex ones. 
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o How to use the audio channels for special effects, wiring them for stereo sound if 
desired, or using one channel to modulate another. 
 
o How to produce quality sound within the system limitations. 

 
A section at the end of the chapter gives you values to use for creating musical notes on 
the equal-tempered musical scale. 
 
This chapter is not a tutorial on computer sound synthesis; a thorough description of 
creating sound on a computer would require a far longer document. The purpose here is 
to point the way and show you how to use the Amiga's features. Computer sound 

production is fun but complex, and it usually requires a great deal of trial and error on the 
part of the user. You use the instructions to create some sound and play it back, readjust 
the parameters and play it again, and so on. 
 
The following works are recommended for more information on creating music with 
computers: 
 
o Wayne A. Bateman, Introduction to Computer Music (New York: John Wiley and Sons, 
1980). 
 
o Hal Chamberlain, Musical Applicators of Microprocessors (Rochelle Park, New Jersey: 
Hayden, 1980). 
 
INTRODUCING SOUND GENERATION 

Sound travels through air to your ear drums as a repeated cycle of air pressure variations, 
or sound waves. Sounds can be represented as graphs that model how the air pressure 
varies over time. The attributes of a sound, as you hear it, are related to the shape of the 
graph. If the waveform is regular and repetitive, it will sound like a tone with steady 
pitch (highness or lowness), such as a single musical note. Each repetition of a waveform 
is called a cycle of the sound. If the waveform is irregular, the sound will have little or no 
pitch, like a loud clash or rushing water. How often the waveform repeats (its 
frequency) has an effect upon its pitch; sounds with higher frequencies are higher in 
pitch. Humans can hear sounds that have a frequency of between 20 and 20,000 cycles 
per second. The amplitude of the waveform (highest point on the graph), is related to the 
perceived loudness of the sound. Finally, the general shape of the waveform determines 
its tone quality, or timbre. Figure 5-1 shows a particular kind of waveform, called a sine 
wave, that represents one cycle of a simple tone. 
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Figure 5-1: Sine waveform 

 

 
 

 

In electronic sound recording and output devices, the attributes of sounds are represented 
by the parameters of amplitude and frequency. Frequency is the number of cycles per 
second, and the most common unit of frequency is the Hertz (Hz), which is 1 cycle per 
second. Large values, or high frequencies, are measured in kilohertz (KHz) or megahertz 
(MHz). 
 

Frequency is strongly related to the perceived pitch of a sound. When frequency 
increases, pitch rises. This relationship is exponential. An increase from 100 Hz to 200 Hz 
results in a large rise in pitch, but an increase from 1,000 Hz to 1,100 Hz is hardly 
noticeable. Musical pitch is represented in octaves. A tone that is one octave higher than 
another has a frequency twice as high as that of the first tone, and its perceived pitch is 
twice as high. 
 

The second parameter that defines a waveform is its amplitude. In an electronic circuit, 
amplitude relates to the voltage or current in the circuit. When a signal is going to a 
speaker, the amplitude is expressed in watts. Perceived sound intensity is measured in 
decibels (db). Human hearing has a range of about 120 db; 1 db is the faintest audible 
sound.  Roughly every 10 db corresponds to a doubling of sound, and 1 db is the smallest 
change in amplitude that is noticeable in a moderately loud sound. Volume, which is the 
amplitude of the sound signal which is output, corresponds logarithmically to decibel level. 

 
The frequency and amplitude parameters of a sine wave are completely independent. 
When sound is heard, however, there is interaction between loudness and pitch. Lower-
frequency sounds decrease in loudness much faster than high-frequency sounds. 
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The third attribute of a sound, timbre, depends on the presence or absence of overtones, 
or harmonics. Any complex waveform is actually a mixture of sine waves of different 
amplitudes, frequencies, and phases (the starting point of the waveform on the time 
axis). These component sine waves are called harmonics. A square waveform, for 

example, has an infinite number of harmonics. 
 
In summary, all steady sounds can be described by their frequency, overall amplitude, 
and relative harmonic amplitudes. The audible equivalents of these parameters are pitch, 
loudness, and timbre, respectively. Changing sound is a steady sound whose parameters 
change over time. 
 

In electronic production of sound, an analog device, such as a tape recorder, records 
sound waveforms and their cycle frequencies as a continuously variable representation of 
air pressure. The tape recorder then plays back the sound by sending the waveforms to 
an amplifier where they are changed into analog voltage waveforms. The amplifier sends 
the voltage waveforms to a loudspeaker, which translates them into air pressure 
vibrations that the listener perceives as sound. 
 
A computer cannot store analog waveform information. In computer production of sound, 
a waveform has to be represented as a finite string of numbers. This transformation is 
made by dividing the time axis of the graph of a single waveform into equal segments, 
each of which represents a short enough time so the waveform does not change a great 
deal. Each of the resulting points is called a sample. These samples are stored in memory, 
and you can play them back at a frequency that you determine. The computer feeds the 
samples to a digital-to-analog converter (DAC), which changes them into an analog 

voltage waveform. To produce the sound, the analog waveforms are sent first to an 
amplifier, then to a loudspeaker. 
 
Figure 5-2 shows an example of a sine wave, a square wave, and a triangle wave, along 
with a Table of samples for each. 
 
NOTE 
The illustrations are not to scale and there are fewer dots in the wave forms than there 
are samples in the Table. The amplitude axis values 127 and -128 represent the high and 
low limits on relative amplitude. 
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Figure 5-2: Digitized Amplitude Values 

 

 
 

         DIGITISED AMPLITUDE VALUES 

 

      TIME      SINE    SQUARE   TRIANGLE 

 

        0            0      100         0 

        1           39      100        20 

        2           75      100        40 

        3          103      100        60 

        4          121      100        80 

        5          127      100       100 

        6          121      100        80 

        7          103      100        60 

        8           75      100        40 

        9           39      100        20 

       10            0     -100         0 

       11          -39     -100       -20 

       12          -75     -100       -40 

       13         -103     -100       -60 

       14         -121     -100       -80 

       15         -127     -100      -100 

       16         -121     -100       -80 

       17         -103     -100       -60 

       18          -75     -100       -40 

       19          -39     -100       -20 

 

 

THE AMIGA SOUND HARDWARE 
The Amiga has four hardware sound channels. You can independently program each of the 
channels to produce complex sound effects. You can also attach channels so that one 
channel modulates the sound of another or combine two channels for stereo effects. 
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Each audio channel includes an eight-bit digital-to-analog converter driven by a direct 
memory access (DMA) channel. The audio DMA can retrieve two data samples during each 
horizontal video scan line. For simple, steady tones, the DMA can automatically play a 
waveform repeatedly; you can also program all kinds of complex sound effects. 

 
There are two methods of basic sound production on the Amiga – automatic (DMA) sound 
generation and direct (non-DMA) sound generation. When you use automatic sound 
generation, the system retrieves data automatically by direct memory access. 
 
FORMING AND PLAYING A SOUND 
 

This section shows you how to create a simple, steady sound and play it. Many basic 
concepts that apply to all sound generation on the Amiga are introduced in this section. 
 
To produce a steady tone, follow these basic steps: 
 
1. Decide which channel to use. 
 
2. Define the waveform and create the sample Table in memory. 
 
3. Set registers telling the system where to find the data and the length of the data. 
 
4. Select the volume at which the tone is to be played. 
 
5. Select the sampling period, or output rate of the data. 

 
6. Select an audio channel and start up the DMA. 
 
DECIDING WHICH CHANNEL TO USE 
The Amiga has four audio channels. Channels 0 and 3 are connected to the left-side 
stereo output jack. Channels 1 and 2 are connected to the right-side output jack. Select a 
channel on the side from which the output is to appear. 
 
CREATING THE WAVEFORM DATA 
The waveform used as an example in this section is a simple sine wave, which produces a 
pure tone. To conserve memory, you normally define only one full cycle of a waveform in 
memory.  For a steady, unchanging sound, the values at the waveform’s beginning and 
ending points and the trend or slope of the data at the beginning and end should be 
closely related. This ensures that a continuous repetition of the waveform sounds like a 

continuous stream of sound. 
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Sound data is organized as a set of eight-bit data items; each item is a sample from the 
waveform. Each data word retrieved for the audio channel consists of two samples. 
Sample values can range from -128 to +127. 
 

As an example, the data set shown below produces a close approximation to a sine wave. 
 
NOTE 
The data is stored in byte address order with the first digitized amplitude value at the 
lowest byte address, the second at the next byte address, and so on. Also, note that the 
first byte of data must start at a word-address boundary. This is because the audio DMA 
retrieves one word (16 bits) at a time and uses the sample it reads as two bytes of data. 

 
To use audio channel 0, write the address of "audiodata" into AUD0LC, where the audio 
data is organized as shown below. For simplicity, "AUDxLC" in the Table below stands for 
the combination of the two actual location registers (AUDxLCH and AUDxLCL). For the 
audio DMA channels to be able to retrieve the data, the data address to which AUDOLC 
points must be somewhere in chip RAM. 
 

 

             Table 5-1: Sample Audio Data Set for Channel 0 

 

  audiodata --->   AUD0LC *       100  98 

                   AUD0LC +2 **    92  83 

                   AUD0LC +4       71  56 

                   AUD0LC +6       38  20 

                   AUD0LC +8        0 -20 

                   AUD0LC +10     -38 -56 

                   AUD0LC +12     -71 -83 

                   AUD0LC +14     -92 -83 

                   AUD0LC +16    -100 -98 

                   AUD0LC +18     -92 -83 

                   AUD0LC +20     -71 -56 

                   AUD0LC +22     -38 -20 

                   AUD0LC +24       0  20 

                   AUD0LC +26      38  56 

                   AUD0LC +28      71  83 

                   AUD0LC +30      92  98 

 

NOTES 

 

*  Audio data is located on a word-address boundary. 

 

** AUD0LC stands for AUD0LCL and AUD0LCH. 
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TELLING THE SYSTEM ABOUT THE DATA 
In order to retrieve the sound data for the audio channel, the system needs to know 
where the data is located and how long (in words) the data is. 
 

The location registers AUDxLCH and AUDxLCL contain the high three bits and the low 
fifteen bits, respectively, of the starting address of the audio data. Since these two 
register addresses are contiguous, writing a long word into AUDxLCH moves the audio 
data address into both locations. The "x" in the register names stands for the number of 
the audio channel where the output will occur. The channels are numbered 0, 1, 2,and 3. 
 
These registers are location registers, as distinguished from pointer registers. You need to 

specify the contents of these registers only once; no resetting is necessary when you wish 
the audio channel to keep on repeating the same waveform. Each time the system 
retrieves the last audio word from the data area, it uses the contents of these location 
registers to again find the start of the data. Assuming the first word of data starts at 
location "audiodata" and you are using channel 0, here is how to set the location 
registers: 
 

WHERE0DATA: 

        LEA CUSTOM,a0         ; Base chip address... 

        LEA AUDIODATA,a1 

        MOVE.L a1,AUDOLCH(a0) ;Put address (32 bits) 

                              ; into location register. 

 

The length of the data is the number of samples in your waveform divided by 2, or the 
number of words in the data set. Using the sample data set above, the length of the data 

is 16 words. You write this length into the audio data length register for this channel. The 
length register is called AUDxLEN, where "x" refers to the channel number. You set the 
length register AUD0LEN to 16 as shown below. 
 

SETAUDOLENGTH: 

        LEA CUSTOM,a0             ; Base chip address 

        MOVE.W #16,AUD0LEN(a0)    ; Store the length... 

 

 

SELECTING THE VOLUME 
The volume you set here is the overall volume of all the sound coming from the audio 
channel.  The relative loudness of sounds, which will concern you when you combine 
notes, is determined by the amplitude of the wave form. There is a six-bit volume register 
for each audio channel. To control the volume of sound that will be output through the 

selected audio channel, you write the desired value into the register AUDxVOL, where "x" 
is replaced by the channel number. You can specify values from 64 to 0. These volume 
values correspond to decibel levels. At the end of this chapter is a Table showing the 
decibel value for each of the 65 volume levels. 
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For a typical output at volume 64, with maximum data values of -128 to 127, the voltage 
output is between +.4 volts and -.4 volts. Some volume levels and the corresponding 
decibel values are shown in Table 5-2. 
 

 

                        Table 5-2: Volume Values 

 

                VOLUME   DECIBEL   VALUE 

 

                 64        0      (maximum volume) 

                 48       -2.5 

                 32       -6.0 

                 16      -12.0    (12db down from the 

                                   volume at maximum level) 

 

For any volume setting from 64 to 0, you write the value into bits 5-0 of AUD0VOL. For 
example: 
 

SETAUDOVOLUME: 

         LEA CUSTOM,a0 

         MOVE.W #48,AUD0VOL(a0) 

 

The decibels are shown as negative values from a maximum of 0 because this is the way a 
recording device, such as a tape recorder, shows the recording level. Usually, the recorder 
has a dial showing 0 as the optimum recording level. Anything less than the optimum 
value is shown as a minus quantity. 
 

SELECTING THE DATA OUTPUT RATE 
The pitch of the sound produced by the waveform depends upon its frequency. To tell the 
system what frequency to use, you need to specify the sampling period. The sampling 
period specifies the number of system clock ticks, or timing intervals, that should elapse 
between each sample (byte of audio data) fed to the digital-to-analog converter in the 
audio channel. There is a period register for each audio channel. The value of the period 
register is used for count-down purposes; each time the register counts down to 0, 
another sample is retrieved from the waveform data set for output. In units, the period 
value represents clock ticks per sample. The minimum period value you should use is 124 
ticks per sample NTSC (123 PAL) and the maximum is 65535. These limits apply to both 
PAL and NTSC machines. For high-quality sound, there are other constraints on the 
sampling period (see the section called "Producing High-quality Sound"). 
 

NOTE 
A low period value corresponds to a higher frequency sound and a high period value 
corresponds to a lower frequency sound. 
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LIMITATIONS ON SELECTION OF SAMPLING PERIOD 
The sampling period is limited by the number of DMA cycles allocated to an audio channel. 
Each audio channel is allocated one DMA slot per horizontal scan line of the screen 
display. An audio channel can retrieve two data samples during each horizontal scan line. 

The following calculation gives the maximum sampling rate in samples per second. 
 
                2 samples/line * 262.5 frames/frame * 59.94 frames/second 

              = 31,469 samples/second 

 

The Figure of 31,469 is a theoretical maximum. In order to save buffers, the hardware is 
designed to handle 28,867 samples/second. The system timing interval is 279.365 

nanoseconds, or .279365 microseconds. The maximum sampling rate of 28,867 samples 
per second is 34.642 microseconds per sample (1/28,867 = .000034642). The formula for 
calculating the sampling period is: 
 

                sample interval     clock constant 

Period value  = ---------------  =  -------------- 

                clock interval      samples per second 

 

Thus, the minimum period value is derived by dividing 34.642 microseconds per sample 
by the number of microseconds per interval: 
 

                 34.642 microseconds/sample 

Maximum period = -------------------------- = 124 timing intervals/sample 

                 0.279365 microseconds/interval 

 

or: 
                 3,579,545 ticks/second 

Minimum period = ---------------------- =124 ticks/sample 

                  28,867 samples/second 

 

Therefore, a value of at least 124 must be written into the period register to assure that 
the audio system DMA will be able to retrieve the next data sample. If the period value is 

below 124, by the time the cycle count has reached 0, the audio DMA will not have had 
enough time to retrieve the next data sample and the previous sample will be reused. 
 
28,867 samples/second is also the maximum sampling rate for PAL systems. Thus, for 
PAL systems, a value of at least 123 ticks/sample must be written into the period register. 
 

                  CLOCK VALUES 

                   NTSC   PAL      UNITS 

 

Clock Constant   3579545 3546895   ticks per second 

Clock Interval  0.279365 0.281937  microseconds per interval 
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NOTE 
The Clock Interval is derived from the clock constant, where: 
 

 

                        1 

clock interval = -------------- 

                 clock constant 

 

then scale the result to microseconds. In all of these calculations "ticks" and "timing 
intervals" refer to the same thing. 
 
SPECIFYING THE PERIOD VALUE 

After you have selected the desired interval between data samples, you can calculate the 
value to place in the period register by using the period formula: 
 

                desired interval       clock constant 

Period value =  ----------------  =  ------------------ 

                 clock interval      samples per second 

 

As an example, say you wanted to produce a 1 KHz sine wave, using a Table of eight data 
samples (four data words) (see Figure 5-3). 
 

 

Figure 5-3: Example Sine Wave 
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Sampled Values:  0 

                90 

               127 

                90 

                 0 

               -90 

              -127 

               -90 

 

To output the series of eight samples at 1 KHz (1,000 cycles per second), each full cycle is 
output in 1/1000th of a second. Therefore, each individual value must be retrieved in 
1/8th of that time. This translates to 1,000 microseconds per waveform or 125 

microseconds per sample. To correctly produce this waveform, the period value should be: 
 

                  125 microseconds/sample 

Period value = ---------------------------- = 447 timing Intervals/sample 

              0.279365 microseconds/interval 

 

To set the period register, you must write the period value into the register AUDxPER, 

where "x" is the number of the channel you are using. For example, the following 
instruction shows how to write a period value of 447 into the period register for channel 0. 
 

SETAUDOPERIOD: 

              LEA    CUSTOM,a0 

              MOVE.W #447,AUD0PER(a0) 

 

To produce high-quality sound, avoiding aliasing distortion, you should observe the 
limitations on period values that are discussed in the section below called "Producing 
Quality Sound." 
 
For the relationship between period and musical pitch, see the section at the end of the 
chapter, which contains a listing of the equal-tempered musical scale. 
 

PLAYING THE WAVEFORM 
After you have defined the audio data location, length, volume and period, you can play 
the waveform by starting the DMA for that audio channel. This starts the output of sound. 
Once started, the DMA continues until you specifically stop it. Thus, the waveform is 
played over and over again, producing the steady tone. The system uses the value in the 
location registers each time it replays the waveform. 
 
For any audio DMA to occur (or any other DMA, for that matter), the DMAEN bit in 
DMACON must be set. When both DMAEN and AUDxEN are set, the DMA will start for 
channel x. All these bits and their meanings are shown in Table 5-3. 
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              Table 5-3: DMA and Audio Channel Enable Bits 

 

                        DMACON REGISTER 

 

             Bit    Name          Function 

 

              15   SET/CLR   When this bit is written as a 1, it 

                             sets any bit in DMACONW for which 

                             the corresponding bit position is 

                             also a 1, leaving all other bits alone. 

 

               9   DMAEN     Only while this bit is a 1 can 

                             any direct memory access occur. 

 

               3   AUD3EN    Audio channel 3 enable. 

 

               2   AUD2EN    Audio channel 2 enable. 

 

               1   AUD1EN    Audio channel 1 enable. 

 

               0   AUD0EN    Audio channel 0 enable. 

 

For example, if you are using channel 0, then you write a 1 into bit 9 to enable DMA and a 
1 into bit 0 to enable the audio channel, as shown below. 
 

BEGINCHAN0: 

            LEA    CUSTOM,a0 

            MOVE.W #(DMAF_SETCLR!DMAF_AUD0!DMAF_MASTER),DMACON(a0) 

 

 

STOPPING THE AUDIO DMA 
You can stop the channel by writing a 0 into the AUDxEN bit at any time. However, you 
cannot resume the output at the same point in the waveform by just writing a 1 in the bit 
again. Enabling an audio channel almost always starts the data output again from the top 
of the list of data pointed to by the location registers for that channel. If the channel is 
disabled for a very short time (less than two sampling periods) it may stay on and thus 
continue from where it left off. 
 
The following example shows how to stop audio DMA for one channel. 
 

STOPAUDCHAN0: 

      LEA    CUSTOM,a0 

      MOVE.W #(DMAF_AUD0),DMACON(a0) 

 

                         - 
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SUMMARY 
These are the steps necessary to produce a steady tone: 
 
1. Define the waveform. 

 
2. Create the data set containing the pairs of data samples (data words). Normally, a data 
set contains the definition of one waveform. 
 
3. Set the location registers: 
 
           AUDxLCH (high three bits) 

           AUDxLCL (low fifteen bits) 
 
4. Set the length register, AUDxLEN, to the number of data words to be retrieved before 
starting at the address currently in AUDxLC. 
 
5. Set the volume register, AUDxVOL. 
 
6. Set the period register, AUDxPER 
 
7. Start the audio DMA by writing a 1 into bit 9, DMAEN, along with a 1 in the SET/CLR bit 
and a 1 in the position of the AUDxEN bit of the channel or channels you want to start. 
 
EXAMPLE 
In this example, which gathers together all of the program segments from the preceding 

sections, a sine wave is played through channel 0. The example assumes exclusive access 
to the Audio hardware, and will not work directly in a multitasking environment. 
 

MAIN: 

       LEA CUSTOM,a0         ; Custom chip base address 

       LEA SINEDATA(pc),a1   ; Address of data to 

                             ; audio location register 0 

 

WHEREODATA: 

       MOVE.L a1,AUD0LCH(a0) ; The 68000 writes 

                             ; this as though it were 

                             ; a 32-bit register at the 

                             ; low-bits location 

                             ; (common to all locations 

                             ; and pointer registers 

                             ; in the system). 

 

SETAUDOLENGTH: 

       MOVE.W #4,AUD0LEN(a0) ;Set length in words 
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SETAUDOVOLUME: 

       MOVE.W #64,AUD0VOL(a0) ;Use maximum volume 

 

SETAUDOPERIOD: 

       MOVE.W #447,AUD0PER(a0) 

 

BEGINCHAN0: 

       MOVE.W #(DMAF_SETCLR!DMAF_AUD0!DMAF_MASTER),DMACON(a0) 

       RTS                   ; Return to main code 

       DS.W 0                ; Be sure word-aligned 

 

SINEDATA: 

       DC.B 0, 90, 127, 90, 0, -90, -127, -90 

 

       END 

 

 

PRODUCING COMPLEX SOUNDS 
 

In addition to simple tones, you can create more complex sounds, such as different 
musical notes joined into a one-voice melody, different notes played at the same time, or 
modulated sounds. 
 
JOINING TONES 
Tones are joined by writing the location and length registers, starting the audio output, 
and rewriting the registers in preparation for the next audio waveform that you wish to 
connect to the first one. This is made easy by the timing of the audio interrupts and the 
existence of back-up registers. The location and length registers are read by the DMA 
channel before audio output begins. 
The DMA channel then stores the values in back-up registers. Once the original registers 
have been read by the DMA channel, you can change their values without disturbing the 
operation you started with the original register contents. Thus, you can write the contents 
of these registers, start an audio output, and then rewrite the registers in preparation for 

the next waveform you want to connect to this one. 
 
Interrupts occur immediately after the audio DMA channel has read the location and 
length registers and stored their values in the back-up registers. Once the interrupt has 
occurred, you can rewrite the registers with the location and length for the next waveform 
segment. This combination of back-up registers and interrupt timing lets you keep one 
step ahead of the audio DMA channel, allowing your sound output to be continuous and 

smooth. 
 
If you do not rewrite the registers, the current waveform will be repeated. Each time the 
length counter reaches zero, both the location and length registers are reloaded with the 
same values to continue the audio output. 
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EXAMPLE 
This example details the system audio DMA action in a step-by-step fashion. 
 
Suppose you wanted to join together a sine and a triangle waveform, end-to-end, for a 

special audio effect, alternating between them. The following sequence shows the action 
of your program as well as its interaction with the audio DMA system. The example 
assumes that the period, volume, and length of the data set remains the same for the 
sine wave and the triangle wave. 
 
INTERRUPT PROGRAM 
 

If (wave = triangle) 
             write AUD0LCL with address of sine wave data. 
 
Else if (wave = sine) 
             write AUD0LCL with address of triangle wave data. 
 
 
MAIN PROGRAM 
 
1. Set up volume, period, and length. 
2. Write AUD0LCL with address of sine wave data. 
3. Start DMA. 
4. Continue with something else. 
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SYSTEM RESPONSE 
 
As soon as DMA starts, 
 

a. Copy to "back-up" length register from AUDOLEN. 
 
b. Copy to "back-up'' location register from AUDOLCL (will be used as a pointer showing 
current data word to fetch). 
 
c. Create an interrupt for the 68000 saying that it has completed retrieving working copies 
of length and location registers. 

 
d. Start retrieving audio data each allocated DMA time slot. 
 
 
PLAYING MULTIPLE TONES AT THE SAME TIME 
You can play multiple tones either by using several channels independently or by 
summing the samples in several data sets, playing the summed data sets through a single 
channel. 
 
Since all four audio channels are independently programmable, each channel has its own 
data set; thus a different tone or musical note can be played on each channel. 
 
MODULATING SOUND 
To provide more complex audio effects, you can use one audio channel to modulate 

another. This increases the range and type of effects that can be produced. You can 
modulate a channel's frequency or amplitude, or do both types of modulation on a channel 
at the same time. 
 
Amplitude modulation affects the volume of the waveform. It is often used to produce 
vibrato or tremolo effects. Frequency modulation affects the period of the waveform. 
Although the basic waveform itself remains the same, the pitch is increased or decreased 
by frequency modulation. 
 
The system uses one channel to modulate another when you attach two channels. The 
attach bits in the ADKCON register control how the data from an audio channel is 
interpreted (see the Table below). Normally, each channel produces sound when it is 
enabled. If the "attach" bit for an audio channel is set, that channel ceases to produce 
sound and its data is used to modulate the sound of the next higher-numbered channel. 

When a channel is used as a modulator, the words in its data set are no longer treated as 
two individual bytes. Instead, they are used as "modulator" words. The data words from 
the modulator channel are written into the corresponding registers of the modulated 
channel each time the period register of the modulator channel times out. 
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To modulate only the amplitude of the audio output, you must attach a channel as a 
volume modulator. Define the modulator channel's data set as a series of words, each 
containing volume information in the following format: 
 

        BITS   FUNCTION 

 

       15 - 7   Not used 

        6 - 0   Volume information, V6-V0 

 

To modulate only the frequency, you must attach a channel as a period modulator. Define 
the modulator channel's data set as a series of words, each containing period information 
in the following format: 
 

        BITS   FUNCTION 

 

       15 - 0   Period information, P15-P0 

 

If you want to modulate both period and volume on the same channel, you need to attach 
the channel as both a period and volume modulator. For instance, if channel 0 is used to 
modulate both the period and frequency of channel 1, you set two attach bits - bit 0 to 
modulate the volume and bit 4 to modulate the period. When period and volume are both 
modulated, words in the modulator channel's data set are defined alternately as volume 
and period information. 
 
The sample set of data in Table 5-4 shows the differences in interpretation of data when a 
channel is used directly for audio, when it is attached as volume modulator, when it is 

attached as a period modulator, and when it is attached as a modulator of both volume 
and period. 
 

              Table 5-4: Data Interpretation in Attach Mode 

 

       INDEPENDENT        MODULATING 

DATA     (NOT                BOTH             MODULATING       MODULATING 

WORDS   MODULATING)     PERIOD AND VOLUME      PERIOD ONLY      VOL ONLY 

 

Word 1 |data|data|    |vol for other channel|    |period|       |volume| 

 

Word 2 |data|data|    |period for other channel| |period|       |volume| 

 

Word 3 |data|data|    |volume for other channel| |period|       |volume| 

 

Word 4 |data|data|    |period for other channel| |period|       |volume| 
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The lengths of the data sets of the modulator and the modulated channels are completely 
independent. 
 
Channels are attached by the system in a predetermined order, as shown in Table 5-5. To 

attach a channel as a modulator, you set its attach bit to 1. If you set either the volume 
or period attach bits for a channel, that channel's audio output will be disabled; the 
channel will be attached to the next higher channel, as shown in Table 5-5. Because an 
attached channel always modulates the next higher numbered channel, you cannot attach 
channel 3. Writing a 1 into channel 3's modulate bits only disables its audio output. 
 

              Table 5-5: Channel Attachment for Modulation 

 

                            ADKCON REGISTER 

 

             Bit    Name    Function 

 

               7   ATPER3   Use audio channel 3 to modulate nothing 

                            (disables audio output of channel 3) 

 

               6   ATPER2   Use audio channel 2 to modulate period 

                            of channel 3 

 

               5   ATPER1   Use audio channel 1 to modulate period 

                            of channel 2 

 

               4   ATPER0   Use audio channel 0 to modulate period 

                            of channel 1 

 

               3   ATVOL3   Use audio channel 3 to modulate nothing 

                            (disables audio output of channel 3) 

 

               2   ATVOL2   Use audio channel 2 to modulate volume 

                            of channel 3 

 

               1   ATVOL1   Use audio channel 1 to modulate volume 

                            of channel 2 

 

               0   ATVOL0   Use audio channel 0 to modulate volume 

                            of channel 1 
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PRODUCING HIGH-QUALITY SOUND 
 
When trying to create high-quality sound, you need to consider the following factors: 
 

o Waveform transitions. 
 
o Sampling rate. 
 
o Efficiency. 
 
o Noise reduction. 

 
o Avoidance of aliasing distortion. 
 
o Limitations of the low pass filter. 
 
MAKING WAVEFORM TRANSITIONS 
To avoid unpleasant sounds when you change from one waveform to another, you need to 
make the transitions smooth. You can avoid "clicks" by making sure the waveforms start 
and end at approximately the same value. You can avoid "pops" by starting a waveform 
only at a zero-crossing point. You can avoid "thumps" by arranging the average amplitude 
of each wave to be about the same value. The average amplitude is the sum of the bytes 
in the waveform divided by the number of bytes in the waveform. 
 
SAMPLING RATE 

If you need high precision in your frequency output, you may find that the frequency you 
wish to produce is somewhere between two available sampling rates, but not close 
enough to either rate for your requirements. In those cases, you may have to adjust the 
length of the audio data Table in addition to altering the sampling rate. 
 
For higher frequencies, you may also need to use audio data Tables that contain more 
than one full cycle of the audio waveform to reproduce the desired frequency more 
accurately, as illustrated in Figure 54. 
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Figure 5.4: Waveform with Multiple Cycles 

 

 
 

 

EFFICIENCY 
A certain amount of overhead is involved in the handling of audio DMA. If you are trying 
to produce a smooth continuous audio synthesis, you should try to avoid as much of the 
system control overhead as possible. Basically, the larger the audio buffer you provide to 
the system, the less often it will need to interrupt to reset the pointers to the top of the 
next buffer and, coincidentally, the lower the amount of system interaction that will be 

required. If there is only one waveform buffer, the hardware automatically resets the 
pointers, so no software overhead is used for resetting them. 
 
The "Joining Tones" section illustrated how you could join "ends" of tones together by 
responding to interrupts and changing the values of the location registers to splice tones 
together. If your system is heavily loaded, it is possible that the response to the interrupt 
might not happen in time to assure a smooth audio transition. Therefore, it is advisable to 

utilize the longest possible audio Table where a smooth output is required. This takes 
advantage of the audio DMA capability as well as minimizing the number of interrupts to 
which the 68000 must respond. 
 

                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Audio Hardware 149 - 



NOISE REDUCTION 
To reduce noise levels and produce an accurate sound, try to use the full range of -128 to 
127 when you represent a waveform. This reduces how much noise (quantization error) 
will be added to the signal by using more bits of precision. Quantization noise is caused by 

the introduction of round-off error. If you are trying to reproduce a signal, such as a sine 
wave, you can represent the amplitude of each sample with only so many digits of 
accuracy. The difference between the real number and your approximation is round-off  
error, or noise. 
 
By doubling the amplitude, you create half as much noise because the size of the steps of 
the wave form stays the same and is therefore a smaller fraction of the amplitude. 

 
In other words, if you try to represent a waveform using, for example, a range of only +3 
to -3, the size of the error in the output would be considerably larger than if you use a 
range of +127 to -128 to represent the same signal. Proportionally, the digital value used 
to represent the waveform amplitude will have a lower error. As you increase the number 
of possible sample levels, you decrease the relative size of each step and, therefore, 
decrease the size of the error. 
 
To produce quiet sounds, continue to define the waveform using the full range, but adjust 
the volume. This maintains the same level of accuracy (signal-to-noise ratio) for quiet 
sounds as for loud sounds. 
 
ALIASING DISTORTION 
When you use sampling to produce a waveform, a side effect is caused when sampling 

rate "beats" or combines with the frequency you wish to produce. This produces two 
additional frequencies, one at the sampling rate plus the desired frequency and the other 
at the sampling rate minus the desired frequency. This phenomenon is called aliasing 
distortion. 
 
Aliasing distortion is eliminated when the sampling rate exceeds the output frequency by 
at least 7 KHz. This puts the beat frequency outside the range of the low-pass filter, 
cutting off the undesirable frequencies. Figure 5-5 shows a frequency domain plot of the 
anti-aliasing low-pass filter used in the system. 
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        ^ 

       /|\ 

        | 

        | 

   0 db |____ 

        |    \ 

        |     \    Filter response 

        |      \ 

 -30 db |_______\_________________________________\ 

              |     |     |     |     |     |     / 

             05    10    15    20    25    30 

                             KHz 

 

          Filter passes all frequencies below about 5KHz 

 

 

          Figure 5-5: Frequency Domain Plot of Low-Pass Filter 

 

Figure 5-6 shows that it is permissible to use a 12 KHz sampling rate to produce a 4 KHz 
waveform. Both of the beat frequencies are outside the range of the filter, as shown in 
these calculations: 
 
                                 12+4= 16KHz 
                                 12-4=  8KHz 
 

 

        ^ Filter response 

       /|\ 

        |           12 KHz sampling frequency 

        |             | 

   0 db |____         | 

        |    \  Diff. |    Sum 

        |     \   |   |     | 

        |   4| \  |   |     | 

 -30 db |____|__\_|___|_____|_____________________\ 

            / |     |     |     |     |     |     / 

           / 05    10    15    20    25    30 

          /                  KHz 

         / 

     Desired output frequency 

 

 

         Figure 5-6: Noise-free Output (No Aliasing Distortion) 

 

You can see in Figure 5-7 that is unacceptable to use a 10 KHz sampling rate to produce a 
4 KHz waveform. One of the beat frequencies (10 - 4) is within the range of the filter, 
allowing some of that undesirable frequency to show up in the audio output. 
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        ^ Filter response 

       /|\ 

        |         10 KHz sampling frequency 

        |           | 

   0 db |____       | 

        |    \Diff. |   Sum 

        |     \  |  |    | 

        |   4| \ |  |    | 

 -30 db |____|__\|__|____|______________________\ 

            / |     |     |     |     |     |   / 

           / 05    10    15    20    25    30 

          /                  KHz 

         / 

     Desired output frequency 

 

 

                  Figure 5-7: Some Aliasing Distortion 

 

All of this gives rise to the following equation, showing that the sampling frequency must 
exceed the output frequency by at least 7 KHz, so that the beat frequency will be above 
the cut-off range of the anti-aliasing filter: 
 
    Minimum sampling rate = highest frequency component + 7 KHz 
 
The frequency component of the equation is stated as "highest frequency component" 
because you may be producing a complex waveform with multiple frequency elements, 

rather than a pure sine wave. 
 
LOW-PASS FILTER 
The system includes a low-pass filter that eliminates aliasing distortion as described 
above. This filter becomes active around 4 KHz and gradually begins to attenuate (cut off) 
the signal. Generally, you cannot clearly hear frequencies higher than 7 KHz. Therefore, 
you get the most complete frequency response in the frequency range of 0 - 7 KHz. If you 
are making frequencies from 0 to 7 KHz, you should select a sampling rate no less 
than 14 KHz, which corresponds to a sampling period in the range 124 to 256. 
 
At a sampling period around 320, you begin to lose the higher frequency values between 
0 KHz and 7 KHz, as shown in Table 5-6. 
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           Table 5-6: Sampling Rate and Frequency Relationship 

 

                     Sampling     Sampling     Maximum Output 

                      Period      Rate (KHz)   Frequency (KHz) 

 

Maximum sampling rate  124          29              7 

 

Minimum sampling rate  256          14              7 

 for 7 KHz output 

 

Sampling rate too low  320          11              4 

 for 7 KHz output 

 

In A2000s with 2 layer motherboards and later AS00 models there is a control bit that 
allows the audio output to bypass the low pass filter. This control bit is the same output 
bit of the 8520 CIA that controls the brightness of the red "power" LED. Bypassing the 
filter allows for improved sound in some applications, but an external filter with an 
appropriate cut-off frequency may be required. 
 
USING DIRECT (NON-DMA) AUDIO OUTPUT 
 
It is possible to create sound by writing audio data one word at a time to the audio output 
addresses, instead of setting up a list of audio data in memory. This method of controlling 
the output is more processor-intensive and is therefore not recommended. 
 
To use direct audio output, do not enable the DMA for the audio channel you wish to use; 

this changes the timing of the interrupts. The normal interrupt occurs after a data address 
has been read; in direct audio output, the interrupt occurs after one data word has been 
output. 
 
Unlike in the DMA-controlled automatic data output, in direct audio output, if you do not 
write a new set of data to the output addresses before two sampling intervals have 
elapsed, the audio output will cease changing. The last value remains as an output of the 
digital-to-analog converter. 
 
The volume and period registers are set as usual. 
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THE EQUAL-TEMPERED MUSICAL SCALE 
Table 5-7 gives a close approximation of the equal-tempered scale over one octave when 
the sample size is 16 bytes. The "Period" column gives the period count you enter into the 
period register. The length register AUDxLEN should be set to 8 (16 bytes = 8 words). The 

sample should represent one cycle of the waveform. 
 

          Table 5-7: Equal-tempered Octave for a 16 Byte Sample 

 

   NTSC    PAL            Ideal    Actual NTSC  Actual PAL 

  Period  Period  Note  Frequency   Frequency   Frequency 

 

   254     252     A      880.0       880.8        879.7 

   240     238     A#     932.3       932.2        931.4 

   226     224     B      987.8       989.9        989.6 

   214     212     C     1046.5      1045.4       1045.7 

   202     200     C#    1108.7      1107.5       1108.4 

   190     189     D     1174.7      1177.5       1172.9 

   180     178     D#    1244.5      1242.9       1245.4 

   170     168     E     1318.5      1316.0       1319.5 

   160     159     F     1396.9      1398.3       1394.2 

   151     150     F#    1480.0      1481.6       1477.9 

   143     141     G     1568.0      1564.5       1572.2 

   135     133     G#    1661.2      1657.2       1666.8 

 

The Table above shows the period values to use with a 16 byte sample to make tones in 
the second octave above middle C. To generate the tones in the lower octaves, there are 
two methods you can use, doubling the period value or doubling the sample size. 
 
When you double the period, the time between each sample is doubled so the sample 
takes twice as long to play. This means the frequency of the tone generated is cut in half 
which gives you the next lowest octave. Thus, if you play a C with a period value of 214, 
then playing the same sample with a period value of 428 will play a C in the next lower 
octave. 

 
Likewise, when you double the sample size, it will take twice as long to play back the 
whole sample and the frequency of the tone generated will be in the next lowest octave. 
Thus, if you have an 8 byte sample and a 16 byte sample of the same waveform played at 
the same speed, the 16 byte sample will be an octave lower. 
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A sample for an equal-tempered scale typically represents one full cycle of a note. To 
avoid aliasing distortion with these samples you should use period values in the range 
124-256 only. Periods from 124-256 correspond to playback rates in the range 14-28K 
samples per second which makes the most effective use of the Amiga's 7 kHz cut-off filter 

to prevent noise. To stay within this range you will need a different sample for each 
octave. 
 
If you cannot use a different sample for each octave, then you will have to adjust the 
period value over its full range 124-65536. This is easier for the programmer but can 
produce undesirable high-frequency noise in the resulting tone. Read the section called 
"Aliasing Distortion" for more about this. 

 
The values in Table 5-7 were generated using the formula shown below. To calculate the 
tone generated with a given sample size and period use: 
 

                Clock Constant        3579545 

    Frequency = --------------    =   -------  = 880.8hz 

              Sample Bytes*Period     16*Period 

 

The clock constant in an NTSC system is 3579545 ticks per second. In a PAL system, the 
clock constant is 3546895 ticks per second. Sample bytes is the number of bytes in one 
cycle of the waveform sample. (The clock constant is derived from dividing the system 
clock value by 2. The value will vary when using an external system clock, such as a 
genlock.) 
 

Using the formula above you can generate the values needed for the even-tempered scale 
for any arbitrary sample. Table 5-8 gives a close approximation of a five octave even 
tempered-scale using five samples. The values were derived using the formula above. 
Notice that in each octave period values are the same but the sample size is halved. The 
samples listed represent a simple triangular wave form. 
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               Table 5-8: Five Octave Even-tempered Scale 

 

   NTSC    PAL            Ideal    Actual NTSC  Actual PAL 

  Period  Period  Note  Frequency   Frequency   Frequency 

 

   254     252     A      55.00       55.05       54.98 

   240     238     A#     58.27       58.26       58.21 

   226     224     B      61.73       61.87       61.85 

   214     212     C      65.40       65.34       65.35 

   202     200     C#     69.29       69.22       69.27 

   190     189     D      73.41       73.59       73.30 

   180     178     D#     77.78       77.68       77.83 

   170     168     E      82.40       82.25       82.47 

   160     159     F      87.30       87.39       87.13 

   151     150     F#     92.49       92.60       92.36 

   143     141     G      98.00       97.78       98.26 

   135     133     G#    103.82      103.57      104.17 

 

Sample size = 256 bytes, AUDxLEN = 128 

 

   254     252     A     110.00      110.10       109.96 

   240     238     A#    116.54      116.52       116.43 

   226     224     B     123.47      123.74       123.70 

   214     212     C     130.81      130.68       130.71 

   202     200     C#    138.59      138.44       138.55 

   190     189     D     146.83      147.18       146.61 

   180     178     D#    155.56      155.36       155.67 

   170     168     E     164.81      164.50       164.94 

   160     159     F     174.61      174.78       174.27 

   151     150     F#    184.99      185.20       184.73 

   143     141     G     196.00      195.56       196.52 

   135     133     G#    207.65      207.15       208.35 

 

Sample size = 128 bytes, AUDxLEN = 64 

 

   254     252     A     220.00      220.20       219.92 

   240     238     A#    233.08      233.04       232.86 

   226     224     B     246.94      247.48       247.41 

   214     212     C     261.63      261.36       261.42 

   202     200     C#    277.18      276.88       277.10 

   190     189     D     293.66      294.37       293.23 

   180     178     D#    311.13      310.72       311.35 

   170     168     E     329.63      329.00       329.88 

   160     159     F     349.23      349.56       348.55 

   151     150     F#    369.99      370.40       369.47 

   143     141     G     392.00      391.12       393.05 

   135     133     G#    415.30      414.30       416.70 

 

Sample size = 64 bytes, AUDxLEN = 32 
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   NTSC    PAL            Ideal    Actual NTSC  Actual PAL 

  Period  Period  Note  Frequency   Frequency   Frequency 

 

   254     252     A      440.0       440.4       439.8 

   240     238     A#    466.16      466.09       465.72 

   226     224     B     493.88      494.96       494.82 

   214     212     C     523.25      522.71       522.83 

   202     200     C#    554.37      553.77       554.20 

   190     189     D     587.33      588.74       586.46 

   180     178     D#    622.25      621.45       622.70 

   170     168     E     659.26      658.00       659.76 

   160     159     F     698.46      699.13       697.11 

   151     150     F#    739.99      740.80       738.94 

   143     141     G     783.99      782.24       786.10 

   135     133     G#    830.61      828.60       833.39 

 

Sample size = 32 bytes, AUDxLEN = 16 

 

   254     252     A      880.0       880.8       879.7 

   240     238     A#     932.3       932.2       931.4 

   226     224     B      987.8       989.9       989.6 

   214     212     C     1046.5      1045.4       1045.7 

   202     200     C#    1108.7      1107.5       1108.4 

   190     189     D     1174.7      1177.5       1172.9 

   180     178     D#    1244.5      1242.9       1245.4 

   170     168     E     1318.5      1316.0       1319.5 

   160     159     F     1396.9      1398.3       1394.2 

   151     150     F#    1480.0      1481.6       1477.9 

   143     141     G     1568.0      1564.5       1572.2 

   135     133     G#     661.2      1657.2       1666.8 

 

Sample size = 16 bytes, AUDxLEN = 8 
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                             256 BYTE SAMPLE 

 

   0    2    4    6    8   10   12   14   16   18   20   22   24   26 

  28   30   32   34   36   38   40   42   44   46   48   50   52   54 

  56   58   60   62   64   66   68   70   72   74   76   78   80   82 

  84   86   88   90   92   94   96   98  100  102  104  106  108  110 

 112  114  116  118  120  122  124  126  128  126  124  122  120  118 

 116  114  112  110  108  106  104  102  100   98   96   94   92   90 

  88   86   84   82   80   78   76   74   72   70   68   66   64   62 

  60   58   56   54   52   50   48   46   44   42   40   38   36   34 

  32   30   28   26   24   22   20   18   16   14   12   10    8    6 

   4    2    0   -2   -4   -6   -8  -10  -12  -14  -16  -18  -20  -22 

 -24  -26  -28  -30  -32  -34  -36  -38  -40  -42  -44  -46  -48  -50 

 -52  -54  -56  -58  -60  -62  -64  -66  -68  -70  -72  -74  -76  -78 

 -80  -82  -84  -86  -88  -90  -92  -94  -96  -98 -100 -102 -104 -106 

-108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -127 -126 -124 -122 

-120 -118 -116 -114 -112 -110 -108 -106 -104 -102 -100  -98  -96  -94 

 -92  -90  -88  -86  -84  -82  -80  -78  -76  -74  -72  -70  -68  -66 

 -64  -62  -60  -58  -56  -54  -52  -50  -48  -46  -44  -42  -40  -38 

 -36  -34  -32  -30  -28  -26  -24  -22  -20  -18  -16  -14  -12  -10 

  -8   -6   -4   -2 

 

                             128 BYTE SAMPLE 

 

   0    4    8   12   16   20   24   28   32   36   40   44   48   52 

  56   60   64   68   72   76   80   84   88   92   96  100  104  108 

 112  116  120  124  128  124  120  116  112  108  104  100   96   92 

  88   84   80   76   72   68   64   60   56   52   48   44   40   36 

  32   28   24   20   16   12    8    4    0    4    8   12   16   20 

  24   28   32   36   40   44   48   52   56   60   64   68   72   76 

  80   84   88   92   96  100  104  108  112  116  120  124 -127 -124 

-120 -116 -112 -108 -104 -100  -96  -92  -88  -84  -80  -76  -72  -68 

 -64  -60  -56  -52  -48  -44  -40  -36  -32  -28  -24  -20  -16  -12 

  -8   -4 

 

                             64 BYTE SAMPLE 

 

   0    8   16   24   32   40   48   56   64   72   80   88   96  104 

 112  120  128  120  112  104   96   88   80   72   64   56   48   40 

  32   24   16    8    0   -8  -16  -24  -32  -40  -48  -56  -64  -72 

 -80  -88  -96 -104 -112 -120 -127 -120 -112 -104  -96  -88  -80  -72 

 -64  -56  -48   40  -32  -24  -16   -8 

 

                             32 BYTE SAMPLE 

 

   0   16   32   48   64   80   96  112  128  112   96   80   64   48 

  32   16    0  -16  -32  -48  -64  -80  -96 -112 -127 -112  -96  -80 

 -64    4    8  -32  -16 

 

                             16 BYTE SAMPLE 

 

   0   32   64   96  128   96   64   32    0  -32  -64  -96 -127  -96 

 -64  -32 
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DECIBEL VALUES FOR VOLUME RANGES 
 
Table 5-9 provides the corresponding decibel values for the volume ranges of the Amiga 
system. 
 

 

               Table 5-9: Decibel Values and Volume Ranges 

 

   Volume  Decibel Value     Volume  Decibel Value 

 

     64         0.0            32        -6.0 

     63        -0.1            31        -6.3 

     62        -0.3            30        -6.6 

     61        -0.4           129        -6.9 

     60        -0.6            28        -7.2 

     59        -0.7            27        -7.5 

     58        -0.9            26        -7.8 

     57        -1.0            25        -8.2 

     56        -1.2            24        -8.5 

     55        -1.3            23        -8.9 

     54        -1.5            22        -9.3 

     53        -1.6            21        -9.7 

     52        -1.8            20       -10.1 

     51        -2.0            19       -10.5 

     50        -2.1            18       -11.0 

     49        -2.3            17       -11.5 

     48        -2.5            16       -12.0 

     47        -2.7            15       -12.6 

     46        -2.9            14       -13.2 

     45        -3.1            13       -13.8 

     44        -3.3            12       -14.5 

     43        -3.5            11       -15.3 

     42        -3.7            10       -16.1 

     41        -3.9             9       -17.0 

     40         4.1             8       -18.1 

     39         4.3             7       -19.2 

     38         4.5             6       -20.6 

     37         4.8             5       -22.1 

     36        -5.0             4       -24.1 

     35        -5.2             3       -26.6 

     34        -5.5             2       -30.1 

     33        -5.8             1       -36.1 

                                0    Minus infinity 
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THE AUDIO STATE MACHINE 
 
For an explanation of the various states, refer to Figure 5-8. There is one audio state 
machine for each channel. The machine has eight states and is clocked at the clock 

constant rate (3.58 MHz NTSC). Three of the states are basically unused and just transfer 
back to the idle (000) state. One of the paths out of the idle state is designed for 
interrupt-driven operation (processor provides the data), and the other path is designed 
for DMA-driven operation (the "Agnus" special chip provides the data). 
 
In interrupt-driven operation, transfer to the main loop (states 010 and 011) occurs 
immediately after data is written by the processor. In the 010 state the upper byte is 

output, and in the 011 state the lower byte is output. Transitions such as 010011010 
occur whenever the period counter counts down to one. The period counter is reloaded at 
these transitions. As long as the interrupt is cleared by the processor in time, the machine 
remains in the main loop. Otherwise, it enters the idle state. Interrupts are generated on 
every word transition (011010). 
 
In DMA-driven operation, transition to the 001 state occurs and DMA requests are sent to 
Agnus as soon as DMA is turned on. Because of pipelining in Agnus, the first data word 
must be thrown away. State 101 is entered as soon as this word arrives; a request for the 
next data word has already gone out. When the data arrives, state 010 is entered and the 
main loop continues until the DMA is turned off. The length counter counts down once 
with each word that comes in. When it finishes, a DMA restart request goes to Agnus 
along with the regular DMA request. This tells Agnus to reset the pointer to the beginning 
of the Table of data. Also, the length counter is reloaded and an interrupt request goes 

out soon after the length counter finishes (counts to one). The request goes out just as 
the last word of the waveform starts its output. 
 
DMA requests and restart requests are transferred to Agnus once each horizontal line, and 
the data comes back about 14 clock cycles later (the duration of a clock cycle is 280 ns). 
 
In attach mode, things run a little differently. In attach volume, requests occur as they do 
in normal operation (on the 011010 transition). In attach period, a set of requests occurs 
on the O10011 transition. When both attach period and attach volume are high, requests 
occur on both transitions. 
 
If the sampling rate is set much higher than the normal maximum sampling rate 
(approximately 29 KHz), the two samples in the buffer register will be repeated. If the 
filter on the Amiga is bypassed and the volume is set to the maximum ($40), this feature 

can be used to make modulated carriers up to 1.79 MHz. The modulation is placed in the 
memory map, with plus values in the even bytes and minus values in the odd bytes. 
 
The symbols used in the state diagram are explained in the following list. Upper-case 
names indicate external signals; lower-case names indicate local signals. 
 

                          

 

 

 

 

 

 

 

 

 

 

 

- 160 Audio Hardware - 



AUDxON     DMA on "x" indicates channel number (signal from DMACON). 

 

AUDxIP     Audio interrupt pending (input to channel from interrupt 

           circuitry). 

 

AUDxIR     Audio interrupt request (output from channel to interrupt 

           circuitry) 

 

intreq1    Interrupt request that combines with intreq2 to form AUDxIR 

 

intreq2    Prepare for interrupt request. Request comes out after the 

           next 011-->010 transition in normal operation. 

 

AUDxDAT    Audio data load signal. Loads 16 bits of data to audio channel. 

 

AUDxDR     Audio DMA request to Agnus for one word of data. 

 

AUDxDSR    Audio DMA request to Agnus to reset pointer to start of block. 

 

dmasen     Restart request enable. 

 

percntrld  Reload period counter from back-up latch typically written by 

           processor with AUDxPER (can also be written by attach mode). 

 

percount   Count period counter down one latch. 

 

perfin     Period counter finished (value = 1). 

 

lencntrld  Reload length counter from back-up latch. 

 

lencount   Count length counter down one notch. 

 

lenfin     Length counter finished (value = 1). 

 

volcntrld  Reload volume counter from back-up latch. 

 

pbufld1    Load output buffer from holding latch written to by AUDxDAT. 

 

pbufld2    Like pbufld1, but only during 010-->011 with attach period. 

 

AUDxAV     Attach volume. Send data to volume latch of next channel 

           instead of to D-->A converter. 

 

AUDxAP     Attach period. Send data to period latch of next channel 

           instead of to the DA converter. 

 

penhi      Enable the high 8 bits of data to go to the D-->A converter. 
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napnav     /AUDxAV * /AUDxAP + AUDxAV - no attach stuff or else attach 

           volume. Condition for normal DMA and interrupt requests. 

 

sq2,1,0    The name of the state flip-flops, MSB to LSB. 

 

Figure 5-8: Audio State Diagram 
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Chapter 6 
 

BLITTER HARDWARE 
 

 
INTRODUCTION 
 
The blitter is one of the two co-processors in the Amiga. Part of the Agnus chip, it is used 
to copy rectangular blocks of memory around and to draw lines. When copying memory, it 
is approximately twice as fast as the 68000, able to move almost four megabytes per 
second. It can draw lines at almost a million pixels per second. 

 
In block move mode, the blitter can perform any logical operation on up to three source 
areas, it can shift up to two of the source areas by one to fifteen bits, it can fill outlined 
shapes, and it can mask the first and last words of each raster row. In line mode, any 
pattern can be imposed on a line, or the line can be drawn such that only one pixel per 
horizontal line is set. 
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The blitter can only access CHIP memory - that portion of memory accessible by the 
display hardware. Attempting to use the blitter to read or write FAST or other non-CHIP 
memory may result in destruction of the contents of CHIP memory. 
 

A "blit" is a single operation of the blitter - perhaps the drawing of a line or movement of 
a block of memory. A blit is performed by initializing the blitter registers with appropriate 
values and then starting the blitter by writing the BLTSIZE register. As the blitter is an 
asynchronous coprocessor, the 68000 continues to run as the blit is executing. 
 
MEMORY LAYOUT 
 

The blitter is a word blitter, not a bit blitter. All data fetched, modified, and written are in 
full 16-bit words. Through careful programming, the blitter can do many "bit" type 
operations. 
 
The blitter is particularly well suited to graphics operations. As an example, a 320 by 200 
screen set up to display 16 colors is organized as four bitplanes of 8,000 bytes each. Each 
bitplane consists of 200 rows of 40 bytes or 20 16-bit words. (From here on, a "word" will 
mean a 16-bit word.) 
 
DMA CHANNELS 
 
The blitter has four DMA channels - three source channels, labelled A, B, and C, and one 
destination channel, called D. Each of these channels has separate address pointer, 
modulo and data registers and an enable bit. Two have shift registers, and one has a first 

and last word mask register. All four share a single blit size register. 
 
The address pointer registers are each composed of two words, named BLTxPTH and 
BLTxPTL. (Here and later, in referring to a register, any "x" in the name should be 
replaced by the channel label, A, B, C, or D.) The two words of each register are adjacent 
in the 68000 address space, with the high address word first, so they can both be written 
with one 32-bit write from the processor. The pointer registers should be written with an 
address in bytes. Because the blitter works only on words, the least significant bit of the 
address is ignored. Because only CHIP memory is accessible, some of the most significant 
bits will be ignored as well. On machines with 512 KB of CHIP memory, the most 
significant 13 bits are ignored. Future machines will have more CHIP memory and fewer 
bits will be ignored. A valid, even, CHIP memory address should always be written to 
these registers. 
 

NOTE 
Be sure to write zeros to all unused bits in the custom chip registers. These bits may be 
used by later versions of the custom chips. Writing non-zero values to these bits may 
cause unexpected results on future machines. 
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Each of the DMA channels can be independently enabled or disabled. The enable bits are 
bits SRCA, SRCB, SRCC, and DEST in control register zero (BLTCON0). 
 
When disabled, no memory cycles will be executed for that channel and, for a source 

channel, the constant value stored in the data register of that channel will be used for 
each blitter cycle. For this purpose, each of the three source channels have preloadable 
data registers, called BLTxDAT. 
 
Images in memory are usually stored in a linear fashion; each word of data on a line is 
located at an address that is one greater than the word on its left. i.e. Each line is a "plus 
one" continuation of the previous line. (See Figure 6-1.) 
 

          20  21   22  23  24   24  26 

          27  28   29  30  31   32  33 

          34  35   36  37  38   39  40 

          41  42   43  44  45   46  47 

          48  49   50  51  52   53  54 

          55  56   57  58  59   60  61 

 

          Figure 6-1: How Images are Stored in Memory 

 

 

The map in Figure 6-1 represents a single bit-plane (one bit of color) of an image at word 
addresses 20 through 61. Each of these addresses accesses one word (16 pixels) of a 
single bitplane. If this image required sixteen colors, four bit-planes like this would be 
required in memory, and four copy (move) operations would be required to completely 

move the image. 
 
The blitter is very efficient at copying such blocks because it needs to be told only the 
starting address (20), the destination address, and the size of the block (height = 6, width 
= 7). It will then automatically move the data, one word at a time, whenever the data bus 
is available. When the transfer is complete, the blitter will signal the processor with a flag 
and an interrupt. 
 
NOTE 
 
This copy (move) operation operates on memory and may or may not change the memory 
currently being used for display. 
 
All data copy blits are performed as rectangles of words, with a given width and height. All 

four DMA channels use a single blit size register, called BLTSIZE, used for both the width 
and height. The width can take a value of from 1 to 64 words (16 to 1024 bits). The 
height can run from 1 to 1024 rows. The width is stored in the least significant six bits of 
the BLTSIZE register. If a value of zero is stored, a width count of 64 words is used. This 
is the only parameter in the blitter 
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that is given in words. The height is stored in the upper ten bits of the BLTSIZE register, 
with zero representing a height of 1024 rows. Thus, the largest blit possible with the 
current Amiga blitter is 1024 by 1024 pixels. However, shifting and masking operations 
may require an extra word be fetched for each raster scan line, making the maximum 

practical horizontal width 1008 pixels. 
 
NOTE 
To emphasize the above paragraph: Blit width is in words with a zero representing 64 
words. Blit height is in lines with a zero representing 1024 lines. 
 
The blitter also has facilities, called modules, for accessing images smaller than the entire 

bitplane. Each of the four DMA channels has 16 bit modulo register called BLTxMOD. As 
each word is fetched (or written) for an enabled channel, the address pointer register is 
incremented by two (bytes, or one word.) After each row of the blit is completed, the 
signed 16-bit modulo value for that DMA channel is added to the address pointer. (A row 
is defined by the width stored in BLTSIZE.) 
 
NOTE 
The modulo values are in bytes, not words. Since the blitter can only operate on words, 
the least significant bit is ignored. The value is sign-extended to the full width of the 
address pointer registers. Negative modules can be useful in a variety of ways, such as 
repeating a row by setting the modulo to the negative of the width of the bitplane. 
 
As an example, suppose we want to operate on a section of a full 320 by 200 pixel bitmap 
that started at row 13, byte 12 (where both are numbered from zero) and the section is 

10 bytes wide. We would initialize the pointer register to the address of the bitplane plus 
40 bytes per row times 13 rows, plus 12 bytes to get to the correct horizontal position. 
We would set the width to 5 words (10 bytes). At the end of each row, we would want to 
skip over 30 bytes to get to the beginning of the next row, so we would use a modulo 
value of 30. In general, the width (in words) times two plus the modulo value (in bytes) 
should equal the full width, in bytes, of the bitplane containing the image. 
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Figure 6-2: BLTxPTR and BLTxMOD calculations 

 

 
 

NOTE 
The blitter can be used to process linear rather than rectangular regions by setting the 
horizontal or vertical count in BLTSIZE to 1. 
 
Because each DMA channel has its own modulo register, data can be moved among 
bitplanes of different widths. This is most useful when moving small images into larger 
screen bitplanes. 
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FUNCTION GENERATOR 
 
The blitter can combine the data from the three source DMA channels in up to 256 
different ways to generate the values stored by the destination DMA channel. These 

sources might be one bitplane from each of three separate graphics images. While each of 
these sources is a rectangular region composed of many points, the same logic operation 
will be performed on each point throughout the rectangular region. Thus, for purposes of 
defining the blitter logic operation it is only necessary to consider what happens for all of 
the possible combinations of one bit from each of the three sources. 
 
There are eight possible combinations of values of the three bits, for each of which we 

need to specify the corresponding destination bit as a zero or one. This can be visualized 
with a standard truth Table, as shown below. We have listed the three source channels, 
and the possible values for a single bit from each one. 
 

A  B  C  D  BLTCON0 position MINTERM 

                               ___ 

0  0  0  ?         0           ABC 

                               __ 

0  0  1  ?         1           ABC 

                               _ _ 

0  1  0  ?         2           ABC 

                               _ 

0  1  1  ?         3           ABC 

                                __ 

1  0  0  ?         4           ABC 

                                _ 

1  0  1  ?         5           ABC 

                                 _ 

1  1  0  ?         6           ABC 

 

1  1  1  ?         7           ABC 

 

 

This information is collected in a standard format, the LF control byte in the BLTCON0 
register. This byte programs the blitter to perform one of the 256 possible logic operations 
on three sources for a given blit. 
 
To calculate the LF control byte in BLTCON0, fill in the truth Table with desired values for 
D, and read the function value from the bottom of the Table up. 

 
For example, if we wanted to set all bits in the destination where the corresponding A 
source bit is 1 or the corresponding B source bit is 1, we would fill in the last four entries 
of the truth Table with 1 (because the A bit is set) and the third, fourth, seven, and eight 
entries with 1 (because the B bit is set), and all others (the first and second) with 0, 
because neither A nor B is set. Then, we read the truth Table from the bottom up, reading 
11111100, or $FC. 
 
 -  "$" indicates hex notation. 
 

                         

 

 

 

 

 

 

 

- 168 Blitter Hardware - 



For another example, an LF control byte of $80 ( = 1000 0000 binary) turns on bits only 
for those points of the D destination rectangle where the corresponding bits of A, B, and C 
sources were all on (ABC = 1, bit 7 of LF on). All other points in the rectangle, which 
correspond to other combinations for A, B, and C, will be 0. This is because bits 6 through 

0 of the LF control byte, which specify the D output for these situations, are set to 0. 
 
DESIGNING THE LF CONTROL BYTE WITH MINTERMS 
One approach to designing the LF control byte uses logic equations. Each of 

the rows in the truth Table corresponds to a "minterm", which is a 

particular arrangement of values to the A, B, and C bits. For instance, the 

                                 ___ 

first minterm is usually written ABC, or "not A and not B and not C". The 

last is written as ABC. 

 

NOTE 

Two terms that are adjacent are AND'ed, and two terms that are separated by 

"+" are OR'ed. "And" has a higher precedence, so AB + BC is equal to (AB) + 

(BC). 

 

Any function can be written as a sum of minterms. If we wanted to calculate 

the function where D is one when the A bit is set and the C bit 

                                                          _ 

is clear, or when the B bit is set, we can write that as AC+B, or "A and not 

C or B". Since "1 and A" is "A": 

         _ 

    D = AC + B 

            _ 

    D = A(1)C + (1)B(1) 

                  _                  _ 

Since either A or A is true (1 = A + A), and similarly for B, and C; we 

can expand the above equation further: 

            _ 

    D = A(1)C + (1)B(1) 

      _ _   _  _   _ 

    D=A(B+B)C+(A+A)B(C+C) 

        _  __      _  _    _ 

    D=ABC+ABC+AB(C+C)+AB(C+C) 

        _  __       _ _   _ _ 

    D=ABC+ABC+ABC+ABC+ABC+ABC 

 

After eliminating duplicates, we end up with the five minterms: 

     _     _  __     _   _ _ 

   AC+B=ABC+ABC+ABC+ABC+ABC 

 

These correspond to BLTCON0 bit positions of 6, 4, 7, 3, and 2, according to 

our truth Table, which we would then set, and clear the rest. 

 

The wide range of logic operations allow some sophisticated graphics 

techniques. For instance, you can move the image of a car across some pre-

existing building images with a few blits. Producing this effect requires 

predrawn images of the car, the buildings (or background), and a car 
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"mask" that contains bits set wherever the car image is not transparent. This mask can be 
visualized as the shadow of the car from a light source at the same position as the viewer. 
 
NOTE 

The mask for the car need only be a single bitplane regardless of the depth of the 
background bitplane. This mask can be used in turn on each of the background bitplanes. 
 
To animate the car, first save the background image where the car will be placed. Next 
copy the car to its first location with another blit. Your image is now ready for display. To 
create the next image, restore the old background, save the next portion of the 
background where the car will be, and redraw the car, using three separate blits. (This 

technique works best with beam-synchronized blits or double buffering.) 
 
To temporarily save the background, copy a rectangle of the background (from the A 
channel, for instance) to some backup buffer (using the D channel). In this case, the 
function we would use is "A", the standard copy function. From Table 6-1, we note that 
the corresponding LF code has a value of $F0. 
 
To draw the car, we might use the A DMA channel to fetch the car mask, the B DMA 
channel to fetch the actual car data, the C DMA channel to fetch the background, and the 
D DMA channel to write out the new image. 
 
NOTE 
We must fetch the destination background before we write it, as only a portion of a 
destination word might need to be modified, and there is no way to do a write to only a 

portion of a word. 
 
When blitting the car to the background we would want to use a function that, whenever 
the car mask (fetched with DMA channel A) had a bit set, we would pass through the car 
data from B, and whenever A did not have a bit set, we would pass through the original 
background from C.  The corresponding function, commonly referred to as the cookie-cut 
function, 
      _ 

is AB+AC, which works out to an LF code value of $CA. 

 
To restore the background and prepare for the next frame, we would copy the information 
saved in the first step back, with the standard copy function ($F0). 
 
If you shift the data and the mask to a new location and repeat the above three steps 
over and over, the car will appear to move across the background (the buildings). 
 
NOTE 
This may not be the most effective method of animation, depending on the application, 
but the cookie-cut function will appear often. 
 
Table 6-1 lists some of the most common functions and their values, for easy reference. 
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Table 6-1: Table of Common Minterm Values 

 

    Selected     BLTCON0       Selected    BLTCON0 

    Equation     LF Code       Equation    LF Code 

 

    D = A          $F0         D = AB         $C0 

        _                           _ 

    D = A          $0F         D = AB         $30 

                                   _ 

    D = B          $CC         D = AB         $0C 

        _                          __ 

    D = B          $33         D = AB         $03 

 

    D = C          $AA         D = BC         $88 

        _                           _ 

    D = C          $55         D = BC         $44 

                                   _ 

    D = AC         $A0         D = BC         $22 

         _                         __ 

    D = AC         $50         D = AC         $11 

        _                            _ 

    D = AC         $0A         D = A+B        $F3 

        __                         _ _ 

    D = AC         $05         D = A+B        $3F 

                                     _ 

    D = A+B        $FC         D = A+C        $FS 

        _                          _ _ 

    D = A+B        $CF         D = A+C        $5F 

                                     _ 

    D = A+C        $FA         D = B+C        $DD 

        _                          _ _ 

    D = A+C        $AF         D = B+C        $77 

                                      _ 

    D = B+C        $EE         D = AB+AC      $CA 

        _ 

    D = B+C        $BB 
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DESIGNING THE LF CONTROL BYTE WITH VENN DIAGRAMS 
Another way to arrive at a particular function is through the use of Venn diagrams: 
 

 

Figure 6-3: Blitter Minterm Venn Diagram 

 

 
 

1. To select a function D=A (that is, destination = A source only), select only the 
minterms that are totally enclosed by the A-circle in the Figure above. This is the set of 
minterms 7, 6, 5, and 4. When written as a set of 1s for the selected minterms and 0s for 
those not selected, the value becomes: 
 

    Minterm Number     7 6 5 4 3 2 1 0 

    Selected Minterms  1 1 1 1 0 0 0 0 

                       --------------- 

                             F 0        equals $F0 

 

2. To select a function that is a combination of two sources, look for the minterms by both 

of the circles (their intersection). For example, the combination AB (A "and" B) is 
represented by the area common to both the A and B circles, or minterms 7 and 6. 
 

    Minterm Numbers   7 6 5 4 3 2 1 0 

    Selected Minterms 1 1 0 0 0 0 0 0 

                      --------------- 

                             C 0       equals $C0 
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3. To use a function that is the inverse, or "not", of one of the 
                 _ 

sources, such as A, take all of the minterms not enclosed by the circle represented by 

A on the above Figure. In this case, we have minterms 0, 1, 2, and 3. 
 

    Minterm Numbers   7 6 5 4 3 2 1 0 

    Selected Minterms 0 0 0 0 1 1 1 1 

                      --------------- 

                            0 F        equals $0F 

 

4. To combine minterms, or "or" them, "or" the values together. For example, the 
equation AB+BC becomes 
 

    Minterm Numbers  7 6 5 4 3 2 1 0 

    AB               1 1 0 0 0 0 0 0 

    BC               1 0 0 0 1 0 0 0 

                     --------------- 

    AB+BC            1 1 0 0 1 0 0 0 

                     --------------- 

                             C 8       equals $C8 

 

SHIFTS AND MASKS 
 
Up to now we have dealt with the blitter only in moving words of memory around and 
combining them with logic operations. This is sufficient for moving graphic images around, 
so long as the images stay in the same position relative to the beginning of a word. If our 
car image has its left-most pixel on the second pixel from the left, we can easily draw it 
on the screen in any position where the leftmost pixel also starts two pixels from the 
beginning of some word. But often we want to draw that car shifted left or right by a few 
pixels. To this end, both the A and B DMA channels have a barrel shifter that can shift an 
image between 0 and 15 bits. 
 
This shifting operation is completely free; it requires no more time to execute a blit with 

shifts than a blit without shifts, as opposed to shifting with the 68000. The shift is 
normally towards the right. This shifter allows movement of images on pixel boundaries, 
even though the pixels are addressed 16 at a time by each word address of the bit-plane 
image. 
 
So if the incoming data is shifted to the right, what is shifted in from the left? For the first 
word of the blit, zeros are shifted in; for each subsequent word of the same blit, the data 
shifted out from the previous word is shifted in. 
 
The shift value for the A channel is set with bits 15 through 12 of BLTCON0; the B shift 
value is set with bits 15 through 12 of BLTCON1. For most operations, the same value will 
be used for both shifts. For shifts of greater than fifteen bits, load the address register 
pointer of the destination with a higher address; a shift of 100 bits would require the 
destination pointer to be advanced 100/16 or 6 words (12 bytes), and a right shift of the 

remaining 4 bits to be used. 
 
As an example, let us say we are doing a blit that is three words wide, two words high, 
and we are using a shift of 4 bits. For simplicity, let us assume we are doing a straight 
copy from A to D. The first word that will be written to D is the first word fetched from A, 
shifted right four bits 
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with zeros shifted in from the left. The second word will be the second  word fetched from 
the A, shifted right, with the least significant (rightmost) four bits of the first word shifted 
in. Next, we will write the first word of the second row fetched from A, shifted four bits, 
with the least significant four bits of the last word from the first row shifted in. This would 

continue until the blit is finished. 
 
On shifted blits, therefore, we only get zeros shifted in for the first word of the first row. 
On all other rows the blitter will shift in the bits that it shifted out of the previous row. For 
most graphics applications, this is undesirable. For this reason, the blitter has the 
ability to mask the first and last word of each row coming through the A DMA channel. 
Thus, it is possible to extract rectangular data from a source whose right and left edges 

are between word boundaries. These two registers are called BLTAFWM and BLTALWM, for 
blitter A channel first and last word masks.  When not in use, both should be initialized to 
all ones ($FFFF). 
 
NOTE 
Text fonts on the Amiga are stored in a packed bit map. Individual characters from the 
font are extracted using the blitter, masking out unwanted bits. The character may then 
be positioned to any pixel alignment by shifting it the appropriate amount. 
 
These masks are "anded" with the source data, before any shifts are applied. Only when 
there is a 1 bit in the first-word mask will that bit of source A actually appear in the logic 
operation. The first word of each row is anded with BLTAFWM, and the last word is 
"anded" with BLTALWM. If the width of the row is a single word, both masks are applied  
simultaneously. 

 
The masks are also useful for extracting a certain range of "columns" from some bitplane. 
Let us say we have, for example, a predrawn rectangle containing text and graphics that 
is 23 pixels wide. The leftmost edge is the leftmost bit in its bitmap, and the bitmap is two 
words wide. We wish to render this rectangle starting at pixel position 5 into our 320 by 
200 screen bitmap, without disturbing anything that lies outside of the rectangle. 
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             |______________2 word source bitmap____________| 

             |                                              | 

             |___Extract a 23-bit image_____|               | 

             |                              |               | 

             |_____16 bit word______|       |               | 

             |                      |       |               | 

             |______________________|_______|_______________| 

             |                                              | 

 Source      | 00000000    00000000    00000000    00000000 | 

  DMA B      | 11111111    11111111    11111111    11111111 | 

             | 10101010    01010101    10101010    01010101 | 

             |______________________________________________| 

                  |           |           |           |     * 

                 \|/         \|/         \|/         \|/ 

              ____V___________V_____   ___V___________V_____ 

             |                      | |                     | 

 Mask on     | 11111111    11111111 | |11111110    00000000 | 

  DMA A      |   First word mask    | |  Second word mask   | 

             |______________________| |_____________________| 

                  |            |          |  |  _|_   _|_ 

                 \|/          \|/        \|/\|/ 

              ____V____________V__________V__V______________ 

  Final      |                                              | 

destination  | 00000000    00000000    00000001    11111111 | 

  DMA D      | 11111111    11111111    11111111    11111111 | 

(points to   | 10101010    01010101    10101011    11111111 | 

 same address|______________________________________________| 

  as DMA C)                                  ^     ^   ^   ^ 

                 ___          ___       ___ /|\   /|\ /|\ /|\ 

                  |            |         |   |     |   |   | 

              ____|____________|_________|___|_____|___|___| ** 

 Destination |                                              | 

 before blit | 11111111    11111111    11111111    11111111 | 

   DMA C     | 11111111    11111111    11111111    11111111 | 

   (to be    | 11111111    11111111    11111111    11111111 | 

overwritten) |______________________________________________| 

 

* Source is passed through mask when it is a one, otherwise the 

destination is copied. 

** Destination does not change where mask is 0. 

 

               Figure 6-4: Extracting a Range of Columns 

 

To do this, we point the B DMA channel at the bitmap containing the source image, and 
the D DMA channel at the screen bitmap. We use a shift value of 5. We also point the C 
DMA channel at the screen bitmap. We use a blit width of 2 words. What we need is a 
simple copy operation, except we wish to leave the first five bits of the first word, and the 
last four bits (2 times 16, less 23, less 5) of the last word alone. The A DMA channel 
comes to the rescue. We preload the A data register with $FFFF (all ones), and use a first 
word mask with the most significant five bits set to zero ($07FF) and a last word mask 
with the least significant four bits set to zero ($07FF).  
 
We do not enable the A DMA channel, but only the B, C, and D channels, since we want to  
use the A channel as a simple row mask. We then wish to pass the B (source) data along 
wherever the A channel is 1 (for a minterm of AB) and pass along the original destination 
data (from the C channel) wherever A is 0 (for a minterm of AC), yielding our classic 

cookie-cut function of AB+AC, or $CA. 
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NOTE 
Even though the A channel is disabled, we use it in our logic function and preload the data 
register. Disabling a channel simply turns off the memory fetches for that channel; all 
other operations are still performed, only from a constant value stored in the channel's 

data register 
 
An alternative but more subtle way of accomplishing the same thing is to use an A shift of 
five, a first word mask of all ones, and a last word mask with the rightmost nine bits set 
to zero. All other registers remain the same. 
 
NOTE 

Be sure to load the blitter immediate data registers only after setting the shift count in 
BLTCON0/BLTCON1, as loading the data registers first will lead to unpredicTable results. 
For instance, if the last person left BSHIFT to be "4", and I load BDATA with "1" and then 
change BSH1 to "2", the resulting BDATA that is used is "1<<4", not "1<<2". The act of 
loading one of the data registers "draws" the data through the machine and shifts it. 
 
DESCENDING MODE 
 
Our standard memory copy blit works fine if the source does not overlap the destination. 
If we want to move an image one row down (towards increasing addresses), however, we 
run into a problem - we overwrite the second row before we get a chance to copy it! The 
blitter has a special mode of operation - descending mode - that solves this problem 
nicely. 
 

Descending mode is turned on by setting bit one of BLTCON1 (defined as BLITREVERSE). 
If you use descending mode the address pointers will be decremented by two (bytes) 
instead of incremented by two for each word fetched. In addition, the modulo values will 
be subtracted rather than added. Shifts are then towards the left, rather than the right, 
the first word mask masks the last word in a row (which is still the first word fetched, and 
the last word mask masks the first word in a row. 
 
Thus, for a standard memory copy, the only difference in blitter setup (assuming no 
shifting or masking) is to initialize the address pointer registers to point to the last word in 
a block, rather than the first word. The modulo values, blit size, and all other parameters 
should be set the same. 
 
NOTE 
This differs from predecrement versus postincrement in the 68000, where an address 

register would be initialized to point to the word after the last, rather than the last word. 
 
Descending mode is also necessary for area filling, which will be covered in a later section. 
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COPYING ARBITRARY REGIONS 
 
One of the most common uses of the blitter is to move arbitrary rectangles of data from 
one bitplane to another, or to different positions within a bitplane. These rectangles are 

usually on arbitrary bit coordinates, so shifting and masking are necessary. There are 
further complications. It may take several readings and some experimentation before 
everything in this section can be understood. 
 
A source image that spans only two words may, when copied with certain shifts, span 
three words. Our 23 pixel wide rectangle above, for instance, when shifted 12 bits, will 
span three words. Alternatively, an image spanning three words may fit in two for certain 

shifts. Under all such circumstances, the blit size should be set to the larger of the two 
values, such that both source and destination will fit within the blit size. Proper masking 
should be applied to mask out unwanted data. 
 
Some general guidelines for copying an arbitrary region are as follows. 
 
1. Use the A DMA channel, disabled, preloaded with all ones and the appropriate mask 
and shift values, to mask the cookie cut function. Use the B channel to fetch the source 
data, the C channel to fetch the destination data, and the D channel to write the 
destination data. Use the cookie-cut function $CA. 
 
2. If shifting, always use ascending mode if bit shifting to the right, and use descending 
mode if bit shifting to the left. 
 

NOTE 
These shifts are the shifts of the bit position of the leftmost edge within a word, rather 
than absolute shifts, as explained previously. 
 
3. If the source and destination overlap, use ascending mode if the destination has a 
lower memory address (is higher on the display) and descending mode otherwise. 
 
4. If the source spans more words than the destination, use the same shift value for the A 
channel as for the source B channel and set the first and last word masks as if they were 
masking the B source data. 
 
5. If the destination spans more words than the source, use a shift value of zero for the A 
channel and set the first and last word masks as if they were masking the destination D 
data. 
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6. If the source and destination span the same number of words, use the A channel to 
mask either the source, as in 4, or the destination, as in 5. 
 
NOTE 

Conditions 2 and 3 can be contradictory if, for instance, you are trying to move an image 
one pixel down and to the right. In this case, we would want to use descending mode so 
our destination does not overwrite our source before we use the source, but we would 
want to use ascending mode for the right shift. In some situations, it is possible to get 
around general guideline 2 above with clever masking. But occasionally just masking the 
first or last word may not be sufficient; it may be necessary to mask more than 16 bits on 
one or the other end. In such a case, a mask can be built in memory for a single raster 

row, and the A DMA channel enabled to explicitly fetch this mask. By setting the A modulo 
value to the negative of the width of the mask, the mask will be repeatedly fetched for 
each row. 
 
AREA FILL MODE 
 
In addition to copying data, the blitter can simultaneously perform a fill operation during 
the copy. The fill operation has only one restriction - the area to fill must be defined first 
by drawing untextured lines with only one bit set per horizontal row. A special line draw 
mode is available for this operation. Use a standard copy blit (or any other blit, as area 
fills take place after all shifts, masks and logical combination of sources). Descending 
mode must be used. Set either the inclusive-fill-enable bit (FILL OR, or bit 3) or the 
exclusive-fill-enable bit (FILL XOR, or bit 4) in BLTCON1. The inclusive fill mode fills 
between lines, leaving the lines intact. The exclusive fill mode fills between lines, leaving 

the lines bordering the right edge of filled regions but deleting the lines bordering the left 
edge. Exclusive fill yields filled shapes one pixel narrower than the same pattern filled with 
inclusive fill. 
 
For instance, the pattern: 
 
    00100100-00011000 
 
filled with inclusive fill, yields: 
 
    00111100-00011000 
 
with exclusive fill, the result would be 
 

    00011100-00001000 
 
(Of course, fills are always done on full 16-bit words.) 
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There is another bit (FILL_CARRYIN or bit 3 in BLTCON1) that forces the area "outside" 
the lines be filled; for the above example, with inclusive fill, the output would be; 
 
    11100111-11111111 

 
with exclusive fill, the output would be; 
 
    11100011-11110111 
 

          BEFORE                   AFTER 

    ____________________    ___________________ 

   |                    |  |                   | 

   |   1   1    1   1   |  |   11111    11111  | 

   |   1   1    1   1   |  |   11111    11111  | 

   |    1  1     1  1   |  |    1111     1111  | 

   |     1 1      1 1   |  |     111      111  | 

   |      11       11   |  |      11       11  | 

   |     1 1      1 1   |  |     111      111  | 

   |    1  1     1  1   |  |    1111     1111  | 

   |   1   1    1   1   |  |   11111    11111  | 

   |____________________|  |___________________| 

 

              Figure 6-5: Use of the FCI Bit - Bit Is a 0 

 

 

If the FCI bit is a 1 instead of a 0, the area outside the lines is filled with ls and the area 
inside the lines is left with 0s in between. 
 

           BEFORE                 AFTER 

    ____________________    ___________________ 

   |                    |  |                   | 

   |   1   1    1   1   |  |111   1111111    11| 

   |   1   1    1   1   |  |111   11111111   11| 

   |    1  1     1  1   |  |1111  111111111  11| 

   |     1 1      1 1   |  |11111 1111111111 11| 

   |      11       11   |  |1111111111111111111| 

   |     1 1      1 1   |  |11111 1111111111 11| 

   |    1  1     1  1   |  |1111  111111111  11| 

   |   1   1    1   1   |  |111   11111111   11| 

   |____________________|  |___________________| 

 

               Figure 6-6: Use of the FCI Bit - Bit Is a 1 

 

 

If you wish to produce very sharp, single-point vertices, exclusive-fill enable must be 
used. Figure 6-7 shows how a single-point vertex is produced using exclusive-fill enable. 
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          BEFORE           AFTER EXCLUSIVE FILL 

    ____________________    ___________________ 

   |                    |  |                   | 

   |   1   1    1   1   |  |   1111     1111   | 

   |    1  1     1  1   |  |    111      111   | 

   |     1 1      1 1   |  |     11       11   | 

   |      11       11   |  |      1        1   | 

   |     1 1      1 1   |  |     11       11   | 

   |    1  1     1  1   |  |    111      111   | 

   |   1   1    1   1   |  |   1111     1111   | 

   |____________________|  |___________________| 

 

                 Figure 6-7: Single-Point Vertex Example 

 

 

The blitter uses the fill carry-in bit as the starting fin state beginning at the right most 
edge of each line. For each "1" bit in the source area, the blitter flips the fill state, either 
filling or not filling the space with ones. This continues for each line until the left edge of 
the blit is reached, at which point the filling stops. 

 
BLITTER DONE FLAG 
 
When the BLTSIZE register is written the blit is started. The processor does not stop while 
the blitter is working, though; they can both work concurrently, and this provides much of 
the speed evident in the Amiga. This does require some amount of care when using the 
blitter. 

 
A blitter done flag, also called the blitter busy flag, is provided as DMAF BLTDONE in 
DMACONR. This flag is set when a blit is in progress. 
 
NOTE 
If a blit has just been started but has been locked out of memory access because of, for 
instance, display fetches, this bit may not yet be set. The processor, on the other hand, 

may be running completely uninhibited out of FAST memory or its internal cache, so it will 
continue to have memory cycles. 
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The solution is to read a chip memory or hardware register address with the processor 
before testing the bit. This can easily be done with the sequence: 
 

    btst.b #DMAB_BLTDONE-8,DMACONR(a1) 

    btst.b #DMAB_BLTDONE-8,DMACONR(a1) 

 

where a1 has been preloaded with the address of the hardware registers. The first "test"  
of the blitter done bit may not return the correct result, but the second blit. 
 
NOTE 
Starting with the Fat Agnus the blitter busy bit has been "fixed" to be set as soon as you 
write to BLTSIZE to start the blit, rather than when the blitter gets its first DMA cycle. 
However, not all machines will use the newer chips, so it is best to rely on the above 
method of testing. 
 
MULTITASKING AND THE BLITTER 
When a blit is in progress, none of the blitter registers should be written. For details on 
arbitration of blitter access in the system, please refer to the ROM Kernel Manual. In 

particular, read the discussion about the OwnBlitter() and DisownBlitter() functions. Even 
after the blitter has been "owned", a blit may still be finishing up, so the blitter done flag 
should be checked before using it even the first time. Use of the ROM kernel function 
WaitBlit() is recommended. 
 
You should also check the blitter done flag before using results of a blit. The blit may not 
be finished, so the data may not be ready yet. This can lead to difficult to find bugs, 
because a 68000 may be slow enough for a blit to finish without checking the done flag, 
while a 68020, perhaps running out of its cache, may be able to get at the data before the 
blitter has finished writing it. 
 
Let us say that we have a subroutine that displays a text box on top of other imagery 
temporarily. This subroutine might allocate a chunk of memory to hold the original screen 
image while we are displaying our text box, then draw the text box. On exit, the 

subroutine might blit the original imagery back and then free the allocated memory. If the 
memory is freed before the blitter done flag is checked, some other process might allocate 
that memory and store new data into it before the blit is finished, trashing the blitter 
source and, thus, the screen imagery being restored. 
 
INTERRUPT FLAG 
 
The blitter also has an interrupt flag that is set whenever a blit finishes. This flag, INTF 
BLIT, can generate a 68000 interrupt if enabled. For more information on interrupts, see 
Chapter 7 "System Control Hardware." 
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ZERO FLAG 
 
A blitter zero flag is provided that can be tested to determine if the logic operation 
selected has resulted in zero bits for all destination bits, even if those destination bits are 

not written due to the D DMA channel being disabled. This feature is often useful for 
collision detection, by performing a logical "and" on two source images to test for overlap. 
If the images do not overlap, the zero flag will stay true. 
 
The Zero flag is only valid after the blitter has completed its operation and can be read 
from bit DMAF_BLTNZERO of the DMACONR register. 
 

PIPELINE REGISTER 
The blitter performs many operations in each cycle - shifting and masking source words, 
logical combination of sources, and area fill and zero detect on the output. To enable so 
many things to take place so quickly, the blitter is pipelined. This means that rather than 
performing all of the above operations in one blitter cycle, the operations are spread over 
two blitter cycles. (Here "cycle" is used very loosely for simplicity.) To clarify this, the 
blitter can be imagined as two chips connected in series. Every cycle, a new set of source 
operations come in, and the first chip performs its operations on the data. It then passes 
the half-processed data to the second chip to be finished during the next cycle, when the 
first chip will be busy at work on the next set of data. Each set of data takes two "cycles" 
to get through the two chips, overlapped so a set of data can be pumped through each 
cycle. 
 
What all this means is that the first two sets of sources are fetched before the first 

destination is written. This allows you to shift a bitmap up to one word to the right using 
ascending mode, for instance, even though normally parts of the destination would be 
overwritten before they were fetched. 
 

                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 182 Blitter Hardware - 



Table 6-2: Typical Blitter Cycle Sequence 

 

USE Code 

   in      Active 

BLTCON0   Channels                    Cycle Sequence 

 

   F      A B C D      A0 B0 C0  - A1 B1 C1 D0 A2 B2 C2 D1 D2 

   E      A B C        A0 B0 C0 A1 B1 C1 A2 B2 C2 

   D      A B   D      A0 B0  - A1 B1 D0 A2 B2 D1  - D2 

   C      A B          A0 B0  - A1 B1  - A2 B2 

   B      A   C D      A0 C0  - A1 C1 D0 A2 C2 D1  - D2 

   A      A   C        A0 C0 A1 C1 A2 C2 

   9      A     D      A0  - A1 D0 A2 D1  - D2 

   8      A            A0  - A1  - A2 

   7        B C D      B0 C0  -  - B1 C1 D0  - B2 C2 D1  - D2 

   6        B C        B0 C0  - B1 C1  - B2 C2 

   5        B   D      B0  -  - B1 D0  - B2 D1  - D2 

   4        B          B0  -  - B1  -  - B2 

   3          C D      C0  -  - C1 D0  - C2 D1  - D2 

   2          C        C0  - C1  - C2 

   1            D      D0  - D1  - D2 

   0          none 

 

Notes for the above Table: 
 
o No fill. 
 
o No competing bus activity. 
 
o Three-word blit. 
 
o Typical operation involves fetching all sources twice before the first destination becomes 
available. This is due to internal pipelining. Care must be taken with overlapping source 
and destination regions. 

 
NOTE 
This Table is only meant to be an illustration of the typical order of blitter cycles on the 
bus. Bus cycles are dynamically allocated based on blitter operating mode; competing bus 
activity from processor, bitplanes, and other DMA channels; and other factors. 
Commodore Amiga does not guarantee the accuracy of or future adherence to this chart. 
We reserve the right to make product improvements or design changes in this area 

without notice. 
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LINE MODE 
 
In addition to all of the functions described above, the blitter can draw patterned lines. 
The line draw mode is selected by setting bit 0 (LINEMODE) of BLTCON1, which changes 

the meaning of some other bits in BLTCON0 and BLTCON1. In line draw mode, the blitter 
can draw lines up to 1024 pixels long, it can draw them in a variety of modes, with a 
variety of textures, and can even draw them in a special way for simple area fill. 
 
Many of the blitter registers serve other purposes in line-drawing mode. Consult Appendix 
A for more detailed descriptions of the use of these registers and control bits in line-
drawing mode. 

 
In line mode, the blitter draws a line from one point to another, which can be viewed as a 
vector. The direction of the vector can lie in any of the following eight octants. (In the 
following diagram, the standard Amiga convention is used, with x increasing towards the 
right and y increasing down.) The number in parenthesis is the octant numbering; the 
other number represents the value that should be placed in bits 4 through 2 of BLTCON1. 
 

 

Figure 6-8: Octants for Line Drawing 

 

 

Line drawing based on octants is a simplification that takes advantage of symmetries 
between x and -x, y and -y. The following Table lists the octant number and 
corresponding values: 
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Table 6-3: BLTCON1 Code Bits for Octant Line Drawing 

 

BLTCON1 Code Bits       Octant # 

 

      0 1 1                2 

      1 1 1                3 

      1 0 1                4 

      0 1 0                5 

      0 0 0                6 

      1 0 0                7 

 

We initialize BLTCON1 bits 4 through 2 according to the above Table. Now, we introduce 

the variables dx and dy, and set them to the absolute values of the difference between 
the x coordinates and the y coordinates of the endpoints of the line, respectively. 
 

    dx = abs (x2 - x1) 

    dy = abs (y2 - y1) 

 

Now, we rearrange them if necessary so dx is greater than dy. 
 

    if (dx < dy) 

        { 

        temp = dx; 

        dx = dy; 

        dy = temp; 

        } 

 

Alternately, set dx and dy as follows: 
 

    dx = max(abs(x2 - x1), abs(y2 - y1)) ; 

    dy = min(abs(x2 - x1), abs(y2 - y1)) ; 

 

These calculations have the effect of "normalizing" our line into octant 0; since we have 
already informed the blitter of the real octant to use, it has no difficulty drawing the line. 

 
We initialize the A pointer register to 4 * dy - 2 * dx. If this value is negative, we set the 
sign bit (SIGNFLAG in BLTCONl), otherwise we clear it.  
We set the A modulo register to 4 * (dy - dx) and the B modulo register to 4 * dy. 
 
The A data register should be preloaded with $8000. Both word masks should be set to $ 
The A shift value should be set to the x coordinate of the first point (x1) modulo 15. 
 
The B data register should be initialized with the line texture pattern, if any, or $FFFF for a 
solid line. The B shift value should be set to the bit number at which to start the line 
texture (zero means the last significant bit.) 
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The C and D pointer registers should be initialized to the word containing the first pixel of 
the line; the C and D modulo registers should be set to the width of the bitplane in bytes. 
 
The SRCA, SRCC, and DEST bits of BLTCON0 should be set to one, and the SRCB flag 

should be set to zero. The OVFLAG should be cleared. If only a single bit per horizontal 
row is desired, the ONEDOT bit of BLTCON1 should be set; otherwise it should be cleared. 
 
The logic function remains. The C DMA channel represents the original source, the A 
channel the bit to set in the line, and the B channel the pattern to draw. Thus, to draw a 
line, the function AB+AC is the most common. To draw the line using exclusive-or mode, 
so it can be easily erased by drawing it again, the function ABC+AC can be used. 

 
We set the blit height to the length of the line, which is dx + 1. The width must be set to 
two for all line drawing. (Of course, the BLTSIZE register should not be written until the 
very end, when all other registers have been filled.) 
 
REGISTER SUMMARY FOR LINE MODE 
 
Preliminary setup: 
 
    The line goes from (x1 ,y1) to (x2,y2). 
 

    dx = max (abs (x2 - x1), abs (y2 - y1) ) 

    dy = min (abs (x2 - x1), abs (y2 - y1) ) 

 

Register setup: 
 

    BLTADAT = $8000 

    BLTBDAT = line texture pattern ($FFFF for a solid line) 

 

    BLTAFWM = $FFFF 

    BLTALWM = $FFFF 

 

    BLTAMOD = 4 * (dy-dx) 

    BLTBMOD = 4 * dy 

    BLTCMOD = width of the bitplane in bytes 

    BLTDMOD = width of the bitplane in bytes 

 

    BLTAPT = (4 * dy) - (2 * dx) 

    BLTBPT = unused 

    BLTCPT = word containing the first pixel of the line 

    BLTDPT = word containing the first pixel of the line 
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    BLTCON0 bits 15-12 = x1 modulo 15 

    BLTCON0 bits SRCA, SRCC, and SRCD = 1 

    BLTCON0 bit SRCB = 0 

    if exclusive-or line mode:          _   _ 

       then BLTCON0 LF control byte = ABC + AC 

                                           _ 

       else BLTCON0 LF control byte = AB + AC 

 

    BLTCON1 bit LINEMODE = 1 

    BLTCON1 bit OVFLAG = 0 

    BLTCON1 bits 4-2 = octant number from Table 

    BLTCON1 bits 15-12 = start bit for line texture (0 = last significant 

            bit) 

    if (((4 * dy) - (2 * dx)) < 0): 

        then BLTCON1 bit SIGNFLAG = 1 

        else BLTCON1 bit SIGNFLAG = 0 

    if one pixel/row: 

        then BLTCON1 bit ONEDOT = 1 

        else BLTCON1 bit ONEDOT = 0 

 

    BLTSIZE bits 15-6 = dx + 1 

    BLTSIZE bits 5-0 = 2 

 

NOTE 
You must set the BLTSIZE register last as it starts the blit. 
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BLITTER SPEED 
 
The speed of the blitter depends entirely on which DMA channels are enabled. You might 
be using a DMA channel as a constant, but unless it is enabled, it does not count against 

you. The minimum blitter cycle is four ticks; the maximum is eight ticks. Use of the A 
register is always free. Use of the B register always adds two ticks to the blitter cycle. Use 
of either C or D is free, but use of both adds another two ticks. Thus, a copy cycle, using A 
and D, takes four clock ticks per cycle; a copy cycle using B and D takes six ticks per 
cycle, and a generalized bit copy using B, C, and D takes eight ticks per cycle. When in 
line mode, each pixel takes eight ticks. 
 

The system clock speed for NTSC Amiga’s is 7.16 megahertz (PAL Amiga’s 7.09 
megahertz). The clock for the blitter is the system clock. To calculate the total time for the 
blit in microseconds, excluding setup and DMA contention, you use the equation (for 
NTSC): 
 

                        n * H * W 

                t =     --------- 

                           7.16 

 

 

For PAL: 

 

                        n * H * W 

                t =     --------- 

                           7.09 

 

where t is the time in microseconds, n is the number of clocks per cycle, and H and W are 
the height and width (in words) of the blit, respectively. 
 
For instance, to copy one bitplane of a 320 by 200 screen to another bitplane, we might 
choose to use the A and D channels. This would require four ticks per blitter cycle, for a 
total of 
 

                        4 * 200 * 20 

                        ------------ = 2235 microseconds. 

                            7.16 

 

These timings do not take into account blitter setup time, which is the time required to 
calculate and load the blitter registers and start the blit. They also ignore DMA contention. 
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BLITTER OPERATIONS AND SYSTEM DMA 
 
The operations of the blitter affect the performance of the rest of the system. the 
following sections explain how system performance is affected by blitter direct memory 

access priority, DMA time slot allocation, bus sharing between the 68000 and the display 
hardware, the operations of the blitter and Copper, and different playfield display sizes. 
 
The blitter performs its various data-fetch, modify, and store operations through DMA 
sequences, and it shares memory access with other devices in the, system. Each device 
that accesses memory has a priority level assigned to it, which indicates its importance 
relative to other devices. 

 
Disk DMA, audio DMA, display DMA, and sprite DMA all have the highest priority level. 
Display DMA has priority over sprite DMA under certain circumstances. Each of these four 
devices is allocated a group of time slots during each horizontal scan of the video beam. If 
a device does not request one of its allocated time slots, the slot is open for other uses. 
These devices are given first priority because missed DMA cycles can cause lost data, 
noise in the sound output, or on-screen interruptions. 
 
The Copper has the next priority because it has to perform its operations at the same time 
during each display frame to remain synchronized with the display beam sweeping across 
the screen. 
 
The lowest priorities are assigned to the blitter and the 68000, in that order. The blitter is 
given the higher priority because it performs data copying, modifying, and line drawing 

operations operations much faster than the 68000. 
 
During a horizontal scan line (about 63 microseconds), there are 227.5 "color clocks", or 
memory access cycles. A memory cycle is approximately 280ns in duration. The total of 
227.5 cycles per horizontal line includes both display time and non-display time. Of this 
total time, 226 cycles are available to be allocated to the various devices that need 
memory access. 
 
The time-slot allocation per horizontal line is 
 
 4 cycles for memory refresh 
 3 cycles for disk DMA 
 4 cycles for audio DMA (2 bytes per channel) 
16 cycles for sprite DMA (2 words per channel) 

80 cycles for bit-plane DMA (even or odd numbered slots according to the display size           
used) 
 

Figure 6-9 shows one complete horizontal scan line and how the clock cycles are 
allocated. 
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Figure 6-9: DMA time slot allocation. 
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The 68000 uses only the even-numbered memory access cycles. The 68000 spends about 
half of a complete processor instruction time doing internal operations and the other half 
accessing memory. Therefore, the allocation of alternate memory cycles to the 68000 
makes it appear to the 68000 that it has the memory all of the time, and it will run at full 

speed. 
 
Some 68000 instructions do not match perfectly with the allocation of even cycles and 
cause cycles to be missed. If cycles are missed, the 68000 must wait until its next 
available memory slot before continuing. However, most instructions do not cause cycles 
to be missed, so the 68000 runs at full speed most of the time if there is no blitter DMA 
interference. 

 
Figure 6-10 illustrates the normal cycle of the 68000. 
 
NOTE 
The 68000 test-and-set instruction (TAS) should never be used in the Amiga; the 
indivisible read-modify-write cycle that is used only in this instruction will not fit into a 
DMA memory access slot. 
 

     ------------------------------------------------------------- 

     |              <---- Average 68000 cycle ---->              | 

     |                                                           | 

     |     <--- internal --->       |     <--- memory --->       | 

     |         operation            |          access            | 

     |          portion             |         portion            | 

     |                              |                            | 

     |         odd cycle,           |        even cycle          | 

     |        assigned to           |       available to         | 

     |       other devices          |        the 68000           | 

     ------------------------------------------------------------- 

 

                     Figure 6-10: Normal 68000 Cycle 

 

 

If the display contains four or fewer low-resolution bit-planes, the 68000 can be granted 
alternate memory cycles (if it is ready to ask for the cycle and is the highest priority item 
at the time). However, if there are more than four bit-planes, bit-plane DMA will begin to 
steal cycles from the 68000 during the display. 
 
During the display time for a six-bit-plane display (low resolution, 320 pixels wide), 160 

time slots will be taken by bit-plane DMA for each horizontal line. As you can see from 
Figure 6-11, bit-plane DMA steals 50 percent of the open slots that the processor might 
have used if there were only four bit-planes displayed. 
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         T        -TIMING CYCLE-       T+7 

           +       *       +       * 

          --------------------------------- 

          |   | 4 | 6 | 2 |   | 3 | 5 | 1 | 

          --------------------------------- 

 

         Figure 6-11: Time Slots Used by a Six Bit Plane Display 

 

 

If you specify four high-resolution bit-planes (640 pixels wide), bit-plane DMA needs all of 
the available memory time slots during the display time just to fetch the 40 data words 
for each line of the four bit-planes (40  4 = 160 time slots). This effectively locks out the 

68000 (as well as the blitter or Copper) from any memory access during the display, 
except during horizontal and vertical blanking. 
 

 

          T        -TIMING CYCLE-       T+7 

 

          --------------------------------- 

          | 4 | 2 | 3 | 1 | 4 | 2 | 3 | 1 | 

          --------------------------------- 

 

        Figure 6-12: Time Slots Used by a High Resolution Display 

 

 

Each horizontal line in a normal, full-sized display contains 320 pixels in low-resolution 

mode or 640 pixels in high-resolution mode. Thus, either 20 or 40 words will be fetched 
during the horizontal line display time. If you want to scroll a playfield, one extra data 
word per line must be fetched from the memory. 
 
Display size is adjustable (see Chapter 3, "Playfield Hardware"), and bit-plane DMA takes 
precedence over sprite DMA. As shown in Figure 6-9, larger displays may block out one or 
more of the highest-numbered sprites, especially with scrolling. 
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As mentioned above, the blitter normally has a higher priority than the processor for DMA 
cycles. There are certain cases, however, when the blitter and the 68000 can share 
memory cycles. If given the chance, the blitter would steal every available memory cycle. 
Display, disk, and audio DMA take precedence over the blitter, so it cannot block them 

from bus access. Depending on the setting of the blitter DMA mode bit, commonly 
referred to as the "blitter-nasty" bit, the processor may be blocked from bus access. This 
bit is called DMAF BLITHOG and is in register DMACON. 
 
If DMAF_BLITHOG is a 1, the blitter will keep the bus for every available memory cycle. 
This could potentially be every cycle. 
 

If DMAF_BLITHOG is a 0, the DMA manager will monitor the 68000 cycle requests. If the 
68000 is unsatisfied for three consecutive memory cycles, the blitter will release the bus 
for one cycle. 
 
BLITTER BLOCK DIAGRAM 
 
Figure 6-13 shows the basic building blocks for a single bit of a 16-bit wide operation of 
the blitter. It does not cover the line-drawing hardware. 
 
o The upper left comer shows how the first - and last - word masks are applied to the 
incoming A-source data. When the blit shrinks to one word wide, both masks are applied. 
 
o The shifter (upper right and centre left) drawing illustrates how 16 bits of data is taken 
from a specified position within a 32-bit register, based on the A shift or B shift values 

shown in BLTCON0 and BLTCON1. 
 
o The minterm generator (centre right) illustrates how the minterm select bits either allow 
or inhibit the use of a specific minterm. 
 
o The drawing shows how the fill operation works on the data generated by the minterm 
combinations. Fill operations can be performed simultaneously with other complex logic 
operations. 
 
o At the bottom, the drawing shows that data generated for the destination can be 
prevented from being written to a destination by using one of the blitter control bits. 
 
o Not shown on this diagram is the logic for zero detection, which looks at every bit 
generated for the destination. If there are any 1-bits generated, this logic indicates that 

the area of the blit contained at least one 1-bit (zero detect is false.) 
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Figure 6-13: Blitter Block Diagram 
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BLITTER KEY POINTS 
 
This is a list of some key points that should be remembered when programming the 
blitter. 

 
o Write BLTSIZE last; writing this register starts the blit. 
 
o Modulos and pointers are in bytes; width is in words and height is in pixels. The least 
significant bit of all pointers and modules is ignored. 
 
o The order of operations in the blitter is masking, shifting, logical combination of sources, 

area fill, and zero nag setting. 
 
o In ascending mode, the blitter increments the pointers, adds the modules, and shifts to 
the right. 
 
o In descending mode, the blitter decrements the pointers, subtracts the modules, and 
shifts to the left. 
 
o Area fill only works correctly in descending mode. 
 
o Check BLTDONE before writing blitter registers or using the results of a blit. 
 
o Shifts are done on immediate data as soon as it is loaded. 
 

EXAMPLE: ClearMem 

 

; 

;   Blitter example - memory clear 

; 

 

        include 'exec/types.i' 

        include 'hardware/custom.i' 

        include 'hardware/dmabits.i' 

        include 'hardware/blit.i' 

        include 'hardware/hw examples.i" 

 

        xref    _custom 

; 

; Wait for previous blit to complete. 

; 

waitblit: 

        btst.b #DMAB_BLTDONE-8,DMACONR(a1) 

waitblit2: 

        btst.b #DMAB_BLTDONE-8,DMACONR(a1) 

        bne    waitblit2 

        rts 

; 

; This routine uses a side effect in the blitter. When each 
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; of the blits is finished, the pointer in the blitter is pointing 

; to the next word to be blitted. 

; 

; When this routine returns, the last blit is started and might 

; not be finished, so be sure to call waitblit above before 

; assuming the data is clear. 

; 

; a0 pointer to first word to clear 

; d0 - number of bytes to clear (must be even) 

; 

        xdef     clearmem 

clearmem: 

         lea    custom,a1        ; Get pointer to chip registers 

         bsr    waitblit         ; Make sure previous blit is done 

         move.l a0,BLTDPT(a1)    ; Set up the D pointer to the region to 

                                 ; clear 

         clr.w  BLTDMOD(a1)      ; Clear the D modulo (don't skip no bytes) 

         asr.l  #1,d0            ; Get number of words from number of bytes 

         clr.w  BLTCON1(a1)      ; No special modes 

         move.w #DEST,BLTCON0(a1); only enable destination 

; 

; First we deal with the smaller blits 

; 

         moveq  #$3f,d1          ; Mask out mod 64 words 

         and.w  d0,d1 

         beq    dorest           ; none? good, do one blit 

         sub.l  d1,d0            ; otherwise remove remainder 

         or.l   #$40,d1          ; set the height to 1, width to n 

         move.w d1,BLTSIZE(a1)   ; trigger the blit 

; 

; Here we do the rest of the words, as chunks of 128k 

; 

dorest: 

         move.w #$ffc0,d1        ; look at some more upper bits 

         and.w  d0,d1            ; extract 10 more bits 

         beq    dorest2          ; any to do? 

         sub.l  d1,d0            ; pull of the ones we're doing here 

         bsr    waitblit         ; wait for prev blit to complete 

         move.w d0,BLTSIZE(a1)   ; do another blit 

dorest2: 

         swap   d0               ; more? 

         beq    done             ; nope. 

         clr.w  d1               ; do a 1024x64 word blit (128K) 

keepon: 

         bsr    waitblit         ; finish up this blit 

         move.w d1,BLTSIZE(a1)   ; and again, blit 

         subq.w #1,d0            ; still more? 

         bne    keepon           ; keep on going. 

done: 

         rts                     ; finished. Blit still in progress. 

         end 
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EXAMPLE: SimpleLine 

 

; 

; This example uses the line draw mode of the blitter 

; to draw a line. The line is drawn with no pattern 

; and a simple 'or' blit into a single bitplane. 

; 

; Input: d0=x1 dl=y1 d2=x2 d3=y2 d4=width a0=aptr 

; 

        include 'exec/types.i' 

        include 'hardware/custom.i' 

        include 'hardware/blit.i' 

        include 'hardware/dmabits.i' 

        include 'hardware/hw_examples.i' 

; 

        xref    _custom 

; 

        xdef    simpleline 

; 

; Our entry point. 

; 

simpleline: 

        lea     custom,a1         ; snarf up the custom address register 

        sub.w   d0,d2             ; calculate dx 

        bmi     xneg              ; if negative, octant is one of [3,4,5,6] 

        sub.w   d1,d3             ; calculate dy octant is one of [1,2,7,8] 

        bmi     yneg              ; if negative, octant is one of [7,8] 

        cmp.w   d3,d2             ; cmp |dx|,|dy|octant is one of [1,2] 

        bmi     ygtx              ; if y>x, octant is 2 

        moveq.l #OCTANT1+LINEMODE,d5 ; otherwise octant is 1 

        bra     lineagain         ; go to the common section 

ygtx: 

        exg     d2,d3             ; X must be greater than Y 

        moveq.l #OCTANT2+LINEMODE,d5 ; we are in octant 2 

        bra     lineagain         ; and common again. 

yneg: 

        neg.w   d3                ; calculate abs(dy) 

        cmp.w   d3,d2             ; cmp |dx|,|dy|, octant is [7,8] 

        bmi     ynygtx            ; if y>x, octant is 7 

        moveq.l #OCTANT8+LINEMODE,d5 ; otherwise octant is 8 

        bra     lineagain 

ynygtx: 

        exg     d2,d3             ; X must be greater than Y 

        moveq.l #OCTANT7+LINEMODE,d5 ; we are in octant 7 

        bra     lineagain 

xneg: 

        neg.w   d2                ; dx was negative! octant is [3,4,5,6] 

        sub.w   d1,d3             ; we calculate dy 

        bmi     xyneg             ; if negative, octant is one of [5,6] 

        cmp.w   d3,d2             ; otherwise it's one of [3,4] 

        bmi     xnygtx            ; if y>x, octant is 3 

        moveq.l #OCTANT4+LINEMODE,d5 ; otherwise it's 4 

        bra     lineagain 

xnygtx: 

        exg     d2,d3             ; X must be greater than Y 

        moveq.l #OCTANT3+LINEMODE,d5 ; we are in octant 3 

        bra     lineagain 
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xyneg: 

        neg.w   d3                ; y was negative, in one of [5,6] 

        cmp.w   d3,d2             ; is y>x? 

        bmi     xynygtx           ; if so, octant is 6 

        moveq.l #OCTANT5+LINEMODE,d5 ; otherwise, octant is 5 

        bra     lineagain 

xynygtx: 

        exg     d2,d3             ; X must be greater than Y 

        moveq.l #OCTANT6+LINEMODE,d5 ; we are in octant 6 

lineagain: 

        mulu.w  d9,d1             ; Calculate y1 * width 

        ror.l   #4,d0             ; move upper four bits into hi word 

        add.w   d0,d0             ; multiply by 2 

        add.l   d1,a0             ; ptr += (xl >> 3) 

        add.w   d0,a0             ; ptr += yl * width 

        swap    d0                ; get the four bits of xl 

        or.w    #$BFA,d0          ; or with VSEA, USEC, USED, F=A+C 

        lsl.w   #2,d3             ; y = 4 * y 

        add.w   d2,d2             ; X = 2 * X 

        move.w  d2,d1             ; set up size word 

        lsl.w   #5,d1             ; shift five left 

        add.w   #$42,d1           ; and add 1 to height, 2 to width 

        btst    #DMAB_BLTDONE-8,DMACONR(al) ; safety check 

waitblit: 

        btst    #DMAB_BLTDONE-8,DMACONR(a1) ; wait for blitter 

        bne     waitblit 

        move.w  d3,BLTBMOD(a1)    ; B mod = 4 * Y 

        sub.w   d2,d3 

        ext.l   d3 

        move.l  d3,BLTAPT(a1)     ; A ptr = 4 * Y - 2 * X 

        bpl     lineover          ; if negative 

        or.w    #SIGNFLAG,d5      ; set sign bit in conl 

lineover: 

        move.w  d0,BLTCON0(a1)    ; write control registers 

        move.w  d5,BLTCON1(a1) 

        move.w  d4,BLTCMOD(a1)    ; C mod = bitplane width 

        move.w  d4,BLTDMOD(a1)    ; D mod = bitplane width 

        sub.w   d2,d3 

        move.w  d3,BLTAMOD(a1)    ; A mod = 4 * Y - 4 * X 

        move.w  #$8000,BLTADAT(a1) ; A data = 0x8000 

        moveq.l #-1,d5           ; Set masks to all ones 

        move.l  d5,BLTAFWM(a1)   ; we can hit both masks at once 

        move.l  a0,BLTCPT(a1)    ; Pointer to first pixel to set 

        move.l  a0,BLTDPT(a1) 

        move.w  d1,BLTSIZE(a1)   ; Start blit 

        rts                      ; and return, blit still in progress. 
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EXAMPLE: RotateBits 

 

; 

; here we rotate bits. This code takes a single raster row of a 

; bitplane, and 'rotates' it into an array of 16-bit words, setting 

; the specified bit of each word in the array according to the 

; corresponding bit in the raster row. We use the line mode in 

; conjunction with patterns to do this magic. 

; 

; Input: d0 contains the number of words in the raster row. d1 

; contains the number of the bit to set (0..15). a0 contains a 

; pointer to the raster data, and al contains a pointer to the 

; array we are filling; the array must be at least (d0)*16 words 

; (or (d0)*32 bytes) long. 

; 

        include 'exec/types.i' 

        include 'hardware/custom.i' 

        include 'hardware/blit.i' 

        include 'hardware/dmabits.i' 

        include 'hardware/hw_examples.i' 

 

        xref    _custom 

; 

        xdef    rotatebits 

; 

; Our entry point. 

; 

rotatebits: 

        lea     custom,a2        ; We need to access the custom registers 

        tst     d0               ; if no words, just return 

        beq     gone 

        lea     DMACONR(a2),a3   ; get the address of dmaconr 

        moveq.l #DMAB BLTDONE-8,d2 ; get the bit number BLTDONE 

        btst    d2,(a3)          ; check to see if we're done 

 

waitl: 

        tst     d2,(a3)          ; check again. 

        bne     wait1            ; not done? Keep waiting 

        moveq.l #-30,d3          ; Line mode: aptr = 4Y-2X, Y=0; X15 

        move.l  d3,BLTAPT(a2) 

        move.w  #-60,BLTAMOD(a2) ; amod = 4Y-4X 

        clr.w   BLTBMOD(a2)      ; bmod = 4Y 

        move.w  #2,BLTCMOD(a2)   ; cmod = width of bitmap (2) 

        move.w  #2,BLTDMOD(a2)   ; ditto 

        ror.w   #4,d1            ; grab the four bits of the bit number 

        and.w   #$f000,d1        ; mask them out 

        or.w    #$bca,d1         ; USEA, USEC, USED, F=AB+-AC 

        move.w  d1,BLTCON0(a2)   ; stuff it 

        move.w  #$f049,BLTCONl(a2) ; BSH=15, SGN, LINE 

        move.w  #$8000,BLTADAT(a2) ; Initialize A dat for line 

        move.w  #$ffffBLTAFWM(a2) ; Initialize masks 

        move.w  #$ffff,BLTALWM(a2) 

        move.l  a1,BLTCPT(a2)    ; Initialize pointer 

        move.l  a1,BLTDPT(a2) 

        lea     BLTBDAT(a2),a4   ; For quick access, we grab these two 

        lea     BLTSIZE(a2),a5   ; addresses 

        move.w  #$402,d1         ; Stuff bltsize; width-2, height 16 

        move.w  (a0)+,d3         ; Get next word 
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        bra     inloop           ; Go into the loop 

again: 

        move.w  (a0)+,d3         ; Grab another word 

        btst    d2,(a3)          ; Check blit done 

wait2: 

        btst    d2,(a3)          ; Check again 

        bne     wait2            ; oops, not ready, loop around 

inloop: 

        move.w  d3,(a4)          ; stuff new word to make vertical 

        move.w  d1,(a5)          ; start the blit 

        subq.w  #1,d0            ; is that the last word? 

        bne     again            ; keep going if not 

gone: 

        rts 

        end 
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CHAPTER 7 
 

SYSTEM CONTROL HARDWARE 
 

 
INTRODUCTION 
 
This chapter covers the control hardware of the Amiga system, including the following 
topics: 
 
o How playfield priorities may be specified relative to the sprites 

 
o How collisions between objects are sensed 
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o How system direct memory access (DMA) is controlled 
 
o How interrupts are controlled and sensed 
 

o How reset and early powerup are controlled 
 
VIDEO PRIORITIES 
 
You can control the priorities of various objects on the screen to give the illusion of three 
dimensions. The section below shows how playfield priority may be changed relative to 
sprites. 

 
FIXED SPRITE PRIORITIES 
You cannot change the relative priorities of the sprites. They will always appear on the 
screen with the lower-numbered sprites appearing in front of (having higher screen 
priority than) the higher-numbered sprites. This is shown in Figure 7-1. Each box 
represents the image of the sprite number shown in that box. 
 

                            ___ 

                         __|  7| 

                      __|  6|__| 

                   __|  5|__| 

                __|  4|__| 

             __|  3|__| 

          __|  2|__| 

       __|  1|__| 

      |  0|__| 

      |___| 

 

                Figure 7-1: Inter-Sprite Fixed Priorities 
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HOW SPRITES ARE GROUPED 
For playfield priority and collision purposes only, sprites are treated as four groups of two 
sprites each. The groups of sprites are: 
 

    Sprites 0 and 1 
    Sprites 2 and 3 
    Sprites 4 and 5 
    Sprites 6 and 7 
 
UNDERSTANDING VIDEO PRIORITIES 
The concept of video priorities is easy to understand if you imagine that four fingers of 

one of your hands represent the four pairs of sprites and two fingers of your other hand 
represent the two playfields. Just as you cannot change the sequence of the four fingers 
on the one hand, neither can you change the relative priority of the sprites. However, just 
as you can intertwine the two fingers of one hand in many different ways relative to the 
four fingers of the other hand, so can you position the playfields in front of or behind the 
sprites. This is illustrated in Figure 7-2. 
 

 

Figure 7-2: Analogy for Video Priority 
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Five possible positions can be chosen for each of the two "playfield fingers." For example, 
you can place playfield 1 on top of sprites 0 and 1 (0), between sprites O and 1 and 
sprites 2 and 3 (1), between sprites 2 and 3 and sprites 4 and 5 (2), between sprites 4 
and 5 and sprites 6 and 7 (3), or beneath sprites 6 and 7 (4). You have the same 

possibilities for playfield 2. 
 
The numbers 0 through 4 shown in parentheses in the preceding paragraph are the actual 
values you use to select the playfield priority positions. See "Setting the Priority Control 
Register" below. 
 
You can also control the priority of playfield 2 relative to playfield 1. This gives you 

additional choices for the way you can design the screen priorities. 
 
SETTING THE PRIORITY CONTROL REGISTER 
This register lets you define how objects will pass in front of each other or hide behind 
each other. Normally, playfield 1 appears in front of playfield 2. The PF2PRI bit reverses 
this relationship, making playfield 2 more important. You control the video priorities by 
using the bits in BPLCON2 (for "bit-plane control register number 2") as shown in Table 7-
1. 
 

     Table 7-1: Bits in BPLCON2 

 

     Bit 

    Number     Name             Function 

 

    15-7                   Not used (keep at 0) 

 

      6     PF2PRI         Playfield 2 priority 

 

     5-3    PF2P2 - PF2P0  Playfield 2 placement with 

                           respect to the sprites 

 

     2-0    PF1P2 - PFlP0  Playfield 1 placement with 

                           respect to the sprites 

 

The binary values that you give to bits PF1P2-PF1P0 determine where playfield 1 occurs in 
the priority chain as shown in Table 7-2. This matches the description given in the 
previous section. 
 
NOTE 

PF2P2 - PF2P0, bits 5-3, are the priority bits for normal (non-dual) playfields. 
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Table 7-2: Priority of Playfields Based on Values of Bits PF1P2-PF1P0 

 

    Value                        Placement 

                 (from most important to least important) 

 

     000   PF1   SP01  SP23  SP45  SP67 

 

     001   SP01  PF1   SP23  SP45  SP67 

 

     010   SP01  SP23  PF1   SP45  SP67 

 

     011   SP01  SP23  SP45  PFl   SP67 

 

     100   SP01  SP23  SP45  SP67  PFl 

 

In this Table, PF1 stands for playfield 1, and SP01 stands for the group of sprites 
numbered 0 and 1. SP23 stands for sprites 2 and 3 as a group; SP45 stands for sprites 4 
and 5 as a group; and SP67 stands for sprites 6 and 7 as a group. 
 

Bits PF2P2-PF2P0 let you position playfield 2 among the sprite priorities in exactly the 
same way. However, it is the PF2PRI bit that determines which of the two playfields 
appears in front of the other on the screen. Here is a sample of possible BPLCON2 register 
contents that would create something a little unusual: 
 

    BITS    15-7    PF2PRI    PF2P2-0  PF1P2-0 

 

    VALUE    0s        1        010      000 

 

This will result in a sprite/playfield priority placement of: 
 
    PF1 SP01 SP23 PF2 SP45 SP67 
 

In other words, where objects pass across each other, playfield 1 is in front of sprite 0 or 

1; and sprites 0 through 3 are in front of playfield 2. However, playfield 2 is in front of 
playfield 1 in any area where they overlap and where playfield 2 is not blocked by sprites 
0 through 3. 
 
Figure 7-3 shows one use of sprite/playfield priority. The single sprite object shown on the 
diagram is sprite 0. The sprite can "fly" across playfield 2, but when it crosses playfield 1 
the sprite disappears behind that playfield. The result is an unusual video effect that 
causes the object to disappear when it crosses an invisible boundary on the screen. 
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Figure 7-3: Sprite/Playfield Priority 

 

 
 

When everything is displayed together, sprite 0 is more important than playfield 2 but less 
important 3883  than playfield 1. So even though you can't see the boundary, the sprite 
disappears "behind" the invisible PF1 boundary. 
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COLLISION DETECTION 
 
You can use the hardware to detect collisions between one sprite group and another sprite 
group, any sprite group and either of the playfields, the two playfields, or any combination 

of these items. 
 
The first kind of collision is typically used in a game operation to determine if a missile has 
collided with a moving player. The second kind of collision is typically used to keep a 
moving object within specified on-screen boundaries. The third kind of collision detection 
allows you to define sections of playfield as individual objects, which you may move 
using the blitter. This is called playfield animation. If one playfield is defined as the 

backdrop or playing area and the other playfield is used to define objects (in addition to 
the sprites), you can sense collisions between the playfield-objects and the sprites or 
between the playfield-objects and the other playfield. 
 
HOW COLLISIONS ARE DETERMINED 
The video output is formed when the input data from all of the bit-planes and the sprites 
is combined into a common data stream for the display. For each of the pixel positions on 
the screen, the color of the highest priority object is displayed. Collisions are detected 
when two or more objects attempt to overlap in the same pixel position. This will set a bit 
in the collision data register. 
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HOW TO INTERPRET THE COLLISION DATA 
The collision data register, CLXDAT, is read-only, and its contents are automatically 
cleared to 0 after it is read. Its bits are as shown in Table 7-3. 
 

    Table 7-3: CLXDAT Bits 

 

     Bit 

    Number       Collisions Registered 

 

      15     not used 

      14     Sprite 4 (or 5) to sprite 6 (or 7) 

      13     Sprite 2 (or 3) to sprite 6 (or 7) 

      12     Sprite 2 (or 3) to sprite 4 (or 5) 

      11     Sprite 0 (or 1) to sprite 6 (or 7) 

      10     Sprite 0 (or 1) to sprite 4 (or 5) 

       9     Sprite 0 (or 1) to sprite 2 (or 3) 

       8     Even bit-planes to sprite 6 (or 7) 

       7     Even bit-planes to sprite 4 (or 5) 

       6     Even bit-planes to sprite 2 (or 3) 

       5     Even bit-planes to sprite 0 (or l) 

       4     Odd bit-planes to sprite 6 (or 7) 

       3     Odd bit-planes to sprite 4 (or 5) 

       2     Odd bit-planes to sprite 2 (or 3) 

       1     Odd bit-planes to sprite 0 (or 1) 

       0     Even bit-planes to odd bit-planes 

 

NOTE 
The numbers in parentheses in Table 7-3 refer to collisions that will register only if you 
want them to show up. The collision control register described below lets you either ignore 
or include the odd-numbered sprites in the collision detection. 
 
Notice that in this Table, collision detection does not change when you select either single 
or dual playfield mode. Collision detection depends only on the actual bits present in the 
odd-numbered or even-numbered bitplanes. The collision control register specifies how to 

handle the bitplanes during collision detect. 
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HOW COLLISION DETECTION IS CONTROLLED 
The collision control register, CLXCON, contains the bits that define certain characteristics 
of collision detection. Its bits are shown in Table 7-4. 
 

    Table 7-4: CLXCON Bits 

 

     Bit 

    Number  Name               Function 

 

      15    ENSP7  Enable sprite 7 (OR with sprite 6) 

      14    ENSPS  Enable sprite 5 (OR with sprite 4) 

      13    ENSP3  Enable sprite 3 (OR with sprite 2) 

      12    ENSP1  Enable sprite 1 (OR with sprite 0) 

      11    ENBP6  Enable bit-plane 6 (match required for collision) 

      10    ENBPS  Enable bit-plane 5 (match required for collision) 

       9    ENBP4  Enable bit-plane 4 (match required for collision) 

       8    ENBP3  Enable bit-plane 3 (match required for collision) 

       7    ENBP2  Enable bit-plane 2 (match required for collision) 

       6    ENBP1  Enable bit-plane 1 (match required for collision) 

       5    MVBP6  Match value for bit-plane 6 collision 

       4    MVBPS  Match value for bit-plane 5 collision 

       3    MVBP4  Match value for bit-plane 4 collision 

       2    MVBP3  Match value for bit-plane 3 collision 

       1    MVBP2  Match value for bit-plane 2 collision 

       0    MVBP1  Match value for bit-plane 1 collision 

 

Bits 15-12 let you specify that collisions with a sprite pair are to include the odd-
numbered sprite of a pair of sprites. The even-numbered sprites always are included in 
the collision detection. Bits 11-6 let you specify whether to include or exclude specific bit- 
planes from the collision detection. Bits 5-0 let you specify the polarity (true-false 
condition) of bits that will cause a collision. For example, you may wish to register 
collisions only when the object collides with "something green2 or "something blue." This 
feature, along with the collision enable bits, allows you to specify the exact bits, and their 
polarity, for the collision to be registered. 

 
NOTE 
This register is write-only. If all bit-planes are excluded (disabled), then a bit-plane 
collision will always be detected. 
 

                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- System Control Hardware 209 - 



BEAM POSITION DETECTION 
 
Sometimes you might want to synchronize the 68000 processor to the video beam that is 
creating the screen display. In some cases, you may also wish to update a part of the 

display memory after the system has already accessed the data from the memory for the 
display area. 
 
The address for accessing the beam counter is provided so that you can determine the 
value of the video beam counter and perform certain operations based on the beam 
position. 
 

NOTE 
The Copper is already capable of watching the display position for you and doing certain 
register-based operations automatically. Refer to "Copper Interrupts" below and Chapter 
2, "Coprocessor Hardware," for further information. 
 
In addition, when you are using a light pen with this system, this same address is used to 
read the light pen position rather than the beam position. This is described fully in Chapter 
8, "Interface Hardware." 
 
USING THE BEAM POSITION COUNTER 
 
There are four addresses that access the beam position counter. Their usage is described 
in Table 7-5. 
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    Table 7-5: Contents of the Beam Position Counter 

 

    VPOSR       Read-only   Read the high bit of the vertical 

                            position (V8) and the frame-type bit. 

 

                Bit 15      LOF (Long-framebit). Used to 

                            initialize interlaced displays. 

 

                Bits 14-1   Unused 

 

                Bit 0       High bit of the vertical position 

                            (V8). Allows PAL line counts (313) to 

                            appear in PAL versions of the Amiga. 

 

    VHPOSR      Read-only   Read vertical and horizontal 

                            position of the counter that is 

                            producing the beam on the screen 

                            (also reads the light pen). 

 

                Bits 15-8   Low bits of the vertical 

                            position, bits V7-V0 

 

                Bits 7-0    The horizontal position, bits H8-H1. 

                            Horizontal resolution is 1/160th 

                            of the screen width. 

 

    VPOSW       Write only  Bits same as VPOSR above. 

 

    VHPOSW      Write only  Bits same as VHPOSR above. 

                            Used for counter synchronization 

                            with chip test patterns. 

 

As usual, the address pairs VPOSR,VHPOSR and VPOSW,VHPOSW can be read from and 
written to as long words, with the most significant addresses being VPOSR and VPOSW. 

 
INTERRUPTS 
 
This system supports the full range of 68000 processor interrupts. The various kinds of 
interrupts generated by the hardware are brought into the peripherals chip and are 
translated into six of the seven available interrupts of the 68000. 
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NONMASKABLE INTERRUPT 
Interrupt level 7 is the non-maskable interrupt and is not generated anywhere in the 
current system. The raw interrupt lines of the 68000, IPL2 through IPL0, are brought out 
to the expansion connector and can be used to generate this level 7 interrupt for 

debugging purposes. 
 
MASKABLE INTERRUPTS 
Interrupt levels 1 through 6 are generated. Control registers within the peripherals chip 
allow you to mask certain of these sources and prevent them from generating a 68000 
interrupt. 
 

USER INTERFACE TO THE INTERRUPT SYSTEM 
The system software has been designed to correctly handle all system hardware interrupts 
at levels 1 through 6. A separate set of input lines, designated INT2* and INT6* 1 have 
been routed to the expansion connector for use by external hardware for interrupts. These 
are known as the external low- and external high-level interrupts. 
 
These interrupt lines are connected to the peripherals chip and create interrupt levels 2 
and 6, respectively. It is recommended that you take advantage of the interrupt handlers 
built into the operating system by using these external interrupt lines rather than 
generating interrupts directly on the processor interrupt lines. 
 
INTERRUPT CONTROL REGISTERS 
There are two interrupt registers, interrupt enable (mask) and interrupt request (status). 
Each register has both a read and a write address. 

 
The names of the interrupt addresses are; 
 
INTENA 
   Interrupt enable (mask) - write only. Sets or clears specific bits of INTENA. 
 
INTENAR 
   Interrupt enable (mask) read - read only. Reads contents of INTENA. 
 
 
1 A * indicates an active low signal. 
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INTREQ 
Interrupt request (status) - write only. Used by the processor to force a certain kind of 
interrupt to be processed (software interrupt). Also used to clear interrupt request flags 
once the interrupt process is completed. 

 
INIEQR 
Interrupt request (status) read - read only. Contains the bits that define which items are 
requesting interrupt service. 
 
The bit positions in the interrupt request register correspond directly to those same 
positions in the interrupt enable register. The only difference between the read-only and 

the write-only addresses shown above is bit 15 has no meaning in the read-only 
addresses. 
 
SETTING AND CLEARING BITS 
Below are the meanings of the bits in the interrupt control registers and how you use 
them. 
 
SET AND CLEAR 
The interrupt registers, as well as the DMA control register, use a special way of selecting 
which of the bits are to be set or cleared. Bit 15 of these registers is called the SET/CLR 
bit. 
 
When you wish to set a bit (make it a 1), you must place a 1 in the position you want to 
set and a 1 into position 15. 

 
When you wish to clear a bit (make it a 0), you must place a 1 in the position you wish to 
clear and a 0 into position 15. 
 
Positions 14-0 are bit-selectors. You write a 1 to any one or more bits to select that bit. At 
the same time you write a 1 or 0 to bit 15 to either set or clear the bits you have selected. 
Positions 14-0 that have 0 value will not be affected when you do the write. If you want to 
set some bits and clear others, you will have to write this register twice (once for setting 
some bits, once for clearing others). 
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MASTER INTERRUPT ENABLE 
Bit 14 of the interrupt registers (INTEN) is for interrupt enable. This is the master 
interrupt enable bit. If this bit is a 0, it disables all other interrupts. You may wish to clear 
this bit to temporarily disable all interrupts to do some critical processing task. 

 
NOTE 
This bit is used for enable/disable only. It creates no interrupt request. 
 
EXTERNAL INTERRUPTS 
Bits 13 and 3 of the interrupt registers are reserved for external interrupts. 
 

Bit 13, EXTER, becomes a 1 when the system line called INT6* becomes a logic 0. Bit 13 
generates a level 6 interrupt. 
 
Bit 3, PORTS, becomes a 1 when the system line called INT2* becomes a logic 0. Bit 3 
causes a level 2 interrupt. 
 
VERTICAL BLANKING INTERRUPT 
Bit 5, VERTB, causes an interrupt at line 0 (start of vertical blank) of the video display 
frame. The system is often required to perform many different tasks during the vertical 
blanking interval. Among these tasks are the updating of various pointer registers, 
rewriting lists of Copper tasks when necessary, and other system-control operations. 
 
The minimum time of vertical blanking is 20 horizontal scan lines for an NTSC system and 
25 horizontal scan lines for a PAL system. The range starts at line 0 and ends at line 20 

for NTSC or line 25 for PAL. After the minimum vertical blanking range, you can control 
where the display actually starts by using the DIWSTRT (display window start) register to 
extend the effective vertical blanking time. See Chapter 3, "Playfield Hardware," for more 
information on DIWSTRT. 
 
If you find that you still require additional time during vertical blanking, you can use the 
Copper to create a level 3 interrupt. This Copper interrupt would be timed to occur just 
after the last line of display on the screen (after the display window stop which you have 
defined by using the DIWSTOP register). 
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COPPER INTERRUPT 
Bit 4, COPER, is used by the Copper to issue a level 3 interrupt. The Copper can change 
the content of any of the bits of this register, as it can write any value into most of the 
machine registers. However, this bit has been reserved for specifically identifying the 

Copper as the interrupt source. 
 
Generally, you use this bit when you want to sense that the display beam has reached a 
specific position on the screen, and you wish to change 
something in memory based on this occurrence. 
 
AUDIO INTERRUPTS 

Bits 10 - 7, AUD3 - 0, are assigned to the audio channels. They are called AUD3, AUD2, 
AUDl, and AUD0 and are assigned to channels 3, 2,1, and 0, respectively. 
 
This level 4 interrupt signals "audio block done". When the audio DMA is operating in 
automatic mode, this interrupt occurs when the last word in an audio data stream has 
been accessed. In manual mode, it occurs when the audio data register is ready to accept 
another word of data. 
 
See Chapter 5, "Audio Hardware," for more information about interrupt generation and 
timing. 
 
BLITTER INTERRUPT 
Bit 6, BLIT, signals "blitter finished." If this bit is a 1, it indicates that the blitter has 
completed the requested data transfer. The blitter is now ready to accept another task. 

This bit generates a level 3 interrupt. 
 
DISK INTERRUPT 
Bits 12 and 1 of the interrupt registers are assigned to disk interrupts. 
 
Bit 12, DSKSYN, indicates that the sync register matches disk data. This bit generates a 
level 5 interrupt. 
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Bit 1, DSKBLK, indicates "disk block finished." It is used to indicate that the specified disk 
DMA task that you have requested has been completed. This bit generates a level 1 
interrupt. 
 

More information about disk data transfer and interrupts may be found in Chapter 8, 
"Interface Hardware." 
 
SERIAL PORT INTERRUPTS 
The following serial interrupts are associated with the specified bits of the interrupt 
registers. 
 

Bit 11, RBF (for receive buffer full), specifies that the input buffer of the UART has data 
that is ready to read. This bit generates a level 5 interrupt. 
 
Bit 0, TBE (for "transmit buffer empty"), specifies that the output buffer of the UART 
needs more data and data can now be written into this buffer. This bit generates a level 1 
interrupt. 
 

    Hardware   Exec Software priority            Label 

    priority        Description 

 

      1        1   Software interrupt           SOFTINT 

               2   Disk block complete          DSKBLK 

               3   transmitter buffer empty     TBE 

 

      2        4   external INT2 & CIAA         PORTS 

 

      3        5   graphics coprocessor         COPER 

               6   vertical blank interval      VERTB 

               7   blitter finished             BLIT 

 

      4        8   audio channel 2              AUD2 

               9   audio channel 0              AUD0 

              10   audio channel 3              AUD3 

              11   audio channel 1              AUD1 

 

      5       12   receiver buffer full         RBF 

              13   disk sync pattern found      DSKSYNC 

 

      6       14   external INT6 & CIAB         EXTER 

              15   special (master enable)      INTEN 

 

      7       --   non-maskable interrupt       NMI 

 

                    Figure 7-4: Interrupt Priorities 
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DMA CONTROL 
 
Many different direct memory access (DMA) functions occur during system operation. 
There is a read address as well as a write address to the DMA register so you can tell 

which DMA channels are enabled. 
 
The address names for the DMA register are as follows: 
 
    DMACONR - Direct Memory Access Control - read-only. 
 
    DMACON - Direct Memory Access Control - write-only. 

 
The contents of this register are shown in Table 7-5 (bit on if enabled). 
 
PROCESSOR ACCESS TO CHIP MEMORY 
 
The Amiga chips access chip memory directly, rather than utilizing traditional bus 
arbitration mechanisms. Therefore, processor supplied features for multiprocessor 
support, such as the 68000 TAS (test and set) instruction, cannot serve their intended 
purpose and are not supported by the Amiga architecture. 
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    Table 7-6: Contents of DMA Register 

 

      Bit 

    Number   Name                      Function 

 

    15       SET/CLR     The set/reset control bit. See description of bit 

                         15 under "Interrupts" above. 

 

    14       BBUSY       Blitter busy status - read-only 

 

    13       BZERO       Blitter zero status-read-only. Remains 1 

                         if, during a blitter operation, the blitter output 

                         was always zero. 

 

    12, 11               Unassigned 

 

    10       BLTPRI      Blitter priority. Also known as "blitter-nasty." 

                         When this is a 1, the blitter has full (instead of 

                         partial) priority over the 68000. 

 

    9        DMAEN       DMA enable. This is a master DMA enable bit. It 

                         enables the DMA for all of the channels at bits 8-0 

 

    8        BPLEN       Bit-plane DMA enable 

 

    7        COPEN       Coprocessor DMA enable 

 

    6        BLTEN       Blitter DMA enable 

 

    5        SPREN       Sprite DMA enable 

 

    4        DSKEN       Disk DMA enable 

 

    3-0      AUDxEN      Audio DMA enable for channels 3-0 (x = 3 - 0). 

 

 

For more information on using the DMA, see the following chapters: 

 

        Copper      Chapter 2  "Coprocessor Hardware" 

        Bit-planes  Chapter 3  "Playfield Hardware" 

        Sprites     Chapter 4  "Sprite Hardware" 

        Audio       Chapter 5  "Audio Hardware" 

        Blitter     Chapter 6  "Blitter Hardware" 

        Disk        Chapter 8  "Interface Hardware" 
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RESET AND EARLY STARTUP OPERATION 
 
When the Amiga is turned on or externally reset, the memory map is in a special state. An 
additional copy of the system ROM responds starting at memory location $00000000. The 

system RAM that would normally be located at this address is not available. On some 
Amiga models, portions of the RAM still respond. On other models, no RAM responds. 
Software must assume that memory is not available. The OVL bit in one of the 8520 Chips 
disables the overlay (See Appendix F for the bit location). 
 
The Amiga System ROM contains an ID code as the first word. The value of the ID code 
may change in the future. The second word of the ROM contains a JMP instruction ($4ef9). 

The next two words are used as the initial program counter by the 68000 processor. 
 
The 68000 "RESET" instruction works much like external reset or power on. All memory 
and AUTOCONFIGTM cards disappear, and the ROM image appears at location $00000000. 
The difference is that the CPU continues execution with the next instruction. Since RAM 
may not be available, special care is needed to write reboot code that will reliably reboot 
all Amiga models. 
 
Here is a source code listing of the only supported reboot code: 
 

; ---- The *only* supported reboot code 

       CNOP   0,4        ;IMPORTANT: Must be longword aligned 

MagicResetCode: 

       lea.l  2,a0       ;Point to JMP instruction at start of ROM 

       RESET             ;all RAM goes away now! 

       jmp    (a0)       ;Rely on prefetch to execute this instruction 

 

The RESET instruction must be executed when the CPU is at the Supervisor privilege level. 
If running under Exec, the following code must be used: 
 

_ColdReboot: 

      move.l  4,a6                  ;Get a pointer to ExecBase 

      lea.l   MagicResetCode(pc),a5 ;Location of code to trap to 

      jsr     _LVOSupervisor(a6)    ;start code (must use JSR) 
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CHAPTER 8 
 

INTERFACE HARDWARE 
 

 
INTRODUCTION 
This chapter covers the interface hardware through which the Amiga talks to the outside 
world, including the following features: 
 
o Two multiple purpose mouse/joystick/light pen control ports 
 

o Disk controller (for floppy disk drives & other MFM and GCR devices) 
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o Keyboard 
 
o Centronics compatible parallel I/O interface (for printers) 
 

o RS232-C compatible serial interface (for external modems or other serial devices) 
 
o Video output connectors (RGB, monochrome, Nl SC, RF modulator, video slot) 
 
CONTROLLER PORT INTERFACE 
 
Each Amiga has two nine-pin connectors that can be used for input or output with many 

different kinds of controllers. The Figure shows one of the two connectors and the 
corresponding face-on view of the typical controller plug. 
 

 

Figure 8-1: Controller Plug and Computer Connector 
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Table 8-1: Typical Controller Connections 

 

                     Mouse, 

                   Trackball,     Proportional     X-Y 

                    Driving        Controller   Proportional 

Pin  Joystick      Controller        (Pair)      Joystick      LightPen 

 

1     Forward      V-pulse        ---           Button 3**       --- 

 

2     Back         H-pulse        ---            ---             --- 

 

3     Left         VQ-pulse      Leftbutton     Button 1         --- 

 

4     Right        HQ-pulse      Right button   Button 2         --- 

 

5 *   ---      Middle button**   Right POT      POT X       Pen pressed 

                                                             to screen 

 

6 *  Button 1      Left button    ---            ---            Beam 

                                                               trigger 

 

7     ---          +5V            +5V           +5V            +5V 

 

8     GND          GND            GND           GND            GND 

 

9 *  Button2**     Right button   Left POT      POT Y          Button2** 

 

 * These pins may also be conFigured as outputs 

 

** These buttons are optional 

 

 

                 REGISTERS USED WITH THE CONTROLLER PORT 

 

JOY0DAT  ($DFF00A) Counter for digital (mouse) input (port 1) 

JOY1DAT  ($DFF00C) Counter for digital (mouse) input (port 2) 

CIAAPRA  ($BFE001) Input and output for pin 6 (port 1 and 2 fire buttons) 

POT0DAT  ($DFF012) Counter for proportional input (port 1) 

POT1DAT  ($DFF014) Counter for proportional input (port 2) 

POTGO    ($DFF034) Write proportional pin values and start counters 

POTGOR   ($DFF016) Read proportional pin values 

BPLCON0  ($DFF100) Bit 3 enables the light pen latch 

VPOSR    ($DFF004) Read light pen position (high order bits) 

VHPOSR   ($DFF006) Read light pen position (low order bits) 
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READING MOUSE/TRACKBALL CONTROLLERS 
Pulses entering the mouse inputs are converted to separate horizontal and vertical counts. 
The 8 bit wide horizontal and vertical counter registers can track mouse movement 
without processor intervention. 

 
The mouse uses quadrature inputs. For each direction, a mechanical wheel inside the 
mouse will produce two pulse trains, one 90 degrees out of phase with the other (see 
Figure 8-2 for details). The phase relationship determines direction. 
 
The counters increment when the mouse is moved to the right or "down" (toward you). 
The counters decrement when the mouse is moved to the left or "up" (away from you). 
 

       MOUSE QUADRATURE 

 

        V  VQ :  D1 D0 

        ---------------- 

         0  0  :  1  0 

         0  1  :  0  1 

         1  0  :  1  1 

         1  1  :  0  0 

 

 Case 1: Count up 

 

         ________            ________            ________            ____ 

        /        \          /        \          /        \          / 

V  ____/          \________/          \________/          \________/ 

             ________            ________            ________ 

            /        \          /        \          /        \ 

VQ ________/          \________/          \________/          \__________ 

         ____        ____        ____        ____        ____        ____ 

        /    \      /    \      /  1 \ 0    /    \      /    \      / 

D0 ____/      \____/      \____/      \____/      \____/      \____/ 

 

D1 ________            ________            ________            _________ 

           \          /      1 \ 0        /        \          / 

            \________/          \________/          \________/ 

 

 

 Case 2: Count down 

         ________            ________            ________            ____ 

        /        \          /        \          /        \          / 

V  ____/          \________/          \________/          \________/ 

 

VQ ________            ________            ________            ________ 

           \          /        \          /        \          / 

            \________/          \________/          \________/ 

D0 ____        ____        ____        ____        ____        ____ 

       \      /    \      /    \      /    \      /    \      /    \ 

        \____/      \____/      \____/      \____/      \____/      \____ 

             ________            ________            ________ 

            /        \          /        \          /        \ 

D1 ________/          \________/          \________/          \________ 

 

D2     ____ 

           \ 

            \____  etc. 

 

                      Figure 8-2: Mouse Quadrature 
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READING THE COUNTERS 
The mouse/trackball counter contents can be accessed by reading register addresses 
named JOY0DAT and JOY1DAT. These contains counts for ports 1 and 2 respectively. 
 

The contents of each of these 16-bit registers are as follows: 
 
Bits 15-8 Mouse/trackball vertical count 
Bits 7-0 Mouse/trackball horizontal count 
 
COUNTER LIMITATIONS 
These counters will "wrap around" in either the positive or negative direction. If you wish 

to use the mouse to control something that is happening on the screen, you must read the 
counters at least once each vertical blanking period and save the previous contents of the 
registers. Then you can subtract from the previous readings to determine direction of 
movement and speed. 
 
The mouse produces about 200 count pulses per inch of movement in either a horizontal 
or vertical direction. Vertical blanking happens once each 1/60th of a second. If you read 
the mouse once each vertical blanking period, you will most likely find a count difference 
(from the previous count) of less than 127. Only if a user moves the mouse at a speed of 
more than 38 inches per second will the counter values wrap. Fast-action games may 
need to read the mouse register twice per frame to prevent counter overrun. 
 
If you subtract the current count from the previous count, the absolute value of the 
difference will represent the speed. The sign of the difference (positive or negative) lets 

you determine which direction the mouse is travelling. 
 
The easiest way to calculate mouse velocity is with 8-bit signed arithmetic. The new value 
of a counter minus the previous value will represent the number of mouse counts since 
the last check. The example shown in Table 8-2 presents an alternate method. It treats 
both counts as unsigned values, ranging from 0 to 255. A count of 100 pulses is measured 
in each case. 
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        Table 8-2: Determining the Direction of the Mouse 

 

        Previous    Current   Direction 

         Count       Count 

 

         200          100      Up (Left) 

         100          200      Down (Right) 

         200           45      Down * 

          45          200      Up ** 

 

NOTES FOR Table 8-1: 
 
* Because 200-45 = 155, which is more than 127, the true count must be 255 - ( 200-45) 
= 100; the direction is down. 
 
** 45-200 = -155. Because the absolute value of -155 exceeds 127, the true count must 
be 255 + (-155) = 100; the direction is up. 
 
MOUSE BUTTONS 

There are two buttons on the standard Amiga mouse. However, the control circuitry and 
software support up to three buttons. 
 
o The left button on the Amiga mouse is connected to, CIAAPRA ($BFE001). The button 
for port 1 is connected to bit 6, port 2 is connected to bit 7. See the 8520 Appendix for 
more information. A logic state of 1 means "switch open." A logic state of 0 means "switch 
closed." 
 
o Button 2 (right button on Amiga mouse) is connected to pin 9 of the controller ports, 
one of the proportional pins. See "DIGITAL INPUT/OUTPUT ON THE CONTROLLER PORT" 
for details. 
 
o Button 3, when used, is connected to pin 5, the other proportional controller input. 
 

READING DIGITAL JOYSTICK CONTROLLERS 
Digital joysticks contain four directional switches. Each switch can be individually activated 
by the control stick. When the stick is pressed diagonally, two adjacent switches are 
activated. The total number of possible directions from a digital joystick is 8. All digital 
joysticks have at least one fire button. 
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Digital joystick switches are of the normally open type. When the switches are pressed, 
the input line is shorted to ground. An open switch reads as "1", a closed switch as "0". 
 
Reading the joystick input data logic states is not so simple, however, because the data 

registers for the joysticks are the same as the counters that are used for the mouse or 
trackball controllers. 
 
The joystick registers are named JOY0DAT and JOY1DAT. 
 
Table 8-2 shows how to interpret the data once you have read it from these registers. The 
true logic state of the switch data in these registers is "1 = switch closed." 
 

                        _________________ 

        This is the     \ 1  2  3  4  5 / 

        way the pins     \  6  7  8  9 / 

        are numbered!     \___________/ 

 

        _________________               _________________ 

PORT 1  \ o  o  o  o  o /       PORT 2  \ o  o  o  o  o / 

(mouse)  \| o| o| o| o /                 \  o  o  o  o / 

          |__|__|__|__/                   \___________/ 

          |  |  |  | 

          |  |  |  |                          JOY1DAT 

          |  |  |  |                          DFF00C 

          |  |  |  |                    is wired similary 

          |  |  |  | 

          |  |  |  |________________ 

          |  |__|_________________  | 

          |__   |                 | | 

             |  |          _______|_| 

    _________|__|         |       | | 

   |         |  |         |       | | 

   |        \-----/       |      \-----/ 

 __|__                    | 

 \   /      \-----/     __|__    \-----/ 

  \ /        |   |      \   /     |   | 

   V         |   |       \ /      |   | 

   |         \___/        V       \___/ 

   |____       |          |         | 

        |      |          |       __| 

        |      |          |      | 

 _______|______|__________|______|______________ 

|                       |                       | 

|        MOUSE 0        |        MOUSE 0        | 

|       Y Counter       |       X Counter       | 

|                       |                       | 

|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__| 

 

                      Figure 8-2-1: Mouse Counters. 
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      Table 8-3: Interpreting Data from JOY0DAT and JOY1DAT 

 

        Data Bit           Interpretation 

 

           1          True logic state of "right" switch. 

 

           9          True logic state of "left" switch. 

 

        1 (XOR) 0     You must calculate the exclusive-or of bits 1 and 0 

                      to obtain the logic state of the "back" switch. 

 

        9 (XOR) 8     You must calculate the exclusive-or of bits 9 and 8 

                      to obtain the logic state of the "forward" switch. 

 

The fire buttons for ports 0 and 1 are connected to bits 6 and 7 of CIAAPRA ($BFE001). A 
0 here indicates the switch is closed. 
 
Some, but not all, joysticks have a second button. We encourage the use of this button if 
the function the button controls is duplicated via the keyboard or another mechanism. 

This button may be read in the same manner as the right mouse button. 
 
READING PROPORTIONAL CONTROLLERS 
Each of the game controller ports can handle two variable-resistance input devices, also 
known as proportional input devices. This section describes how the positions of the 
proportional input devices can be determined. There are two common types of 
proportional controllers: the "paddle" controller pair and the X-Y proportional joystick. A 
paddle controller pair consists of two individual enclosures, each containing a single 
resistor and fire-button and each connected to a common controller port input connector. 
Typical connections are shown in Figure 8-3. 
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          LEFT PADDLE                       RIGHT PADDLE 

 

       resistive element                  resistive element 

    ________        _______            ________        _______ 

   |        \/\/\/\/                  |        \/\/\/\/ 

   |            ^                     |            ^ 

   |           /|\                    |           /|\ 

   | +5         |                     | +5         | 

   |            |__________           |            |__________ 

   |                       |          |                       | 

   |                       |          |                       | 

 Pin 7                   Pin 9      Pin 7                   Pin 5 

 

   |                       |          |                       | 

   |<-----Fire Button----->|          |<-----Fire Button----->| 

   |                       |          |                       | 

 Pin 8                   Pin 3      Pin 8                   Pin 4 

 

                Figure 8-4: Typical Paddle Wiring Diagram 

 

 

In an X-Y proportional joystick, the resistive elements are connected individually to the X 
and Y axes of a single controller stick. 
 
READING PROPORTIONAL CONTROLLER BUTTONS 
For the paddle controllers, the left and right joystick direction lines serve as the fire 
buttons for the left and right paddles. 

 
INTERPRETING PROPORTIONAL CONTROLLER POSITION 
Interpreting the position of the proportional controller normally requires some preliminary 
work during the vertical blanking interval. 
 
During vertical blanking, you write a value into an address called POTGO. For a standard 

X-Y joystick, this value is hex 0001. Writing to this register starts the operation of some 
special hardware that reads the potentiometer values and sets the values contained in the 
POT registers (described below) to zero. 
 
The read circuitry stays in a reset state for the first seven or eight horizontal video scan 
lines. Following the reset interval, the circuit allows a charge to begin building up on a 
timing capacitor whose charge rate will be controlled by the position of the external 
controller resistance. For each horizontal scan line thereafter, the circuit compares the 
charge on the timing capacitor to a preset value. If the charge is below the preset, the 
POT counter is incremented. If the charge is above the preset, the counter value will be 
held until the next POTGO is issued. 
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 Figure 8-5: Effects of Resistance on Charging Rate 

 

 

You normally issue POTGO at the beginning of a video screen, then read the values in the 
POT registers during the next vertical blanking period, just before issuing POTGO again. 
 
Nothing in the system prevents the counters from overflowing (wrapping past a count of 
255). However, the system is designed to insure that the counter cannot overflow within 
the span of a single screen. This allows you to know for certain whether an overflow is 
indicated by the controller. 
 

PROPORTIONAL CONTROLLER REGISTERS 
The following registers are used for the proportional controllers: 
 
    POT0DAT - port 1 data (vertical/horizontal3 
    POT1DAT - port 2 data (vertical/horizontal) 
 
    Bit positions: 
 
    Bits 15-8 POT0Y value or POT1Y value 
    Bits  7-0 POT0X value or POT1X value 
 
All counts are reset to zero when POTGO is written with bit zero high. Counts are normally 
read one frame after the scan circuitry is enabled. 
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POTENTIOMETER SPECIFICATIONS 
The resistance of the potentiometers should be a linear taper. Based on the design of the 
integrating analog-to-digital converter used, the maximum resistance should be no more 
than 528K (470K +/- 10 percent is suggested) for either the X or Y pots. This is based on 

a charge capacitor of 0.047uf, +/- 10 percent, and a maximum time of 16.6 milliseconds 
for charge to full value, i.e. one video frame time. 
 
All potentiometers exhibit a certain amount of "jitter". For acceptable results on a wide 
base of configurations, several input readings will need to be averaged. 
 

       Port 1 connector 

      ___________________           ________________________ 

      \  o  o  o  o  o  /          |   POT1Y    |   POT1X   | POT1DAT 

       \   o  o  o  o  /           |  COUNTER   |  COUNTER  | DFF014 

        \__________/\_/            |____________|___________| Read only 

                  /  \                       | 

         +5      /    \               |\     | 

          |     /      \______________| \____| 

          /    /            |   |     | / 

 Max=470k \   /             |   |     |/ 

  +/-10%  /__/            __|__ | 

          \           47nf_____ |__________o______ 

          /                 |         _____|_     | 

          \                \|/       |     | |  __|__ 

          |                 V        ^     | |__\   / 

        OPEN                        /_\    |     \ / 

                                     |     ^      V 

                                     o____/ \     | 

                                     |   /___\    | 

 KEY:                                |     |      | 

 a= OUTRY                            |     |      |              POTGO 

 b= DATRY                            |     o------|              DFF034 

 c= OUTRX                            |     |                   Write only 

 d= DATRX                          __|_____|____________________________ 

 e= OUTLY                         |    |    |  |  |  |  |  |  |      |  | 

 f= DATLY                         | a  |  b |c |d |e |f |g |h |xxxxxx|i | 

 g= OUTLX                         |____|____|__|__|__|__|__|__||||||||__| 

 h= DATLX                         BIT 15  .     .     .     .       BIT 0 

 i= START                                 .     .     .     . 

                                   _______._____._____._____.___________ 

                                  |    |    |  |  |  |  |  |  |         | 

                                  |  0 | RY |0 |RX|0 |LY|0 |LX|    0    | 

                                  |____|____|__|__|__|__|__|__|_________| 

 

                                         14                      POTINP 

 POT COUNTER                                                     DFF016 

                                                                Read only 

 

               Figure 8-6: Potentiometer Charging Circuit 
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READING A LIGHT PEN 
A light pen can be connected to one of the controller ports. On the A1000, the light pen 
must be connected to port 1. Changing ports requires a minor internal modification. On 
the A500 and A2000 the default is port 2. An internal jumper can select port 1. Regardless 

of the port used, the light pen design is the same. 
 
The signal called "pen-pressed-to-screen" is typically actuated by a switch in the nose of 
the light pen. Note that this switch is connected to one of the potentiometer inputs and 
must be read as same as the right or middle button on a mouse. 
 
The principles of light pen operation are as follows: 

 
1. Just as the system exits vertical blank, the capture circuitry for the light pen is 
automatically enabled. 
 
2. The video beam starts to create the picture, sweeping from left to right for each 
horizontal line as it paints the picture from the top of the screen to the bottom. 
 
3. The sensors in the light pen see a pulse of light as the video beam passes by. The pen 
converts this light pulse into an electrical pulse on the "Beam Trigger" line (pin 6). 
 
4. This trigger signal tells the internal circuitry to capture and save the current contents of 
the beam register, VPOSR. This allows you to determine where the pen was placed by 
reading the exact horizontal and vertical value of the counter beam at the instant the 
beam passed the light pen. 
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READING THE LIGHT PEN REGISTERS 
The light pen register is at the same address as the beam counters. The bits are as 
follows: 
 

    VPOSR:     Bit 15       Long frame/short frame. 0=short frame 

               Bits 14-1    Chip ID code. Do not depend on value! 

               Bit 0        V8 (most significant bit of vertical position) 

 

    VHPOSR:    Bits 15-8    V7-V0 (vertical position) 

               Bits 7-0     H8-H1 (horizontal position) 

 

The software can refer to this register set as a long word whose address  is VPOSR. 
 
The positional resolution of these registers is as follows: 
 
Vertical       
1 scan line in non-interlaced mode 
2 scan lines in interlaced mode (However, if you know which interlaced frame is under 
display, you can determine the correct position) 

 
Horizontal   
2 low-resolution pixels in either high- or low-resolution 
 
The quality of the light pen will determine the amount of short-term jitter. For most 
applications, you should average several readings together. 
 

To enable the light pen input, write a 1 into bit 3 of BPLCON0. Once the light pen input is 
enabled and the light pen issues a trigger signal, the value in VPOSR is frozen. If no 
trigger is seen, the counters latch at the end of the display field. It is impossible to read 
the current beam location while the VPOSR register is latched. This freeze is released at 
the end of internal vertical blanking (vertical position 20). There is no single bit in the 
system that indicates a light pen trigger. To determine if a trigger has occurred, use one 
of these methods: 

 
1. Read (long) VPOSR twice. 
 
2. If both values are not the same, the light pen has not triggered since the last top-of-
screen (V = 20). 
 
3. If both values are the same, mask off the upper 15 bits of the 32-bit word and compare 

it with the hex value of $10500 (V=261). 
 
4. If the VPOSR value is greater than $10500, the light pen has not triggered since the 
last top-of-screen. If the value is less, the light pen has triggered and the value read is 
the screen position of the light pen. 
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A somewhat simplified method of determining the truth of the light pen value involves 
instructing the system software to read the register only during the internal vertical 
blanking period of 0<V20: 
 

1. Read (long) VPOSR once, during the period of 0<V20. 
 
2. Mask off the upper 15 bits of the 32-bit word and compare it with the hex value of 
$10500 (V=261). 
 
3. If the VPOSR value is greater than $10500, the light pen has not triggered since the 
last top-of-screen. If the value is less, the light pen has triggered and the value read is 

the screen position of the light pen. 
 
Note that when the light pen latch is enabled, the VPOSR register may be latched at any 
time, and cannot be relied on as a counter. This behavior may cause problems with 
software that attempts to derive timing based on VPOSR ticks. 
 
DIGITAL INPUT/OUTPUT ON THE CONTROLLER PORT 
The Amiga can read and interpret many different and nonstandard controllers. The control 
lines built into the POTGO register (address $DFF034) can redefine the functions of some 
of the controller port pins. 
 
Table 8-4 is the POTGO register bit description. POTGO ($DFF034) is the write-only 
address for the pot control register. POTINP ($DFF016) is the read-only address for the 
pot control register. The pot-control register controls a four-bit bidirectional VO port that 

shares the same four pins as the four pot inputs. 
 

Table 8-4: POTGO ($DFF034) and POTINP ($DFF016) Registers 

 

     Bit 

    Number  Name              Function 

 

    15      OUTRY   Output enable for bit 14 (l=output) 

    14      DATRY   data for port 2, pin 9 

    13      OUTRX   Output enable for bit 12 

    12      DATRX   data for port 2, pin 5 

    11      OUTLY   Output enable for bit 10 

    10      DATLY   data for port 1, pin 9 (right mouse button) 

    09      OUTLX   Output enable for bit 8 

    08      DATLX   data for port 1, pin 5 (middle mouse button) 

    07-01   X       chip revision identification number 

    00      START   Start pots (dump capacitors, start counters) 
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Instead of using the pot pins as variable-resistive inputs, you can use these pins as a 
four-bit input/output port. This provides you with two additional pins on each of the two 
controller ports for general purpose I/O. 
 

If you set the output enable for any pin to a 1, the Amiga disconnects the potentiometer 
control circuitry from the port, and configures the pin for output. The state of the data bit 
controls the logic level on the output pin. This register must be written to at the POTGO 
address, and read from the POTINP address. There are large capacitors on these lines, 
and it can take up to 300 microseconds for the line to change state. 
 
To use the entire register as an input, sensing the current state of the pot pins, write all 

0s to POTGO. Thereafter you can read the current state by using read-only address 
POTINP. Note that bits set as inputs will be connected to the proportional counters (See 
the description of the START bit in POTGO). 
 
These lines can also be used for button inputs. A button is a normally open switch that 
shorts to ground. The Amiga must provide a pull-up resistance on the sense pin. To do 
this, set the proper pin to output, and drive the line high (set both OUT... and DAT... to 
1). Reading POTINP will produce a 0 if the button is pressed, a 1 if it is not. 
 
The joystick fire buttons can also be configured as outputs. CIAADDRA ($BFE201) contains 
a mask that corresponds one-to-one with the data read register, CIAAPRA ($BFE001). 
Setting a 1 in the direction position makes the corresponding bit an output. See the 8520 
appendix for more details. 
 

FLOPPY DISK CONTROLLER 
 
The built-in disk controller in the system can handle up to four MFM-type devices. 
Typically these are double-sided, double-density, 3.5" (9Omm) or 5.25" disk drives. One 
3.5" drive is installed in the basic unit. 
 
The controller is extremely flexible. It can DMA an entire track of raw MFM data into 
memory in a single disk revolution. Special registers allow the CPU to synchronize with 
specific data, or read input a byte at a time. The controller can read and write virtually 
any double-density MFM encoded disk, including the Amiga V1.0 format, IBM PC (MS-
DOS) 5.25", IBM PC (MS-DOS) 3.5" and most CP/:/ITM formatted disks. The controller 
has provisions for reading and writing most disk using the Group Coded Recording (GCR) 
method, including Apple II disks. With motor speed tricks, the controller can read and 
write Commodore 1541/1571 format diskettes. 
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REGISTERS USED BY THE DISK SUBSYSTEM 
The disk subsystem uses two ports on the system's 8520 CIA chips, and several registers 
in the Paula chip: 
 

    CIAAPRA ($BFE001) four input bits for disk sensing 

    CIABPRB ($BFD100) eight output bits for disk selection, 

                      control and stepping 

    ADKCON  ($DFF09E) control bits (write only register) 

    ADKCONR ($DFF010) control bits (read only register) 

    DSKPTH  ($DFF020) DMA pointer (32 bits) 

    DSKLEN  ($DFF024) length of DMA 

    DSKBYTR ($DFFOlA) Disk data byte and status read 

    DSKSYNC ($DFF07E) Disk sync finder; holds a match word 

 

 

Figure 8-7: Chinon Timing diagram 
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Figure 8-8: Chinon Timing diagram cont. 
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CIAAPRA/CIABPRB - DISK SELECTION, CONTROL AND SENSING 
The following Table lists how 8520 chip bits used by the disk subsystem. Bits labelled "PA" 
are input bits in CIAAPRA ($BFE001). Bits labelled "PB" are output bits located in CIAAPRB 
($BFD100). More information on how the 8520 chips operate can be found in Appendix F. 
 

Table 8-5: Disk Subsystem 

 

Bit   Name        Function 

 

PA5   DSKRDY*     Disk ready (active low). The drive will pull this line 

                  low when the motor is known to be rotating at full 

                  speed. This signal is only valid when the motor is ON, 

                  at other times configuration information may obscure 

                  the meaning of this input. 

 

PA4   DSKTRACK0*  Track zero detect. The drive will pull this line low 

                  when the disk heads are positioned over track zero. 

                  Software must not attempt to step outwards when this 

                  signal is active. Some drives will refuse to step, 

                  others will attempt the step, possibly causing 

                  alignment damage. 

                  All new drives must refuse to step outward in this 

                  condition. 

 

PA3   DSKPROT*    Disk is write protected (active low). 

 

PA2   DSKCHANGE*  Disk has been removed from the drive. The signal goes 

                  low whenever a disk is removed. It remains low until a 

                  disk is inserted AND a step pulse is received. 

 

PB7   DSKMOTOR*   Disk motor control (active low). This signal is 

                  nonstandard on the Amiga system. Each drive will latch 

                  the motor signal at the time its select signal turns 

                  on. The disk drive motor will stay in this state until 

                  the next time select turns on.  DSKMOTOR* also controls 

                  the activity light on the front of the disk drive. 

 

                  All software that selects drives must set up the motor 

                  signal before selecting any drives. The drive will 

                  "remember" the state of its motor when it is not 

                  selected. All drive motors turn off after system reset. 
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                  After turning on the motor, software must further wait 

                  for one half second (500ms), or for the DSKRDY* line to 

                  go low. 

 

PB6    DSKSEL3*   Select drive 3 (active low). 

 

PB5    DSKSEL2*   Select drive  (active low). 

 

PB4    DSKSEL1*   Select drive 1 (active low). 

 

PB3    DSKSEL0*   Select drive 0 (internal drive) (active low). 

 

PB2    DSKSIDE    Specify which disk head to use. Zero indicates the 

                  upper head.  DSKSIDE must be sTable for 100 

                  microseconds before writing.  After writing, at least 

                  1.3 milliseconds must pass before switching DSKSIDE. 

 

PB1    DSKDIREC   Specify the direction to seek the heads. Zero implies 

                  seek towards the centre spindle. Track zero is at the 

                  outside of the disk. This line must be set up before 

                  the actual step pulse, with a separate write to the 

                  register. 

 

PB0    DSKSTEP*   Step the heads of the disk. This signal must always be 

                  used as a quick pulse (high, momentarily low, then high). 

 

                  The drives used for the Amiga are guaranteed to get to 

                  the next track within 3 milliseconds. Some drives will 

                  support a much faster rate, others will fail. Loops 

                  that decrement a counter to provide delay are not 

                  accepTable. See Appendix F for a better solution. 

 

                  When reversing directions, a minimum of 18 milliseconds 

                  delay is required from the last step pulse. Settle time 

                  for Amiga drives is specified at 15 milliseconds. 

 

FLAG  DSKINDEX*   Disk index pulse ($BFDD00, bit 4). Can be used to 

                  create a level 6 interrupt. See Appendix F for details. 

 

                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Interface Hardware 239 - 



DISK DMA CHANNEL CONTROL 
Data is normally transferred to the disk by direct memory access (DMA). The disk DMA is 
controlled by four items: 
 

o Pointer to the area into which or from which the data is to be moved 
 
o Length of data to be moved by DMA 
 
o Direction of data transfer (read/write) 
 
o DMA enable 

 
DSKPTH - POINTER TO DATA 
You specify the 32-bit-wide address from which or to which the data is to be transferred. 
The lowest bit of the address must be zero, and the buffer must be in CHIP memory. The 
value must be written as a single long word to the DSKPTH register ($DFF020). 
 
DSKLEN - LENGTH, DIRECTION, DMA ENABLE 
All of the control bits relating to this topic are contained in a write-only register, called 
DSKLEN: 
 

        Table 8-6: DSKLEN Register ($DFF024) 

 

         Bit 

       Number   Name             Usage 

 

       15       DMAEN     Secondary disk DMA enable 

       14       WRITE     Disk write (RAM disk if 1) 

       13-0     LENGTH    Number of words to transfer 
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The hardware requires a special sequence in order to start DMA to the disk. This sequence 
prevents accidental writes to the disk. In short, the DMAEN bit in the DSKLEN register 
must be tuned on twice in order to actually enable the disk DMA hardware. Here is the 
sequence you should follow: 

 
1. Enable disk DMA in the DMACON register (See Chapter 7 for more information) 
 
2. Set DSKLEN to $4000, thereby forcing the DMA for the disk to be turned off. 
 
3. Put the value you want into the DSKLEN register. 
 

4. Write this value again into the DSKLEN register. This actually starts the DMA. 
 
5. After the DMA is complete, set the DSKLEN register back to $4000, to prevent 
accidental writes to the disk. 
 
As each data word is transferred, the length value is decremented. After each transfer 
occurs, the value of the pointer is incremented. The pointer points to the the next word of 
data to written or read. When the length value counts down to 0, the transfer stops. 
 
The recommended method of reading from the disk is to read an entire track into a buffer 
and then search for the sector(s) that you want. Using the DSKSYNC register (described 
below) will guarantee word alignment of the data. With this process you need to read from 
the disk only once for the entire track. In a high speed loader, the step to the next head 
can occur while the previous track is processed and check summed. With this method 

there are no time-critical sections in reading data, other high-priority subsystems (such as 
graphics or audio) are be allowed to run. 
 
If you have too little memory for track buffering (or for some other reason decide not to 
read a whole track at once), the disk hardware supports a limited set of sector-searching 
facilities. There is a register that may be polled to examine the disk input stream. 
 
There is a hardware bug that causes the last three bits of data sent to the disk to be lost. 
Also, the last word in a disk-read DMA operation may not come in (that is, one less word 
may be read than you asked for). 
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DSKBYTR - DISK DATA BYTE AND STATUS READ (READ-ONLY) 
This register is the disk-microprocessor data buffer. In read mode, data from the disk is 
placed into this register one byte at a time. As each byte is received into the register, the 
DSKBYT bit is set true. DSKBYT is cleared when the DSKBYTR register is read. 

 
DSKBYTR may be used to synchronize the processor to the disk rotation before issuing a 
read or write under DMA control. 
 

Table 8-7: DSKBYTR Register 

 

 Bit 

Number     Name         Function 

 

15        DSKBYT       When set, indicates that this register contains 

                       a valid byte of data (reset by reading this 

register). 

 

14        DMAON        Indicates when DMA is actually enabled. All the 

                       various DMA bits must be true. This means the 

                       DMAEN bit in DKSLEN, and the DSKEN & DMAEN bits in 

                       DMACON. 

 

13        DISKWRITE    The disk write bit (in DSKLEN) is enabled. 

 

12        WORDEQUAL    Indicates the DISKSYNC register equals the disk 

                       input stream. This bit is true only while the 

                       input stream matches the sync register (as little 

                       as two microseconds). 

 

11-8                   Currently unused; don't depend on read value. 

 

7-0       DATA         Disk byte data. 

 

 

ADKCON AND ADKCONR - AUDIO AND DISK CONTROL REGISTER 
ADKCON is the write-only address and ADKCONR is the read-only address for this register. 
Not all of the bits are dedicated to the disk. Bit 15 of this register allows independent 
setting or clearing of any bit or bits. If bit 15 is a one on a write, any ones in positions 0-
14 will set the corresponding bit. If bit 15 is a zero, any ones will clear the corresponding 
bit. 
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Table 8-8: ADKCON and ADKCONR Register 

 

 Bit 

Number    Name                  Function 

 

15      SET/CLR    Control bit that allows setting or clearing of individual 

                   bits without affecting the rest of the register. 

 

                   If bit 15 is a 1, the specified bits are set. 

                   If bit 15 is a 0, the specified bits are cleared. 

 

14      PRECOMP1   MSB of Precompensation specifier 

13      PRECOMP0   LSB of Precompensation specifier 

 

                   Value of 00 selects none. 

                   Value of 01 selects 140 ns. 

                   Value of 10 selects 280 ns. 

                   Value of 11 selects 560 ns. 

 

12      MFMPREC    Value of 0 selects GCR Precompensation. 

                   Value of 1 selects MFM Precompensation. 

 

10      WORDSYNC   Value of 1 enables synchronizing and starting 

                   of DMA on disk read of a word. The word on which 

                   to synchronize must be written into the DSKSYNC 

                   address ($DFF07E). This capability is highly 

                   useful. 

 

9       MSBSYNC    Value of 1 enables sync on most significant bit of the 

                   input (usually used for GCR). 

 

8       FAST       Value of 1 selects two microseconds per bit cell 

                   (usually MFM). Data must be valid raw MFM. 

                   0 selects four microseconds per bit (usually GCR). 
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The raw MFM data that must be presented to the disk controller will be twice as large as 
the unencoded data. The following Table shows the relationship: 
 

        1 ---> 01 

        0 ---> 10 ;if following a 0 

        0 ---> 00 ;if following a 1 

 

With clever manipulation, the blitter can be used to encode and decode the MFM. 
 
In one common form of GCR recording, each data byte always has the most significant bit 
set to a 1. MSBSYNC, when a 1, tells the disk controller to look for this sync bit on every 

disk byte. When reading a GCR formatted disk, the software must use a translate Table 
called a nybbleizer to assure that data written to the disk does not have too many 
consecutive 1's or 0's. 
 
DSKSYNC - DISK INPUT SYNCHRONIZER 
The DSKSYNC register is used to synchronize the input stream. This is highly useful when 
reading disks. If the WORDSYNC bit is enabled in ADKCON, no data is transferred until a 
word is found in the input stream that matches the word in the DSKSYNC register. On 
read, DMA will start with the following word from the disk. During disk read DMA, the 
controller will resync every time the word match is found. Typically the DSKSYNC will be 
set to the magic MFM sync mark value, $4489. 
 
In addition, the DSKSYNC bit in INTREQ is set when the input stream matches the 
DSKSYNC register. The DSKSYNC bit in INTREQ is independent of the WORDSYNC enable. 

 
DISK INTERRUPTS 
The disk controller can issue three kinds of interrupts: 
 
o DSKSYNC (level 5, INTREQ bit 12) - input stream matches the DSKSYNC register. 
 
o DSKBLK (level 1, INTREQ bit l) - disk DMA has completed. 
 
o INDEX (level 6, 8520 Flag pin) - index sensor triggered. 
 
Interrupts are explained further in the section "Length, Direction, DMA Enable". See 
Chapter 7, "System Control Hardware," for more information about interrupts. See 
Appendix F for more information on the 8520. 
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THE KEYBOARD 
 
The keyboard is interfaced to the system via the serial shift register on one of the 8520 
CIA chips. The keyboard data line is connected to the SP pin, the keyboard clock is 

connected to the CNT pin. Appendix H contains a full description of the interface. 
 
HOW THE KEYBOARD DATA IS RECEIVED 
The CNT line is used as a clock for the keyboard. On each transition of this line, one bit of 
data is clocked in from the keyboard. The keyboard sends this clock when each data bit is 
stable on the SP line. The clock is an active low pulse. The rising edge of this pulse clocks 
in the data. 

 
After a data byte has been received from the keyboard, an interrupt from the 8520 is 
issued to the processor. The keyboard waits for a handshake signal from the system 
before transmitting any more keystrokes. This handshake is issued by the processor 
pulsing the SP line low then high. While some keyboards can detect a 1 microsecond 
handshake pulse, the pulse must be at least 85 microseconds for operation with all 
models of Amiga keyboards. 
 
If another keystroke is received before the previous one has been accepted by the 
processor, the keyboard microprocessor holds keys in a 10 keycode type-ahead buffer. 
 
TYPE OF DATA RECEIVED 
The keyboard data is not received in the form of ASCII characters. Instead, for maximum 
versatility, it is received in the form of keycodes. These codes include both the down and 

up transitions of the keys. This allows your software to use both sets of information to 
determine exactly what is happening on the keyboard. 
 
Here is a list of the hexadecimal values that are assigned to the keyboard. A downstroke 
of the key transmits the value shown here. An upstroke of the key transmits this value 
plus $80. The picture of the keyboard at the end of this section shows the positions that 
correspond to the description in the paragraphs below. 
 
Note that raw keycodes provide positional information only, the legend which is printed on 
top of the keys changes from country to country. 
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RAW KEYCODES  00-3F HEX 

These are key codes assigned to specific positions on the main body of the keyboard. The 
letters on the tops of these keys are different for each country; not all countries use the 
QWERTY key layout. These keycodes are best described positionally as shown in Figure 8-

9 and Figure 8-10 at the end of the keyboard section. The international keyboards have 
two more keys that are "cut out" of larger keys on the USA version. These are $30, cut 
out from the left shift, and $2B, cut out from the return key. 
 

RAW KEYCODES --> 40-5F HEX (CODES COMMON TO ALL KEYBOARDS) 

 

     40     Space 

     41     Backspace 

     42     Tab 

     43     Numeric Pad "ENTER" 

     44     Retum 

     45     Escape 

     46     Delete 

     4C     Cursor up 

     4D     Cursor down 

     4E     Cursor right 

     4F     Cursor left 

     50-59  Function keys F1-F10 

     SF     Help 

 

 

RAW KEYCODES --> 60-67 HEX (KEY CODES FOR QUALIFIER KEYS:) 

 

     60           Left shift 

     61     Right shift 

     62     Caps lock 

     63     Control 

     64     Left ALT 

     65     Right ALT 

     66     Left Amiga (or Commodore key) 

     67     Right Amiga 
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F0-FF HEX 

These key codes are used for keyboard to 68000 communication, and are not associated 
with a keystroke. They have no key transition flag, and are therefore described completely 
by 8-bit codes: 
 

78    Reset warning. CTRL-AMIGA-AMIGA has been pressed. The keyboard will 

      wait a maximum of 10 seconds before resetting the machine. (Not 

      available on all keyboard models) 

 

F9    Last key code bad, next key is same code retransmitted 

 

FA    Keyboard key buffer overflow 

 

FC    Keyboard self-test fail. Also, the caps-lock LED will blink to 

      indicate the source of the error. Once for ROM failure, twice for 

      RAM failure and three times if the watchdog timer fails to 

      function. 

 

FD    Initiate power-up key stream (for keys held or stuck at power on) 

 

FE    Terminate power-up key stream. 

 

These key codes will usually be filtered out by keyboard drivers. 
 
LIMITATIONS OF THE KEYBOARD 
The Amiga keyboard is a matrix of rows and columns with a key switch at each 
intersection (see Appendix H for a diagram of the matrix). Because of this, the keyboard is 
subject to a phenomenon called "phantom keystrokes." While this is generally not a 
problem for typing, games may require several keys be independently held down at once. 
By examining the matrix, you can determine which keys may interfere with each other, 
and which ones are always safe. 
 
Phantom keystrokes occur when certain combinations of keys pressed are pressed 

simultaneously. For example, hold the "A" and "S" keys down simultaneously. Notice that 
"A" and "S" are transmitted. While still holding them down, press "Z". On the original 
Amiga 1000 keyboard, both the "Z" and a ghost ''X" would be generated. Starting with the 
Amiga 500, the controller was upgraded to notice simple phantom situations like the one 
above; instead of generating a ghost, the controller will hold off sending any character 
until the matrix has cleared (releasing "A" or "S" would clear the matrix). Some high-end 
Amiga keyboards may implement true "N-key rollover," where any combination of keys 
can be detected simultaneously. 
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All of the keyboards are designed so that phantoms will not happen during normal typing, 
only when unusual key combinations like the one just described are pressed. Normally, 
the keyboard will appear to have "N-key rollover," which means that you will run out of 
fingers before generating a ghost character. 

 
NOTE 
Seven keys are not part of the matrix, and will never contribute to generating phantoms. 
These keys are: CIRL, the two SHIFT keys, the two Amiga keys, and the two ALT keys. 
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Figure 8-9: The Amiga 1000 Keyboard, Showing Keycodes in hex 

 

 

Figure 8-10: the Amiga 500/2000 Keyboard, showing Keycodes in hex. 
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PARALLEL INPUT/OUTPUT INTERFACE 
 
The general-purpose bi-directional parallel interface is a 25-pin connector on the back 
panel of the computer. This connector is generally used for a parallel printer. 

 
For each data byte written to the parallel port register, the hardware automatically 
generates a pulse on the data ready pin. The acknowledge pulse from the parallel device 
is hooked up to an interrupt. For pin connections and timing, see Appendix E and F. 
 
SERIAL INTERFACE 
 

A 25-pin connector on the back panel of the computer serves as the general purpose 
serial interface. This connector can drive a wide range of different peripherals, including 
an external modem or a serial printer. 
 
For pin connections, see Appendix E. 
 
INTRODUCTION TO SERIAL CIRCUITRY 
The Paula custom chip contains a Universal Asynchronous Receiver/Transmitter, or UART. 
This UART is programmable for any rate from 110 to over 1,000,000 bits per second. It 
can receive or send data with a programmable length of eight or nine bits. 
 
The UART implementation provides a high degree of software control. The UART is capable 
of detecting overrun errors, which occur when some other system sends in data faster 
than you remove it from the data-receive register. There are also status bits and 

interrupts for the conditions of receive buffer full and transmit buffer empty. An additional 
status bit is provided that indicates "all bits have been shifted out". All of these topics are 
discussed below. 
 
SETTING THE BAUD RATE 
The rate of transmission (the baud rate) is controlled by the contents of the register 
named SERPER. Bits 14-0 of SERPER are the baud-rate divider bits. 
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All timing is done on the basis of a "color clock," which is 279.36ns long on NTSC 
machines and 281.94ns on PAL machines. If the SERPER divisor is set to the number N, 
then N+1 color clocks occur between samples of the state of the input pin (for receive) or 
between transmissions of output bits (for transmit). Thus SERPER=(3,579,545/baud)-1. 

On a PAL machine, SERPER=(3,546,895/baud)-1. For example, the proper SERPER value 
for 9600 baud on an NTSC machine is (3,579,545/9600)-1=371. 
 
With a cable of a reasonable length, the maximum reliable rate is on the order of 
150,000-250,000 bits per second. Maximum rates will vary between machines. At these 
high rate it is not possible to handle the overhead of interrupts. The receiving end will 
need to be in a tight read loop. Through the use of low speed control information and 

high-speed bursts, a very inexpensive communication network can be built. 
 
SETTING THE RECEIVE MODE 
The number of bits that are to be received before the system tells you that the receive 
register is full may be defined either as eight or nine (this allows for 8 bit transmission 
with parity). In either case, the receive circuitry expects to see one start bit, eight or nine 
data bits, and at least one stop bit. 
 
Receive mode is set by bit 15 of the write-only SERPER register. Bit 15 is a 1 if you chose 
nine data bits for the receive-register full signal, and a 0 if you chose eight data bits. The 
normal state of this bit for most receive applications is a 0. 
 
CONTENTS OF THE RECEIVE DATA REGISTER 
The serial input data-receive register is 16 bits wide. It contains the 8 or 9 bit input data 

and status bits. 
 
The data is received, one bit at a time, into an internal serial-to-parallel shift register. 
When the proper number of bit times have elapsed, the contents of this register are 
transferred to the serial data read register (SERDATR) shown in Table 8-10, and you are 
signalled that there is data ready for you. 
 
Immediately after the transfer of data takes place, the receive shift register again 
becomes ready to accept new data. After receiving the receiver-full interrupt, you will 
have up to one full character-receive time (8 to 10 bit times) to accept the data and clear 
the interrupt. If the interrupt is not cleared in time, the OVERRUN bit is set. 
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Table 8-9 shows the definitions of the various bit positions within SERDATR. 
 

Table 8-9: SERDATR / ADKCON Registers 

 

                         SERDATR 

 Bit 

Number   Name                       Function 

 

  15    OVRUN     OVERRUN bit 

                  (Mirror - also appears in the interrupt request 

                  register.) Indicates that another byte of data was 

                  received before the previous byte was picked up by the 

                  processor. To prevent this condition, it is necessary 

                  to reset INTF_RBF (bit 11, receive-buffer-full) in 

                  INTREQ. 

 

  14    RBF       READ BUFFER FULL 

                  (Mirror - also appears in the interrupt request 

                  register.) When this bit is 1, there is data ready to 

                  be picked up by the processor. After reading the 

                  contents of this data register, you must reset the 

                  INTF_RBF bit in INTREQ to prevent an overrun. 

 

  13    TBE       TRANSMIT BUFFER EMPTY 

                  (Not a mirror-interrupt occurs when the buffer becomes 

                  empty.) When bit 14 is a 1, the data in the output data 

                  register (SERDAT) has been transferred to the serial 

                  output shift register, so SERDAT is ready to accept 

                  another output word. This is also true when the buffer 

                  is empty. 

 

                  This bit is normally used for full-duplex operation. 

 

  12    TSRE      TRANSMIT SHIFT REGISTER EMPTY 

                  When this bit is a 1, the output shift register has 

                  completed its task, all data has been transmitted, and 

                  the register is now idle. If you stop writing data into 

                  the output register (SERDAT), then this bit will become 

                  a 1 after both the word currently in the shift register 

                  and the word placed into SERDAT have been transmitted. 

 

                  This bit is normally used for half-duplex operation. 

 

  11    RXD       Direct read of RXD pin on Paula chip. 

 

  10              Not used at this time. 

 

   9    STP       Stop bit if 9 data bits are specified for receive. 
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  8    STP        Stop bit if 8 data bits are specified for receive. 

                                         OR 

       DB 8       9th data bit if 9 bits are specified for receive. 

 

7-0   DB7-DB0     Low 8 data bits of received data. Data is TRUE (data 

                  you read is the same polarity as the data expected). 

 

ADKCON 

 

  15 SET/CLR      Allows setting or clearing individual bits. 

            

                  If bit 15 is a 1 specified bits are set. 

                  If bit 15 is a 0 specified bits are cleared. 

 

 

  11  UARTBRK     Force the transmit pin to zero. 

 

HOW OUTPUT DATA IS TRANSMITTED 
You send data out on the transmit lines by writing into the serial data output register 

(SERDAT).This register is write-only. 
 
Data will be sent out at the same rate as you have established for the read. Immediately 
after you write the data into this register, the system will begin the transmission at the 
baud rate you selected. 
 
At the start of the operation, this data is transferred from SERDAT into an internal serial 
shift register. When the transfer to the serial shift register has been completed, SERDAT 
can accept new data; the TBE interrupt signals this fact. 
 
Data will be moved out of the shift register, one bit during each time interval, starting 
with the least significant bit. The shifting continues until all 1 bits have been shifted out. 
Any number or combination of data and stop bits may be specified this way. 
 

SERDAT is a 16-bit register that allows you to control the format (appearance) of the 
transmitted data. To form a typical data sequence, such as one start bit, eight data bits, 
and one stop bit, you write into SERDAT the contents shown in Figures 8-11 and 8-12. 
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    15          9 8 7                       0 

   ------------------------------------------- 

    0 0 0 0 0 0 0 1 |<-----8 bits data----->| 

   ------------------------------------------- 

                   --------------------------> 

               Data gets shifted out this way 

 

      Figure 8-12: Starting Appearance of SERDAT and Shift Register 

 

 

    15          9 8 7                       0 

   ------------------------------------------- 

    0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -------->| 1 | 

   -------------------------------------------         1 bit 

                      All zeros from the last shift - 

 

      Figure 8-12: Ending Appearance of Shift Register 

 

The register stops shifting and signals "shift register empty" (TSRE) when there is a 1 bit 
present in the bit-shifted-out position and the rest of the contents of the shift register are 
0s. When new nonzero contents are loaded into this register, shifting begins again. 
 
SPECIFYING THE REGISTER CONTENTS 
The data to be transmitted is placed in the output register (SERDAT). Above the data bits, 
1 bits must be added as stop bits. Normally, either one or two stop bits are sent. 
 

                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 254 Interface Hardware - 



The transmission of the start bit is independent of the contents of this register. One start 
bit is automatically generated before the first data bit (bit 0) is sent. 
 
Writing this register starts the data transmission. If this register is written with all zeros, 

no data transmission is initiated. 
 
DISPLAY OUTPUT CONNECTIONS 
All Amiga’s provide a 23-pin connector on the back. This jack contains video outputs and 
inputs for external genlock devices. Two separate type of RGB video are available on the 
connector 
 

o RGB Monitors ("analog RGB"). Provides four outputs; Red (R), Green (G), Blue (B), and 
Sync (S). They can generate up to 4,096 different colors on-screen simultaneously using 
the circuitry presently available on the Amiga. 
 
o Digital RGB Monitors. Provides four outputs, distinct from those shown above, named 
Red (R), Green (G), Blue (B), Half-Intensity (I), and Sync (S). All output levels are logic 
levels (0 or 1). On some monitors these outputs allow up to 15 possible color 
combinations, where the values 0000 and 0001 map to the same output value (Half 
intensity with no color present is the same as full intensity, no color). Some monitors 
arbitrarily map the 16 combinations to 16 arbitrary colors. 
 
Note that the sync signals from the Amiga are unbuffered. For use with any device that 
presents a heavy load on the sync outputs, external buffers will be required. 
 

The Amiga 500 and 2000 provide a full-band width monochrome video jack for use with 
inexpensive monochrome monitors. The Amiga colors are combined into intensities based 
on the following Table: 
 
                Red  Green Blue 
                30%   60%   10% 
 
The Amiga 1000 provides an RF modulator jack. An adapter is available that allows the 
Amiga to use a television set for display. Stereo sound is available on the jack, but will 
generally be combined into non-aural sound for the TV set. 
 
The Amiga 1000 provides a color composite video jack. This is suitable for recording 
directly with a VCR, but the output is not broadcast quality. For use on a monochrome 
monitor, the color information often has undesired effects; careful color selection or a 

modification to the internal circuitry can improve the results. High quality composite 
adaptors for the A500, A1000, and A2000 plug into the 23 pin RGB port. 
 
The Amiga 2000 provides a special "video slot" that contains many more signals than are 
available elsewhere: all the 23-pin RGB port signals, the unencoded digital video, light 
pen, power, audio, colorburst, pixel switch, sync, clock signals, etc. 
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APPENDIX A 
 

REGISTER SUMMARY - ALPHABETICAL ORDER 
 

 
This appendix contains the definitive summary, in alphabetical order, of the register set 
and the uses of the individual bits. 
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The addresses shown here are used by the special chips (called "Agnus", "Denise", and 
"Paula") for transferring data among themselves. Also, the Copper uses these addresses 
for writing to the special chip registers. To write to these registers with the 68000, 
calculate the 68000 address using this formula: 

 
68000 address = (chip address) + $DFF000 
 
For example, for the 68000 to write to ADKCON (address = $09E), the address would be 
$DFF09E. No other access address is valid. Unused registers must not be accessed 
 
All bits marked as "unused" must be written as zeros. The value of any unused read bit 

must not be trusted. Registers are either read-only or write-only. Reading a write-only 
register will trash the register. Writing a read-only register will cause unexpected results. 
 
All of the "pointer" type registers are organized as 32 bits on a long word boundary. These 
registers may be written with one MOVE.L instruction. The lowest bit of all pointers must 
be written as zero. The custom chips can only access CHIP memory; using a non-CHIP 
address will fail (See the AllocMem() documentation or your compiler manual for more 
information on CHIP memory). Disk data, sprite data, bitplane data, audio data, copper 
lists and anything that will be blitted or accessed by custom chip DMA must be located in 
chip memory. 
 
When strobing any register which responds to either a read or a write, (for example 
copjmp2) be sure to use a MOVE.W, not CLR.W. The CLR instruction causes a read and a 
clear (two accesses) on a 68000, but only a single access on 68020 processors. This will 

give different results on different processors. 
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                         Agnus/ 

                   Read/ Denise/ 

Register Addresses Write Paula                 Function 

-------------------------------------------------------------------- 

 

ADKCON     09E      W     P             Audio, disk, control write 

ADKCONR    010      R     P             Audio, disk, control read 

 

BIT# USE 

-------------------------------------------------------------------- 

 

15   SET/CLR   Set/clear control bit. Determines if bits written with a 1 

               get set or cleared. Bits written with a zero are always 

               unchanged. 

 

14-13 PRECOMP 1-0 

 

          CODE   PRECOMP VALUE 

          -------------------- 

           00        none 

           01       140 ns 

           10       280 ns 

           11       560 ns 

 

 

12   MFMPREC   (1=MFM precomp 0-GCR precomp) 

11   UARTBRK   Forces a UART break (clear TXD) if true. 

10   WORDSYNC  Enable disk read synchronizing on a word equal to DISK 

               SYNC CODE, located in address (3F)*2. 

09   MSBSYNC   Enables disk read synchronizing on the MSB (most 

               significant bit). Apply type GCR. 

08   FAST      Disk data clock rate control 1-fast(2us) 0=slow(4us). (fast 

               for MFM, slow for MFM or GCR) 

 

07   USE3PN    Use audio channel 3 to modulate nothing. 

06   USE2P3    Use audio channel 2 to modulate period of channel 3. 

05   USE1P2    Use audio channel 1 to modulate period of channel 2. 

04   USE0P1    Use audio channel 0 to modulate period of channel 1. 

 

03   USE3VN    Use audio channel 3 to modulate nothing. 

02   USE2V3    Use audio channel 2 to modulate volume of channel 3. 

01   USE1V2    Use audio channel 1 to modulate volume of channel 2. 

00   USE0V1    Use audio channel 0 to modulate volume of channel 1. 

 

NOTE: If both period and volume are modulated on the same channel, the 

period and volume will be alternated. First word xxxxxxxx V6-V0 , Second 

word P15-P0 (etc) 

 

AUDxDAT    0AA      W     P             Audio channel x data 

 

This register is the audio channel x (x=0,1,2,3) DMA data buffer. It 

contains 2 bytes of data that are each 2'8 complement and are outputted 

sequentially (with digital-to-analog conversion) to the audio output pins. 

(LSB = 3 MV) The DMA controller automatically transfers data to this 

register from RAM. The processor can also write directly to this 

register. When the DMA data is finished (words outputted=length) and the 

data in this register has been used, an audio channel interrupt request 

is set. 
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AUDxLCH 0A0 W A       Audio channel x location (high 3 bits) 

AUDxLCL 0A2 W A       Audio channel x location (low 15 bits) 

 

This pair of registers contains the 18 bit starting address (location) of 

audio channel x (x=0,1,2,3) DMA data. This is not a pointer register and 

therefore needs to be reloaded only if a different memory location is to 

be outputted. 

 

AUDxLEN 0A4 W     P   Audio channel x length 

 

This register contains the length (number of words) of audio channel x DMA 

data. 

 

AUDxPER 0A6 W     P   Audio channel x Period 

 

This register contains the period (rate) of audio channel x DMA data 

transfer. The minimum period is 12 color clocks. This means that the 

smallest number that should be placed in this register is 124 decimal. 

This corresponds to a maximum sample frequency of 28.86 kHz. 

 

AUDxVOL 0A8 W     P   Audio channel x volume 

 

This register contains the volume setting for audio channel x. Bits 

6,5,4,3,2,1,0 specify 65 linear volume levels as shown below. 

 

Bit#   Use 

-------------------------------------------------- 

 

15-07  Not used 

06     Forces volume to max (64 ones, no zeros) 

05-00  Sets one of 64 levels (000000-no output (111111-63 19, one 0) 

 

BLTAFWM 044 W A       Blitter first-word mask for source A 

BLTALWM 046 W A       Blitter last-word mask for source A 

 

The patterns in these two registers are ANDed with the first and last 

words of each line of data from source A into the blitter. A zero in any 

bit override data from source A. These registers should be set to all 1's 

for fill mode or for line-drawing mode. 
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BLTCON0 040 W A       Blitter control register 0 

BLTCON1 042 W A       Blitter control register 1 

 

These two control registers are used together to control blitter 

operations. There are two basic mode, area and line, which are selected 

by bit 0 of BLTCON1, as shown below. 

 

AREA MODE ("normal") 

 

BIT BLTCON0    BLTCON1 

 

15    ASH3      BSH3 

14    ASH2      BSH2 

13    ASH1      BSH1 

12    ASA0      BSH0 

11    USEA        X 

10    USEB        X 

09    USEC        X 

08    USED        X 

07    LF7         X 

06    LF6         X 

05    LF5         X 

04    LF4       EFE 

03    LF3       IFE 

02    LF2       FCI 

01    LF1       DESC 

00    LF0       LINE(0) 

 

ASH 3-0 Shift value of A source 

BSH 3-0 Shift value of B source 

USEA Mode control bit to use source A 

USEB Mode control bit to use source B 

USEC Mode control bit to use source C 

USED Mode control bit to use destination D 

LF 7-0 Logic function minterm select lines 

EFE Exclusive fill enable 

IFE Inclusive fill enable 

FCI Fill carry input 

DESC Descending (decreasing address) control bit 

LINE Line mode control bit (set to 0) 
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BLTCON0 (cont.)  LINE DRAW      LINE MODE (line draw) 

BLTCON1 (cont.)  LINE DRAW 

                 LINE DRAW    BIT# BLTCON0  BLTCON1 

                 LINE DRAW 

                 LINE DRAW     15   START3  TEXTURE3 

                 LINE DRAW     14   START2  TEXTURE2 

                 LINE DRAW     13   STARTl  TEXTURE1 

                 LINE DRAW     12   START0  TEXTURE0 

                 LINE DRAW     11   1       0 

                 LINE DRAW     10   0       0 

                 LINE DRAW     09   1       0 

                 LINE DRAW     08   1       0 

                 LINE DRAW     07   LF7     0 

                 LINE DRAW     06   LF6     SIGN 

                 LINE DRAW     05   LF5     0 (Reserved) 

                 LINE DRAW     04   LF4     SUD 

                 LINE DRAW     03   LF3     SUL 

                 LINE DRAW     02   LF2     AUL 

                 LINE DRAW     01   LF1     SING 

                 LINE DRAW     00   LF0     LINE(=1) 

                 LINE DRAW 

                 LINE DRAW     START 3-0 Starting point of line 

                 LINE DRAW               (0 thru 15 hex) 

 

                 LINE DRAW     LF7-0 Logic function minterm 

                 LINE DRAW     select lines should be preloaded 

                 LINE DRAW     with 4A to select the equation 

                 LINE DRAW     D=(AC+ABC). Since A contains a 

                 LINE DRAW     single bit true (8000), most bits 

                 LINE DRAW     will pass the C field unchanged 

                 LINE DRAW     (not A and C), hut one bit will 

                 LINE DRAW     invert the C field and combine it 

                 LINE DRAW     with texture (A and B and not C). 

                 LINE DRAW     The A bit is automatically moved 

                 LINE DRAW     across the word by the hardware. 

                 LINE DRAW 

                 LINE DRAW     LINE Line mode control bit (set to 1) 

                 LINE DRAW     SIGN Sign flag 

                 LINE DRAW     0 Reserved for new mode 

                 LINE DRAW     SING Single bit per horizontal line for 

                 LINE DRAW     use with subsequent area fill 

                 LINE DRAW     SUD Sometimes up or down (=AUD*) 

                 LINE DRAW     SUL Sometimes up or left 

                 LINE DRAW     AUL Always up or left 

 

                 LINE DRAW     The 3 bits above select the octant 

                 LINE DRAW     for line drawing: 

 

                 LINE DRAW     OCT     SUD SUL AUL 

                 LINE DRAW 

                 LINE DRAW      0       1   1   0 

                 LINE DRAW      1       0   0   1 

                 LINE DRAW      2       0   1   1 

                 LINE DRAW      3       1   1   1 

                 LINE DRAW      4       1   0   1 

                 LINE DRAW      5       0   1   0 

                 LINE DRAW      6       0   0   0 

                 LINE DRAW      7       1   0   0 

 

LINE DRAW The "B" source is used for 

LINE DRAW texturing the drawn lines. 



BLTDDAT               Blitter destination data register 

 

This register holds the data resulting from each 

word of blitter operation until it is sent to a 

RAM destination. This is a dummy address and 

cannot be read by the micro. The transfer is 

automatic during blitter operation. 

 

BLTSIZE 058 W A       Blitter start and size (window width, height) 

 

This register contains the width and height of 

the blitter operation (in line mode, width must 

= 2, height = line length). Writing to this 

register will start the blitter, and should be 

done last, after all pointers and control 

registers have been initialized. 

 

BIT 15,19,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

--------------------------------------------------- 

    h9 h8 h7 h6 h5 h4 h3 h2 h1 h0,w5 w4 w3 w2 w1 w0 

 

h=height=vertical lines (10 bits=1024 lines max) 

w=width=horizontal pixels (6 bits=64 words=1024 pixels max) 

 

LINE DRAW BLTSIZE controls the line length and starts 

LINE DRAW the line draw when written to. The h field 

LINE DRAW controls the line length (10 bits gives 

LINE DRAW lines up to 1024 dots long). The w field 

LINE DRAW must be set to 02 for all line drawing. 

 

BLTxDAT 074 W A       Blitter source x data register 

 

This register holds source x (x=A,B,C) data for 

use by the blitter. It is normally loaded by the 

blitter DMA channel; however, it may also be 

preloaded by the microprocessor. 

 

LINE DRAW BLTADAT is used as an index register 

LINE DRAW and must be preloaded with 8000. 

LINE DRAW BLTBDAT is used for texture; it must 

LINE DRAW be preloaded with FF if no texture 

LINE DRAW (solid line) is desired. 
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BLTxMOD 064 W A       Blitter modulo x 

 

This register contains the modulo for blitter 

source (xA,B,C) or destination (x=D). A modulo 

is a number that is automatically added to the 

address at the end of each line, to make the 

address point to the start of the next line. Each 

source or destination has its own modulo, allowing 

each to be a different size, while an identical 

area of each is used in the blitter operation. 

 

LINE DRAW BLTAMOD and BLTBMOD are used as slope 

LINE DRAW storage registers and must be preloaded 

LINE DRAW with the values (4Y-4X) and (4Y) 

LINE DRAW respectively. Y/X= line slope. 

LINE DRAW BLTCMOD and BLTDMOD must both be 

LINE DRAW preloaded with the width (in bytes) 

LINE DRAW of the image into which the line is 

LINE DRAW being drawn (normally two times the 

LINE DRAW screen width in words). 

 

BLTxPTH 050 W A       Blitter pointer to x (high 3 bits) 

BLTxPTL 052 W A       Blitter pointer to x (low 15 bits) 

 

This pair of registers contains the 18-bit address 

of blitter source (x=A,B,C) or destination (x=D) 

DMA data. This pointer must be preloaded with the 

starting address of the data to be processed by 

the blitter. After the blitter is finished, it 

will contain the last data address (plus increment 

and modulo). 

 

LINE DRAW BLTAPTL is used as an accumulator 

LINE DRAW register and must be preloaded with 

LINE DRAW the starting value of (2Y-X) where 

LINE DRAW Y/X is the line slope. BLTCPT and 

LINE DRAW BLTDPT (both H and L) must be 

LINE DRAW preloaded with the starting address 

LINE DRAW of the line. 

 

BPLlMOD 108 W A       Bit plane modulo (odd planes) 

BPL2MOD 10A W A       Bit Plane modulo (even planes) 

 

These registers contain the modules for the odd 

and even bit planes. A modulo is a number that is 

automatically added to the address at the end of 

each line, so that the address then points to the 

start of the next line. 

Since they have separate modules, the odd and even 

bit planes may have sizes that are different from 

each other, as well as different from the display 

window size. 

 

                            

 

 

 

 

 

 

- 264 Appendix A - 



BPLCON0 100 W A D Bit plane control register (misc. 

                  control bits) 

BPLCON1 102 W D   Bit plane control register 

                  (horizontal scroll control) 

BPLCON2 104 W D   Bit Plane control register 

                  (video priority control) 

 

These registers control the operation of the 

bit planes and various aspects of the display. 

 

BIT#     BPLCON0   BPLCON1    BPLCON2 

 

15       HIRES       X           X 

14       BPU2        X           X 

13       BPU1        X           X 

12       BPU0        X           X 

11       HOMOD       X           X 

10       DBLPF       X           X 

09       COLOR       X           X 

08       GAUD        X           X 

07        X         PF2H3        X 

06        X         PF2H2      PF2PRI 

05        X         PF2H1      PF2P2 

04        X         PF2H0      PF2P1 

03       LPEN       PF1H3      PF2P0 

02       LACE       PF1H2      PF1P2 

01       ERSY       PF1H1      PF1P1 

00        X         PF1H0      PF1lP0 

 

HIRES =High-resolution (640) mode 

BPU   =Bit plane use code 000-110 (NONE through 6 inclusive) 

HOMOD =Hold-and-modify mode 

DBLPF =Double playfield (PF1=odd PF2=even bit planes) 

COLOR =Composite video COLOR enable 

GAUD  =Genlock audio enable (muxed on BKGND pin during vertical blanking 

LPEN  =Lightpen enable (reset on power up) 

LACE  =Interlace enable (reset on power up) 

ERSY  =External resync (HSYNC, VSYNC pads become inputs) (reset on power 

      up) 

PF2PRI=Playfield 2 (even planes) has priority over (appears in front of) 

       playfield 1 (odd planes). 

PF2P  =Playfield 2 priority code (with respect to sprites) 

PF1P  =Playfield 1 priority code (with respect to sprites) 

PF2H  =Playfield 2 horizontal scroll code 

PFlH  =Playfield 1 horizontal scroll code 
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BPLxDAT 110 W D Bit plane x data (parallel-to-serial convert) 

 

These registers receive the DMA data fetched from 

RAM by the bit plane address pointers described 

above. They may also be written by either 

microprocessor. They act as a six-word parallel- 

to-serial buffer for up to six memory bit planes 

(x=1-6). The parallel-to-serial conversion is 

triggered whenever bit plane #1 is written, 

indicating the completion of all bit planes for 

that word (16 pixels). The MSB i9 output first, 

and is, therefore, always on the left. 

 

BPLxPTH 0E0 W A =      Bit plane x pointer (high 3 bits) 

 

BPLxPTL 0E2 W A       Bit plane x pointer (low 15 bits) 

 

This pair of registers contains the 18-bit pointer to 

the address of bit-plane x (x21,2,3,4,5,6) DMA data. 

This pointer must be reinitialized by the processor 

or copper to point to the beginning of bit plane data 

every vertical blank time. 

 

CLXCON      098 W D Collision control 

 

This register controls which bit-planes are 

included (enabled) in collision detection and 

their required state if included. It also controls 

the individual inclusion of odd-numbered sprites 

in the collision detection by logically OR-ing 

them with their corresponding even-numbered sprite. 

 

BIT  FUNCTION   DESCRIPTION 

----------------------------------------------------- 

15    ENSP7     Enable sprite 7 (ORed with sprite 6) 

14    ENSP5     Enable sprite 5 (ORed with sprite 4) 

13    ENSP3     Enable sprite 3 (ORed with sprite 2) 

12    ENSP1     Enable sprite 1 (ORed with sprite 0) 

11    ENBP6     Enable bit plane 6 (match required for collision) 

10    ENBP5     Enable bit plane 5 (match required for collision) 

09    ENBP4     Enable bit plane 4 (match required for collision) 

08    ENBP3     Enable bit plane 3 (match required for collision) 

07    ENBP2     Enable bit plane 2 (match required for collision) 

06    ENBP1     Enable bit plane 1 (match required for collision) 

05    NVBP6     Match value for bit plane 6 collision 

04    MVBP5     Match value for bit plane 5 collision 

03    MVBP4     Match value for bit plane 4 collision 

02    MVBP3     Match value for bit plane 3 collision 

01    MVBP2     Match value for bit plane 2 collision 

00    MVBP1     Match value for bit plane 1 collision 

 

NOTE: Disabled bit planes cannot prevent collisions. Therefore if all bit 

planes are disabled, collisions will be continuous, regardless of the 

match values. 
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CLXDAT      00E R D Collision data register (read and clear) 

 

This address reads (and clears) the collision 

detection register. The bit assignments are below. 

 

NOTE: Playfield 1 is all odd-numbered enabled 

bit planes. Playfield 2 is all even-numbered 

enabled bit planes 

 

BIT# COLLISIONS REGISTERED 

-------------------------------------- 

15   not used 

14   Sprite 4 (or 5) to sprite 6 (or 7) 

13   Sprite 2 (or 3) to sprite 6 (or 7) 

12   Sprite 2 (or 3) to sprite 4 (or 5) 

11   Sprite 0 (or 1) to sprite 6 (or 7) 

10   Sprite 0 (or 1) to sprite 4 (or 5) 

09   Sprite 0 (or 1) to sprite 2 (or 3) 

08   Playfield 2 to sprite 6 (or 7) 

07   Playfield 2 to sprite 4 (or 5) 

06   Playfield 2 to sprite 2 (or 3) 

05   Playfield 2 to sprite 0 (or 1) 

04   Playfield 1 to sprite 6 (or 7) 

03   Playfield 1 to sprite 4 (or 5) 

02   Playfield 1 to sprite 2 (or 3) 

01   Playfield 1 to sprite 0 (or 1) 

00   Playfield 1 to playfield 2 

 

COLORxx 180 W D Color Table xx 

 

There are 32 of these registers (xx=00-31) and they 

are sometimes collectively called the "color 

palette." They contain 12-bit codes representing 

red, green, and blue colors for RGB systems. 

One of these registers at a time is selected 

(by the BPLxDAT serialized video code) 

for presentation at the RGB video output pins. 

The Table below shows the color register bit usage. 

 

BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

---------------------------------------------------- 

 RGB  X  X  X  X R3 R2 B1 R0 G3 G2 G1 G0 B3 B2 B1 B0 

 

B=blue, G=green, R=red, 

 

COP1LCH     080 W A          Copper first location register 

                             (high 3 bits) 

COP1LCL     082 W A          Copper first location register 

                             (low 15 bits) 

COP2LCH     084 W A          Copper second location register 

                             (high 3 bits) 

COP2LCL     086 W A          Copper second location register 

                             (low 15 bits) 

 

These registers contain the jump addresses described above. 
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COPCON      02E W A Copper control register 

 

This is a 1-bit register that when set true, allows 

the Copper to access the blitter hardware. This 

bit is cleared by power-on reset, so that the 

Copper cannot access the blitter hardware. 

 

BIT  NAME      FUNCTION 

 

01   CDANG     Copper danger mode. Allows Copper 

               access to blitter if true. 

 

COPINS      08C W A Copper instruction fetch identify 

 

This is a dummy address that is generated by the 

Copper whenever it is loading instructions into 

its own instruction register. This actually occurs 

every Copper cycle except for the second (IR2) 

cycle of the MOVE instruction. The three types 

of instructions are shown below. 

 

MOVE - Move immediate to destination. 

WAIT - Wait until beam counter is equal to, or 

greater than. (keeps Copper off of bus 

until beam position has been reached). 

SKIP - Skip if beam counter is equal to or greater 

than (skips following MOVE instruction unless 

beam position has been reached). 
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COPINS (cont.) MOVE    WAIT UNTIL      SKIP IF 

 

BIT      IR1  IR2      IR1    IR2    IR1    IR2 

 

15       X    RD15     VP7    BFD *  VP7    BFD * 

14       X    RD14     VP6    VE6    VP6    VE6 

13       X    RD13     VP5    VE5    VP5    VES 

12       X    RD12     VP4    VE4    VP4    VE4 

11       X    RD11     VP3    VE3    VP3    VE3 

10       X    RD10     VP2    VE2    VP2    VE2 

09       X    RD09     VP1    VE1    VP1    VE1 

08      DA8   RD08     VP0    VE0    VP0    VE0 

07      DA7   RD07     HP8    HE8    HP8    HE8 

06      DA6   RD06     HP7    HE7    HP7    HE7 

05      DAS   RD05     HP6    HE6    HP6    HE6 

04      DA4   RD04     HP5    HE5    HPS    HES 

03      DA3   RD03     HP4    HE4    HP4    HE4 

02      DA2   RD02     HP3    HE3    HP3    HE3 

01      DA1   RD01     HP2    HE2    HP2    HE2 

00       0    RD00      1      0      1      1 

 

IR1  =First instruction register 

IR2  =Second instruction register 

DA   =Destination address for MOVE instruction. Fetched 

      during IR1 time, used during IR2 time on RGA bus. 

RD   =RAM data moved by MOVE instruction at IR2 time 

      directly from RAM to the address given by the 

      DA field. 

 

VP   =Vertical beam position comparison bit. 

HP   =Horizontal beam position comparison bit. 

VE   =Enable comparison (mask bit). 

HE   =Enable comparison (mask bit). 

 

* NOTE BFD-Blitter finished disable. When this bit is true, the Blitter 

Finished flag will have no effect on the Copper. When this 

bit is zero, the Blitter Finished flag must be true (in addition to the 

rest of the bit comparison) before the Copper can exit from its wait 

state or skip over an instruction. Note that the V7 comparison cannot be 

masked. 

 

The Copper is basically a two-cycle machine that requests the bus only 

during odd memory cycles (4 memory cycles per instruction). This prevents 

collisions with display, audio, disk, refresh, and sprites, all of which 

use only even cycles. It therefore needs (and has) priority over only the 

blitter and micro-processor. 

 

There are only three types of instructions: MOVE immediate, WAIT until, 

and SKIP if. All instructions (except for WAIT) require two bus cycles 

(and two instruction words). Since only the odd bus cycles are requested, 

four memory cycle times are required per instruction (memory cycles are 

280 ns.) 
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COPINS (cont.) 

 

There are two indirect jump registers, COP1LC and COP2LC. These are 18- 

bit pointer registers whose contents are used to modify the program 

counter for initialization or jumps. They are transferred to the program 

counter whenever strobe addresses COPJMP1 or COPJMP2 are written. In 

addition, COP1LC is automatically used at the beginning of each vertical 

blank time. 

 

It is important that one of the jump registers be initialized and its 

jump strobe address hit after power-up but before Copper DMA is 

initialized.  This insures a determined startup address and state. 

 

COPJMP1 088 5 A       Copper restart at first location 

COPJMP2 08A 5 A       Copper restart at second location 

 

These addresses are strobe addresses. When written to, they cause the 

Copper to jump indirect using the address contained in the first or 

second location registers described below. The Copper itself can write to 

these addresses, causing its own jump indirect. 
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DDFSTOP 094 W A       Display data fetch stop (horiz. position) 

 

DDFSTRT 092 W A       Display data fetch start (horiz. position) 

 

These registers control the horizontal timing of the 

beginning and end of the bit plane DMA display data 

fetch. The vertical bit plane DMA timing is identical 

to the display windows described above. 

The bit plane modules are dependent on the bit plane 

horizontal size and on this data-fetch window size. 

 

Register bit assignment 

 

BIT 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

--------------------------------------------------- 

USE  X  X  X  X  X  X  X  X H8 H7 H6 H5 H4 H3  X  X 

 

(X bits should always be driven with 0 to maintain 

upward compatibility) 

 

The Tables below show the start and stop timing for 

different register contents. 

 

DDFSTRT (left edge of display data fetch) 

 

PURPOSE            H8,H7,H6,H5,H4 

--------------------------------- 

Extra wide (max) *  0  0  1  0  1 

Wide                0  0  1  1  0 

Normal              0  0  1  1  1 

Narrow              0  1  0  0  0 

 

DDFSTOP (right edge of display data fetch) 

 

PURPOSE            H8,H7,H6,H5,H4 

--------------------------------- 

Narrow              1  1  0  0  1 

Normal              1  1  0  1  0 

Wide (max)          1  1  0  1  1 

 

DIWSTOP 090 W A       Display window stop (lower right 

vertical-horizontal position) 

 

DIWSTRT 08E W A       Display window start (upper left 

vertical-horizontal position) 

 

These registers control display window size and 

position by locating the upper left and lower right 

corners. 

 

BIT 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

--------------------------------------------------- 

USE V7 V6 V5 V4 V3 V2 V1 V0 H7 H6 H5 H4 H3 H2 H1 H0 

 

DIWSTRT is vertically restricted to the upper 2/3 

of the display (V8=0) and horizontally restricted to 

the left 3/4 of the display (H8=0). 

 

DIWSTOP is vertically restricted to the lower 1/2 

of the display (V8=/V7) and horizontally restricted 

to the right 1/4 of the display (H8=1). 



DMACON      096 W A D P DMA control write (clear or set) 

DMACONR     002 R A P DMA control (and blitter status) read 

 

                 This register controls all of the DMA channels and 

                 contains blitter DMA status bits. 

 

                 BIT   FUNCTION     DESCRIPTION 

 

                 15    SET/CLR      Set/clear control bit. Determines 

                                    if bits written with a 1 get set or 

                                    cleared. Bits written with a zero 

                                    are unchanged. 

                 14    BBUSY        Blitter busy status bit (read only) 

                 13    BZERO        Blitter logic zero status bit 

                                     (read only). 

                 12    X 

                 11    X 

                 10    BLTPRI       Blitter DMA priority 

                                     (over CPU micro) (also called 

                                    "blitter nasty") (disables /BLS 

                                    pin, preventing micro from 

                                    stealing any bus cycles while 

                                    blitter DMA is running). 

                 09    DMAEN        Enable all DMA below 

                 08    BPLEN        Bit plane DMA enable 

                 07    COPEN        Copper DMA enable 

                 06    BLTEN        Blitter DMA enable 

                 05    SPREN        Sprite DMA enable 

                 04    DSKEN        Disk DMA enable 

                 03    AUD3EN       Audio channel 3 DMA enable 

                 02    AUD2EN       Audio channel 2 DMA enable 

                 01    AUD1EN       Audio channel 1 DMA enable 

                 00    AUD0EN       Audio channel 0 DMA enable 

 

DSKBYTR     01A R      P Disk data byte and status read 

 

This register is the disk-microprocessor data 

buffer. Data from the disk (in read mode) is 

loaded into this register one byte at a time, and 

bit 15 (DSKBYT) is set true. 

 

BIT 

--------------------------------------------------- 

15     DSKBYT    Disk byte ready (reset on read) 

14     DMAON     Mirror of bit 15 (DMAEN) in DSKLEN, 

                 ANDed with Bit 09 (DMAEN) in DMACON 

13     DISKWRITE Mirror of bit 14 (WRITE) in DSKLEN 

12     WORDEQUAL This bit true only while the 

                 DSKSYNC register equals the data from disk. 

11-08  X         Not used 

07-00 DATA       Disk byte data 
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DSKDAT      026    W    P   Disk DMA data write 

DSKDATR     008    ER   P   Disk DMA data read (early read dummy 

                                  address ) 

 

                 This register is the disk DMA data buffer. It 

                 contains two bytes of data that are either sent 

                 (written) to or received (read) from the disk. 

                 The write mode is enabled by bit 14 of the LENGTH 

                 register. The DMA controller automatically 

                 transfer data to or from this register and RAM, 

                 and when the DMA data is finished (length=0) it 

                 causes a disk block interrupt. See interrupts below. 

 

DSKLEN      024    W    P   Disk length 

 

                 This register contains the length (number of words) 

                 of disk DMA data. It also contains two control 

                 bits, a DMA enable bit, and a DMA 

                 direction (read/write) bit. 

 

                 BIT#   FUNCTION       DESRIPTION 

                 ------------------------------------------------- 

                 15     DMAEN          Disk DMA enable 

                 14     WRITE          Disk write (RAM to disk) if 1 

                 13-0   LENGTH         Length (# of words) of DMA data. 

 

DSKPTH      020    W    A   Disk pointer (high 3 bits) 

DSKPTL      022    W    A   Disk pointer (low 15 bits) 

 

                 This pair of registers contains the 18-bit 

                 address of disk DMA data. These address registers 

                 must be initialized by the processor or Copper 

                 before disk DMA is enabled. 

 

DSKSYNC     07E    W    P   Disk sync register 

 

                 hold the match code for disk read synchronization. 

                 See ADKCON bit 10. 
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INTENA      09A W P Interrupt enable bits (clear or set bits) 

INTENAR     01C R P Interrupt enable bits (read) 

 

                 This register contains interrupt enable bits. The bit 

                 assignment for both the request and enable registers 

                 is given below. 

 

                 BIT#   FUNCT  LEVEL  DESCRIPTION 

                 -------------------------------------------------------- 

                 15    SET/CLR       Set/clear control bit. Determines if 

                                     bits written with a 1 get set or 

                                     cleared. Bits written with a zero 

                                     are always unchanged. 

                 14    INTEN         Master interrupt (enable only, 

                                     no request) 

                 13    EXTER     6   External interrupt 

                 12    DSKSYN    5   Disk sync register (DSKSYNC) 

                                      matches disk data 

                 11    RBF       5   Serial port receive buffer full 

                 10    AUD3      4   Audio channel 3 block finished 

                 09    AUD2      4   Audio channel 2 block finished 

                 08    AUDl      4   Audio channel 1 block finished 

                 07    AUD0      4   Audio channel 0 block finished 

                 06    BLIT      3   Blitter finished 

                 05    VERTB     3   Start of vertical blank 

                 04    COPER     3   Copper 

                 03    PORTS     2   I/O ports and timers 

                 02    SOFT      1   Reserved for software-initiated 

                                      interrupt 

                 01    DSKBLK    1   Disk block finished 

                 00    TBE       1   Serial port transmit buffer empty 

 

INTREQ       09C W       P Interrupt request bits (clear or set) 

INTREQR      01E R       P Interrupt request bits (read) 

 

This register contains interrupt request bits (or flags). These bits may 

be polled by the processor; if enabled by the bits listed in the next 

register, they may cause processor interrupts. Both a set and clear 

operation are required to load arbitrary data into this register. These 

status bits are not automatically reset when the interrupt is serviced, 

and must be reset when desired by writing to this address. The bit 

assignments are identical to the enable register below. 
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JOY0DAT 00A R D Joystick-mouse 0 data (left vertical, horizontal) 

 

JOY1DAT 00C R D Joystick-mouse 1 data (right vertical, horizontal) 

 

These addresses each read a pair of 8-bit mouse counters. 0=left 

controller pair, 1=right controller pair (four counters total). The bit 

usage for both left and right addresses is shown below. Each counter is 

clocked by signals from two controller pins. Bits 1 and 0 of each counter 

may be read to determine the state of these two clock pins. This allows 

these pins to double as joystick switch inputs. 

 

Mouse counter usage: 

(pins 1,3=Yclock, pins 2,4=Xclock) 

 

BIT  15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00 

---------------------------------------------------- 

0DAT Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 X7 X6 X5 X4 X3 X2 X1 X0 

1DAT Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 X7 X6 X5 X4 X3 X2 X1 X0 

 

The following Table shows the mouse/joystick connector pin usage. The 

pins (and their functions) are sampled (multiplexed) into the DENISE chip 

during the clock times shown in the Table. This Table is for reference 

only and should not be needed by the programmer. (Note that the joystick 

functions are all "active low" at the connector pins.) 

 

                            Sampled by DENISE 

Conn   Joystick   Mouse 

Pin    Function   Function  Pin  Name    Clock 

------------------------------------------------ 

L1     FORW*        Y        38   M0V at CCK 

L3     LEFT*        YQ       38   M0V at CCK* 

L2     BACK*        X         9   M0H at CCK 

L4     RIGH*        XQ        9   M0H at CCK* 

R1     FORW*        Y        39   M1V at CCK 

R3     LEFT*        YQ       39   M1V at CCK* 

R2     BACK*        X         8   M1H at CCK 

R4     RIGH*        XQ        8   M1H at CCK* 

 

After being sampled, these connector pin signals are used in quadrature 

to clock the mouse counters. The LEFT and RIGHT joystick functions 

(active high) are directly available on the Y1 and X1 bits of each 

counter. In order to recreate the FORWARD and BACK joystick functions, 

however, it is necessary to logically combine (exclusive OR) the lower 

two bits of each counter. This is illustrated in the following Table. 

 

TO DETECT                   READ THESE COUNTER BITS 

---------------------------------------------------------- 

Forward                     Y1 xor Y0 (BIT#09 xor BIT#08) 

Left                        Y1 

Back                        X1 xor X0 (BIT#01 xor BIT#00) 

Right                       X1 
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JOYTEST 036 W D Write to all four joystick-mouse counters at once. 

 

Mouse counter write test data: 

 

BIT# 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00 

---------------------------------------------------- 

0DAT Y7 Y6 Y5 Y4 Y3 Y2 xx xx X7 X6 X5 X4 X3 X2 xx xx 

1DAT Y7 Y6 Y5 Y4 Y3 Y2 xx xx X7 X6 X5 X4 X3 X2 xx xx 

 

POT0DAT     012 R        P Pot counter data left pair (vert,horiz) 

POT1DAT     014 R        P Pot counter data right pair (vert,horiz) 

 

These addresses each read a pair of 8-bit pot counters. 

(Four counters total.) The bit assignment for both 

addresses is shown below. The counters are stopped by 

signals from two controller connectors (left-right) 

with two pins each. 

 

BIT#  15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00 

----------------------------------------------------- 

RIGHT Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 X7 X6 X5 X4 X3 X2 X1 X0 

LEFT  Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 X7 X6 X5 X4 X3 X2 X1 X0 

 

             CONNECTORS                PAULA 

         ---------------------------------------- 

          Loc.  Dir.  Sym  Pin     Pin#  Pin Name 

         ---------------------------------------- 

         RIGHT   Y     RY   9       36    (POT1Y) 

         RIGHT   X     RX   5       35    (POT1X) 

         LEFT    Y     LY   9       33    (POT0Y) 

         LEFT    X     LX   5       32    (POT0X) 

 

POTGO       034 W        P Pot port data write and start. 

 

POTGOR      016 R        P Pot port data read (formerly called POTINP). 

 

This register controls a 4-bit bi-directional I/O port 

that shares the same four pins as the four pot counters 

above. 

 

BIT#  FUNCT   DESCRIPTION 

--------------------------------------- 

15    OUTRY   Output enable for Paula pin 36 

14    DATRY   I/O data Paula pin 36 

13    OUTRX   Output enable for Paula pin 35 

12    DATRX   I/O data Paula pin 35 

11    OUTLY   Output enable for Paula pin 33 

10    DATLY   I/O data Paula pin 33 

09    OUTLX   Output enable for Paula pin 32 

08    DATLX   I/O data Paula pin 32 

07-01 0       Reserved for chip ID code (presently 0) 

00    START   Start pots (dump capacitors, start counters) 

 

REFPTR      028 W A          Refresh pointer 

 

This register is used as a dynamic RAM refresh address generator. It is 

writeable for test purposes only, and should never be written by 

the microprocessor. 
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SERDAT      030 W P Serial port data and stop bits write 

                                  (transmit data buffer) 

 

                 This address writes data to a transmit data buffer. 

                 Data from this buffer is moved into a serial shift 

                 register for output transmission whenever it is 

                 empty. This sets the interrupt request TBE 

                 (transmit buffer empty). A stop bit must be 

                 provided as part of the data word. The length of 

                 the data word is set by the position of the stop 

                 bit. 

 

                 BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

                 ---------------------------------------------------- 

                 USE   0  0  0  0  0  0  S D8 D7 D6 D5 D4 D3 D2 D1 D0 

 

                 Note: S = stop bit = 1, D = data bits. 

 

SERDATR     018 R P Serial port data and status read 

                                 (receive data buffer) 

 

                 This address reads data from a receive data buffer. 

                 Data in this buffer is loaded from a receiving 

                 shift register whenever it is full. Several 

                 interrupt request bits are also read at this 

                 address, along with the data, as shown below. 

 

BIT# SYM           FUNCTION 

 

15    OVRUN        Serial port receiver overrun. 

                   Reset by resetting bit 11 of INTREQ. 

14    RBF          Serial port receive buffer full 

                    (mirror). 

13    TBE          Serial port transmit buffer empty (mirror). 

12    TSRE         Serial port transmit shift register empty. 

                    Reset by loading into buffer. 

11    RXD          RXD pin receives UART serial data for direct bit test 

                    by the microprocessor. 

10    0            Not used 

09    STP          Stop bit 

08  STP-DB8        Stop bit if LONG, data bit if not. 

07    DB7          Data bit 

06    DB6          Data bit 

05    DBS          Data bit 

04    DB4          Data bit 

03    DB3          Data bit 

02    DB2          Data bit 

01    DB1          Data bit 

00    DB0          Data bit 
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SERPER      032 W P Serial port period and control 

 

This register contains the control bit LONG referred to 

above, and a 15-bit number defining the serial port 

baud rate. If this number is N, then the baud rate is 

1 bit every (N+1) * 0.2794 microseconds. 

 

BIT#   SYM        FUNCTION 

-------------------------------------------------------------- 

15     LONG       Defines serial receive as 9-bit word. 

14-00  RATE       Defines baud rate=1/ ( (N+1) * 0.2794 microsec. 

 

SPRxCTL 142 W A D Sprite x vert stop position and control data 

SPRxPOS 140 W A D Sprite x vert-horiz start position data 

 

These two registers work together as position, size and 

feature sprite-control registers. They are usually loaded 

by the sprite DMA channel during horizontal blank; 

however, they may be loaded by either processor at any time. 

SPRxPOS register: 

 

BIT#   SYM      FUNCTION 

------------------------------------------------------------------ 

15-08  SV7-SV0  Start vertical value. High bit(SV8) is in SPRxCTL 

                 register below. 

07-00  SH8-SH1  Start horizontal value. Low bit(SH0) is in SPRxCTL 

                 register below. 

 

SPRxCTL register (writing this address disables sprite horizontal 

comparator circuit): 

 

BIT#    SYM       FUNCTION 

------------------------------------------------------------ 

15-08   EV7-EV0   End (stop) vertical value low 8 bits 

07      ATT       Sprite attach control bit (odd sprites) 

06-04    X        Not used 

02      SV8       Start vertical value high bit 

01      EV8       End (stop) vertical value high bit 

00      SH0       Start horizontal value low bit 

 

SPRxDATA 144 W D Sprite x image data register A 

SPRxDATB 146 W D Sprite x image data register B 

 

These registers buffer the sprite image data. They are 

usually loaded by the sprite DMA channel but may be 

loaded by either processor at any time. When a 

horizontal comparison occurs, the buffers are dumped 

into shift registers and serially outputted to the 

display, MSB first on the left. 

 

NOTE: Writing to the A buffer enables (arms) the sprite. 

Writing to the SPRxCTL register disables the sprite. 

If enabled, data in the A and B buffers will be outputted 

whenever the beam counter equals the sprite horizontal 

position value in the SPRxPOS register. 

 

SPRxPOS see SPRxCTL 
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SPRxPTH 120 W A       Sprite x pointer (high 3 bits) 

 

SPRxPTL 122 W A       Sprite x pointer (low 15 bits) 

 

This pair of registers contains the 18-bit address 

of sprite x (x=0,1,2,3,4,5,6,7) DMA data. These address 

registers must be initialized by the processor or Copper 

every vertical blank time. 

 

STREQU      038 S      D Strobe for horizontal sync with VB and EQU 

STRHOR      03C 5      D P Strobe for horizontal sync 

STRLONG     03E 5      D Strobe for identification of long 

                                   horizontal line 

 

One of the first three strobe addresses above is 

placed on the destination address bus during the 

first refresh time slot. The fourth strobe shown 

above is used during the second refresh time slot of 

every other line to identify lines with long counts 

(228). There are four refresh time slots, and any 

not used for strobes will leave a null (FF) address 

on the destination address bus. 

 

STRVBL      03A 5      D     Strobe for horizontal sync with VB 

                                  (vertical blank) 

 

VHPOSR      006 R A          Read vertical and horizontal position of 

                               beam or lightpen 

VHPOSW      02C W A          Write vertical and horizontal position 

                               of beam or lightpen 

 

BIT# 15,14,13,12,11,10,09,03,07,06,05,04,03,02,01,00 

----------------------------------------------------- 

USE  V7 V6 V5 V4 V3 V2 V1 V0,H8 H7 H6 H5 H4 H3 H2 H1 

 

RESOLUTION=1/160 of screen width (280 ns) 

 

VPOSR       004 R A Read vertical most significant bit 

                                 (and frame flop) 

VPOSW       02A W A Write vertical most significant bit 

                                 (and frame flop) 

 

                 BIT 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00 

 

                 USE LOF  V8 

 

                 LOF=Long frame (auto toggle control bit in BPLCON0) 
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APPENDIX B 
 

REGISTER SUMMARY ADDRESS ORDER 
 

 
This appendix contains information about the register set in address order. 
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The following codes and abbreviations are used in this appendix: 

 

&  Register used by DMA channel only. 

 

%  Register used by DMA channel usually, processors sometimes. 

 

+  Address register pair. Must be an even address pointing to chip 

   memory. 

 

*  Address not wriTable by the Copper. 

 

-  Address not wriTable by the Copper unless the "copper danger bit", 

   COPCON is set true. 

 

A,D,P 

   A=Agnus chip, D=Denise chip, P=Paula chip. 

 

W,R 

   W=write-only; R=read-only, 

 

ER Early read. This is a DMA data transfer to RAM, from either the disk 

   or the blitter. RAM timing requires data to be on the bus earlier than 

   microprocessor read cycles.  These transfers are therefore initiated 

   by Agnus timing, rather than a read address on the destination address 

   bus. 

 

S  Strobe (write address with no register bits). Writing the register 

   causes the effect. 

 

PTL,PTH 

   Chip memory pointer that addresses DMA data. Must be reloaded by a 

   processor before use (vertical blank for bit-plane and sprite 

   pointers, and prior to starting the blitter for blitter pointers). 

 

LCLLCH 

   Chip memory location (starting address) of DMA data. Used to 

   automatically restart pointers, such as the Copper program counter 

   (during vertical blank) and the audio sample counter (whenever the 

   audio length count is finished). 

 

MOD 

   15-bit modulo. A number that is automatically added to the memory 

   address at the end of each line to generate the address for the 

   beginning of the next line. This allows the blitter (or the display 

   window) to operate on (or display) a window of data that is smaller 

   than the actual picture in memory (memory map). Uses 15 bits, plus 

   sign extend. 
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NAME      ADD R/W CHIP    FUNCTION 

----------------------------------------------------------------------- 

BLTDDAT & *000 ER A     Blitter destination early read (dummy address) 

DMACONR   *002 R  A   P DMA control (and blitter status) read 

VPOSR     *004 R  A     Read vert most signif. bit (and frame flop) 

VHPOSR    *006 R  A     Read vert and horiz. position of beam 

DSKDATR & *008 ER     P Disk data early read (dummy address) 

JOY0DAT   *00A R    D   Joystick-mouse 0 data (vert,horiz) 

JOY1DAT   *00C R    D   Joystick-mouse 1 data (vert,horiz) 

CLXDAT    *00E R    D   Collision data register (read and clear) 

ADKCONR   *010 R      P Audio, disk control register read 

POT0DAT   *012 R      P Pot counter pair 0 data (vert,horiz) 

POT1DAT   *014 R      P Pot counter pair 1 data (vert,horiz) 

POTGOR    *016 R      P Pot port data read (formerly POTINP) 

SERDATR   *018 R      P Serial port data and status read 

DSKBYTR   *01A R      P Disk data byte and status read 

INTENAR   *01C R      P Interrupt enable bits read 

INTREQR   *01E R      P Interrupt request bits read 

DSKPTH  + *020 W A      Disk pointer (high 3 bits) 

DSKPTL  + *022 W A      Disk pointer (low 15 bits) 

DSKLEN    *024 W      P Disk length 

DSKDAT  & *026 W      P Disk DMA data write 

REFPTR  & *028 W A      Refresh pointer 

VPOSW     *02A W A      Write vert most signif. bit (and frame flop) 

VHPOSW    *02C W A      Write vert and horiz position of beam 

COPCON    *02E W A      Coprocessor control register (CDANG) 

SERDAT    *030 W      P Serial port data and stop bits write 

SERPER    *032 W      P Serial port period and control 

POTGO     *034 W      P Pot port data write and start 

JOYTEST   *036 W  D     Write to all 4 joystick-mouse counters at once 

STREQU  & *038 S  D     Strobe for horiz sync with VB and EQU 

STRVBL  & *03A S  D     Strobe for horiz sync with VB (vert. blank) 

STRHOR  & *03C S  D   P Strobe for horiz sync 

STRLONG & *03E S  D     Strobe for identification of long horiz. line. 

BLTCON0   -040 W  A     Blitter control register 0 

BLTCON1   -042 W  A     Blitter control register 1 

BLTAFWM   -044 W  A     Blitter first word mask for source A 

BLTALWM   -046 W  A     Blitter last word mask for source A 

BLTCPTH + -048 W  A     Blitter pointer to source C (high 3 bits) 

BLTCPTL + -04A W  A     Blitter pointer to source C (low 15 bits) 

BLTBPTH + -04C W  A     Blitter pointer to source B (high 3 bits) 

BLTBPTL + -04E W  A     Blitter pointer to source B (low 15 bits) 

BLTAPTH + -050 W  A     Blitter pointer to source A (high 3 bits) 

BLTAPTL + -052 W  A     Blitter pointer to source A (low 15 bits) 

BLTDPTH + -054 W  A     Blitter pointer to destination D (high 3 bits) 

BLTDPTL + -056 W  A     Blitter pointer to destination D (low 15 bits) 

BLTSIZE   -058 W  A     Blitter start and size (window width, height) 

          -05A 

          -05C 

          -05E 

BLTCMOD   -060 W  A     Blitter modulo for source C 

BLTBMOD   -062 W  A     Blitter modulo for source B 

BLTAMOD   -064 W  A     Blitter modulo for source A 

BLTDMOD   -066 W  A     Blitter modulo for destination D 

          -068 

          -06A 

          -06C 

          -06E 

BLTCDAT % -070 W  A     Blitter source C data register 

BLTBDAT % -072 W  A     Blitter source B data register 

BLTADAT % -074 W  A     Blitter source A data register 



          -076 

          -078 

          -07A 

          -07C 

DSRSYNC   -07E W      P Disk sync pattern register for disk read 

COP1LCH +  080 W A      Coprocessor first location register (high 3 bits) 

COP1LCL +  082 W A      Coprocessor first location register (low 15 bits) 

COP2LCH +  084 W A      Coprocessor second location register (high 3 

                              bits) 

COP2LCL +  086 W A      Coprocessor second location register (low 15 

                              bits) 

COPJMP1    088 S A      Coprocessor restart at first location 

COPJMP2    08A S A      Coprocessor restart at second location 

COPINS     08C W A      Coprocessor instruction fetch identify 

DIWSTRT    08E W A      Display window start (upper left vert-horiz 

                             position) 

DIWSTOP    090 W A      Display window stop (lower right vert.-horiz. 

                             position) 

DDFSTRT    092 W A      Display bit plane data fetch start (horiz. 

                              position) 

DDFSTOP    094 W A      Display bit plane data fetch stop (horiz. 

                              position) 

DMACON     096 W A D P  DMA control write (clear or set) 

CLXCON     098 W     D  Collision control 

INTENA     09A W     P  Interrupt enable bits (clear or set bits) 

INTREQ     09C W     P  Interrupt request bits (clear or set bits) 

ADKCON     09E W     P  Audio, disk, UART control 

AUD0LCH +  0AO W A      Audio channel 0 location (high 3 bits) 

AUD0LCL +  0A2 W A      Audio channel 0 location (low 15 bits) 

AUD0LEN    0A4 W     P  Audio channel 0 length 

AUD0PER    0A6 W     P  Audio channel 0 period 

AUD0VOL    0A8 W     P  Audio channel 0 volume 

AUD0DAT &  0AA W     P  Audio channel 0 data 

           0AC 

           0AE 

AUD1LCH +  0B0 W A      Audio channel 1 location (high 3 bits) 

AUD1LCL +  0B2 W A      Audio channel 1 location (low 15 bits) 

AUD1LEN    0B4 W     P  Audio channel 1 length 

AUD1PER    0B6 W     P  Audio channel 1 period 

AUD1VOL    0B8 W     P  Audio channel 1 volume 

AUD1DAT &  0BA W     P  Audio channel 1 data 

           0BC 

           0BE 

AUD2LCH +  0C0 W A      Audio channel 2 location (high 3 bits) 

AUD2LCL +  0C2 W A      Audio channel 2 location (low 15 bits) 

AUD2LEN    0C4 W     P  Audio channel 2 length 

AUD2PER    0C6 W     P  Audio channel 2 period 

AUD2VOL    0C8 W     P  Audio channel 2 volume 

AUD2DAT &  0CA W     P  Audio channel 2 data 

           0CC 

           0CE 

AUD3LCH +  0D0 W A      Audio channel 3 location (high 3 bits) 

AUD3LCL +  0D2 W A      Audio channel 3 location (low 15 bits) 

AUD3LEN    0D4 W     P  Audio channel 3 length 

AUD3PER    0D6 W     P  Audio channel 3 period 

AUD3VOL    0D8 W     P  Audio channel 3 volume 

AUD3DAT 6  0DA W     P  Audio channel 3 data 
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          0DC 

          0DE 

BPL1PTH + 0E0 W A       Bit plane 1 pointer (high 3 bits) 

BPL1PTL + 0E2 W A       Bit plane 1 pointer (low 15 bits) 

BPL2PTH + 0E4 W A       Bit plane 2 pointer (high 3 bits) 

BPL2PTL + 0E6 W A       Bit plane 2 pointer (low 15 bits) 

BPL3PTH + 0E8 W A       Bit plane 3 pointer (high 3 bits) 

BPL3PTL + 0EA W A       Bit plane 3 pointer (low 15 bits) 

BPL4PTH + 0EC W A       Bit plane 4 pointer (high 3 bits) 

BPL4PTL + 0EE W A       Bit plane 4 pointer (low 15 bits) 

BPL5PTH + 0F0 W A       Bit plane 5 pointer (high 3 bits) 

BPLSPTL + 0F2 W A       Bit plane 5 pointer (low 15 bits) 

BPL6PTH + 0F4 W A       Bit plane 6 pointer (high 3 bits) 

BPL6PTL + 0F6 W A       Bit plane 6 pointer (low 15 bits) 

          0F8 

          0FA 

          0FC 

          0FE 

BPLCON0   100 W A D     Bit plane control register (misc. control bits) 

BPLCON1   102 W      D  Bit plane control reg. (scroll value PF1, PF2) 

BPLCON2   104 W      D  Bit plane control reg. (priority control) 

          106 

BPL1MOD   108 W A       Bit plane modulo (odd planes) 

BPL2MOD   10A W A       Bit Plane modulo (even planes) 

          10C 

          10E 

BPL1DAT & 110 W D       Bit plane 1 data (parallel-to-serial convert) 

BPL2DAT & 112 W D       Bit plane 2 data (parallel-to-serial convert) 

BPL3DAT & 114 W D       Bit plane 3 data (parallel-to-serial convert) 

BPL4DAT & 116 W D       Bit plane 4 data (parallel-to-serial convert) 

BPL5DAT & 118 W D       Bit plane 5 data (parallel-to-serial convert) 

BPL6DAT & 11A W D       Bit plane 6 data (parallel-to-serial convert) 

          11C 

          11E 
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SPR0PTH  + 120 W A        Sprite 0 pointer (high 3 bits) 

SPR0PTL  + 122 W A        Sprite 0 pointer (low 15 bits) 

SPR1PTH  + 124 W A        Sprite 1 pointer (high 3 bits) 

SPR1PTL  + 126 W A        Sprite 1 pointer (low 15 bits) 

SPR2PTH  + 128 W A        Sprite 2 pointer (high 3 bits) 

SPR2PTL  + 12A W A        Sprite 2 pointer (low 15 bits) 

SPR3PTH  + 12C W A        Sprite 3 pointer (high 3 bits) 

SPR3PTL  + 12E W A        Sprite 3 pointer (low 15 bits) 

SPR4PTH  + 130 W A        Sprite 4 pointer (high 3 bits) 

SPR4PTL  + 132 W A        Sprite 4 pointer (low 15 bits) 

SPR5PTH  + 134 W A        Sprite 5 pointer (high 3 bits) 

SPR5PTL  + 136 W A        Sprite 5 pointer (low 15 bits) 

SPR6PTH  + 138 W A        Sprite 6 pointer (high 3 bits) 

SPR6PTL  + 13A W A        Sprite 6 pointer (low 15 bits) 

SPR7PTH  + 13C W A        Sprite 7 pointer (high 3 bits) 

SPR7PTL  + 13E W A        Sprite 7 pointer (low 15 bits) 

SPR0POS  % 140 W A D      Sprite 0 vert-horiz start position data 

SPR0CTL  % 142 W A D      Sprite 0 vert stop position and control data 

SPR0DATA % 144 W D        Sprite 0 image data register A 

SPR0DATB % 146 W D        Sprite 0 image data register B 

SPR1POS  % 148 W A D      Sprite 1 vert-horiz start position data 

SPR1CTL  % 14A W A D      Sprite 1 vert stop position and control data 

SPR1DATA % 14C W D        Sprite 1 image data register A 

SPR1DATB % 14E W D        Sprite 1 image data register B 

SPR2POS  % 150 W A D      Sprite 2 vert-horiz start position data 

SPR2CTL  % 152 W A D      Sprite 2 vert stop position and control data 

SPR2DATA % 154 W D        Sprite 2 image data register A 

SPR2DATB % 156 W D        Sprite 2 image data register B 

SPR3POS  % 158 W A D      Sprite 3 vert-horiz start position data 

SPR3CTL  % 15A W A D      Sprite 3 vert stop position and control data 

SPR3DATA $ 15C W D        Sprite 3 image data register A 

SPR3DATB % 15E W D        Sprite 3 image data register B 

SPR4POS  % 160 W A D      Sprite 4 vert-horiz start position data 

SPR4CTL  % 162 W A D      Sprite 4 vert stop position and control data 

SPR4DATA % 164 W D        Sprite 4 image data register A 

SPR4DATB % 166 W D        Sprite 4 image data register B 

SPR5POS  % 168 W A D      Sprite 5 vert-horiz start position data 

SPR5CTL  % 16A W A D      Sprite 5 vert stop position and control data 

SPR5DATA % 16C W D        Sprite 5 image data register A 

SPR5DATB % 16E W D        Sprite 5 image data register B 
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SPR6POS  % 170 W A D      Sprite 6 vert-horiz start position data 

SPR6CTL  % 172 W A D      Sprite 6 vert stop position and control data 

SPR6DATA % 174 W D        Sprite 6 image data register A 

SPR6DATB % 176 W D        Sprite 6 image data register B 

SPR7POS  % 178 W A D      Sprite 7 vert-horiz start position data 

SPR7CTL  % 17A W A D      Sprite 7 vert stop position and control data 

SPR7DATA % 17C W D        Sprite 7 image data register A 

SPR7DATB % 17E W D        Sprite 7 image data register B 

COLOR00    180 W   D      Color Table 00 

COLOR01    182 W   D      Color Table 01 

COLOR02    184 W   D      Color Table 02 

COLOR03    186 W   D      Color Table 03 

COLOR04    188 W   D      Color Table 04 

COLOR05    18A W   D      Color Table 05 

COLOR06    18C W   D      Color Table 06 

COLOR07    18E W   D      Color Table 07 

COLOR08    190 W   D      Color Table 08 

COLOR09    192 W   D      Color Table 09 

COLOR10    194 W   D      Color Table 10 

COLORll    196 W   D      Color Table 11 

COLOR12    198 W   D      Color Table 12 

COLOR13    19A W   D      Color Table 13 

COLOR14    19C W   D      Color Table 14 

COLOR15    19E W   D      Color Table 15 

COLOR16    1A0 W   D      Color Table 16 

COLOR17    1A2 W   D      Color Table 17 

COLOR18    1A4 W   D      Color Table 18 

COLORl9    1A6 W   D      Color Table 19 

COLOR20    1A8 W   D      Color Table 20 

COLOR21    1AC W   D      Color Table 21 

COLOR22    1AC W   D      Color Table 22 

COLOR23    1AE W   D      Color Table 23 

COLOR24    1B0 W   D      Color Table 24 

COLOR25    1B2 W   D      Color Table 25 

COLOR26    1B4 W   D      Color Table 26 

COLOR2?    1B6 W   D      Color Table 27 

COLOR28    1B8 W   D      Color Table 28 

COLOR29    1BA W   D      Color Table 29 

COLOR30    1BC W   D      Color Table 30 

COLOR31    1BE W   D      Color Table 31 

RESERVED   1110X 

RESERVED   111lX 

NO-OP(NULL) 1FE 
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APPENDIX C 
 

CUSTOM CHIP PIN ALLOCATION LIST 
 

 

NOTE: * Means an active low signal. 
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AGNUS PIN ASSIGNMENT 

 

PIN #        DESIGNATION       FUNCTION                  DEFINITION 

 

 01-09       D8-D0             Data bus lines 8 to 0         I/O 

 10          VCC               +5 Volt                       I 

 11          RES*              System reset                  I 

 12          INT3*             Interrupt level 3             O 

 13          DMAL              DMA request line              I 

 14          BLS*              Blitter slowdown              I 

 15          DBR*              Data bus request              O 

 16          ARW*              Agnus RAM write               O 

 17-24       RGA8-RGA1         Register address bus 8-1      I/O 

 25          CCK               Color clock                   I 

 26          CCKQ              Color clock delay             I 

 27          VSS               Ground                        I 

 28-36       DRA0-DRA8         DRAM address bus 0 to 8       O 

 37          LP*               Light pen input               I 

 38          VSY*              Vertical sync                 I/O 

 39          CSY*              Composite sync                O 

 40          HSY*              Horizontal sync               I/O 

 41          VSS               Ground                        I 

 42-48       D15-D9            Data bus lines 15 to 9        I/O 

 

DENISE PIN ASSIGNMENT 

 

 PIN         DESIGNATION       FUNCTION                  DEFINITION 

 

 01-07       D6-D0             Data bus lines 6 to 0         I/O 

 08          M1H               Mouse 1 horizontal            I 

 09          M0H               Mouse 0 horizontal            I 

 10-17       RGA8-RGA1         Register address bus 8-1      I 

 18          BURST*            Color burst                   O 

 19          VCC               +5 Volt                       I 

 20-23       R0-R3             Video red bits 0-3            O 

 24-27       B0-B3             Video blue bits 0-3           O 

 28-31       G0-G3             Video green bits 0-3          O 

 32          N/C               Not connected                 N/C 

 33          ZD*               Background indicator          O 

 34          N/C               Not connected                 N/C 

 35          7M                7.15909 MHZ                   I 

 36          CCK               Color clock                   I 

 37          VSS               Ground                        I 

 38          M0V               Mouse 0 vertical              I 

 39          M1V               Mouse 1 vertical              I 

 40-48       D15-D7            Data bus lines 15 to 7        I/O 
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PAULA PIN ASSIGNMENT 

 

 PIN         DESIGNATION       FUNCTION                  DEFINITION 

 

 01-07       D8-D2             Data bus lines 8 to 2         I/O 

 08          VSS               Ground                        I 

 09-10       D1-D0             Data bus lines 1 and 0        I/O 

 11          RES*              System reset                  I 

 12          DMAL              DMA request line              O 

 13-15       IPL0*-IPL2        Interrupt lines 0-2           O 

 16          INT2*             Interrupt level 2             I 

 17          INT3*             Interrupt level 3             I 

 18          INT6*             Interrupt level 6             I 

 19-26       RGA8-RGA1         Register address bus 8-1      I 

 27          VCC               +5 Volt                       I 

 28          CCK               Color clock                   I 

 29          CCKQ              Color clock delay             I 

 30          AUDB              Right audio                   O 

 31          AUDA              Left audio                    O 

 32          POT0X             Pot 0X                        I/O 

 33          POT0Y             Pot 0Y                        I/O 

 34          VSSANA            Analog ground                 I 

 35          POT1X             Pot 1X                        I/O 

 36          POT1Y             Pot 1Y                        I/O 

 37          DKRD*             Diak read data                I 

 38          DKWD*             Diak write data               O 

 39          DKWE              Diak write enable             O 

 40          TXD               Serial transmit data          O 

 41          RXD               Serial receive data           I 

 42-48       D15-D9            Data bus lines 15 to 9        I/O 
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FAT AGNUS PIN ASSIGNMENT 

 

 PIN         DESIGNATION       FUNCTION                 DEFINITION 

 

 01-14       RD1S-RD2          Register bus lines 15 to 2  I/O 

 17          INT3*             Blitter ready interrupt     O 

 18          DMAL              Request audio/disk DMA      I 

 18          RD1               Register bus line 1         I/O 

 18          RST*              Reset                       I 

 19          BLS*              Blitter slowdown            I 

 20          DBR*              Data bus request            O 

 21          RRW               DRAM Write/Read             O 

 22          PRW               Processor Write/Read        I 

 23          RGEN*             RG Enable                   I 

 24          AS*               Address Strobe              I 

 25          RAMEN*            RAM Enable                  I 

 26-33       RGA8-RGA1         Register address bus 8-1    O 

 34          28MHZ             Master clock                I 

 35          XCLR              Alternate master clock      I 

 36          XCLKEN*           Master clock enable         I 

 37          CDAC*             Inverted shifted 7MHZ clk   O 

 38          7MHZ              28MHZ clk divided by four   O 

 39          CCRQ              Color clock delay           O 

 40          CCR               Color clock                 O 

 41          TEST              Test - access registers     I 

 43-51       MA0-MA8           Output bus lines 0 to 8     O 

 52          LDS*              Lower data strobe           I 

 53          UDS*              Upper data strobe           I 

 54          CASL*             Column addr strobe lower    O 

 55          CASU*             Column addr strobe upper    O 

 56          RAS1*             Row address strobe one      O 

 57          RAS0*             Row address strobe zero     O 

 59-77       A19-A1            Address bus lines 19 to 1   I 

 78          LP*               Light pen                   O 

 79          VSY*              Vertical synch              I/O 

 80          CSY*              Composite video synch       O 

 81          HSY*              Horizontal synch            I/O 

 84          RD0               Register bus line 0         I/O                         
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APPENDIX D 

 

SYSTEM MEMORY MAP 
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A true software memory map, showing system utilization of the various 

sections of RAM and free space is not provided, or possible with the 

Amiga. All memory is dynamically allocated by the memory manager, and the 

actual locations may change from release-to-release, machine-to-machine 

or boot-to-boot (see the exec/AllocMem function for details). To find the 

locations of system structures software must use the defined access 

procedures, starting by fetching the address of the exec.library from 

location 4; the only absolute memory location in the system. All software 

is written so that it can be loaded and relocated anywhere in memory by 

the loader. What follows is the general layout of memory areas within 

the current generation of Amiga computers. 

 

ADDRESS RANGE           NOTES 

 

000000-03FFFF           256K Bytes of chip RAM 

040000-07FFFF           256K bytes of chip RAM (option card) 

080000-0FFFFF           512K Extended chip RAM (to 1 MB). 

100000-1FFFFF           Reserved. Do not use. 

200000-9FFFFF           Primary 8 MB Auto-config space. 

A00000-BEFFFF           Reserved. Do not use. 

BFD000-BFDF00           8520-B (access at even-byte addresses only) 

BFE001-BFEF01           8520-A (access at odd-byte addresses only) 

 

The underlined digit chooses which of the 16 internal registers of the 

8520 is to be accessed. See Appendix F. 

 

C00000-DFEFFF            Reserved. Do not use. 

  | 

  |   C00000-D7FFFF      Internal expansion memory. 

  |   D80000-DBFFFF      Reserved. Do not use. 

  |   DC0000-DCFFFF      Real time clock. 

  |   DFF000-DFFFFF      Chip registers. See Appendix A and Appendix B. 

  | 

  +- 

 

E00000-E7FFFF           Reserved. Do not use. 

 

E80000-E8FFFF           Auto-config space. Boards appear here before 

                        the system relocates them to their final address. 

 

E90000-EFFFFF           Secondary auto-config space (usually 64K I/O 

                        boards). 

 

F00000-FBFFFF           Reserved. Do not use. 

 

FC0000-FFFFFF           256K System ROM. 
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APPENDIX E 
 

INTERFACES 
 

 
This appendix consists of four distinct parts, related to the way in which the Amiga talks 
to the outside world. 
 
The first part specifies the pinouts of the externally accessible connectors and the power 
available at each connector. It does not, however, provide timing or loading information. 
 

The second part briefly describes the functions of those pins whose purpose may not be 
evident. 
 
The third part contains a list of the connections for certain internal connectors, notably the 
disk. 
 
The fourth part specifies how various signals relate to the available ports of the 8520. This 
information enables the programmer to relate the port addresses to the outside-world 
items (or internal control signals) that are to be affected. 
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The third and fourth parts are primarily for the use of the systems programmer and 
should generally not be utilized by applications programmers. 
 
Systems software normally is conFigured to handle the setting of particular signals, no 

matter how the physical connections may change. In other words, if you have a version of 
the system software that matches the revision level of the machine (normally a true 
condition), when you ask that a particular bit be set, you don't care which port that bit is 
connected to. Thus, applications programmers should rely on system documentation 
rather than going directly to the ports. 
 

NOTE 

In a multitasking operating system, many different tasks may be competing for the use of 
the system resources. Applications programmers should follow the established rules for 
resource access in order to assure compatibility of their software with the system. 
 

 

************** PART 1 - OUTSIDE WORLD CONNECTORS ******************** 

 

This is a list of the connections to the outside world on the Amiga. 

 

RS232 and MIDI Port 

------------------- 

 

A500/ CBM 

PIN  RS232  A1000  A2000  PCs    HAYES    DESCRIPTION 

-------------------------------------------------------------- 

1    GND    GND    GND    GND    GND      FRAME GROUND 

2    TXD    TXD    TXD    TXD    TXD      TRANSMIT DATA 

3    RXD    RXD    RXD    RXD    RXD      RECEIVE DATA 

4    RTS    RTS    RTS    RTS    Ñ        REQUEST TO SEND 

5    CTS    CTS    CTS    CTS    CTS      CLEAR TO SEND 

6    DSR    DSR    DSR    DSR    DSR      DATA SET READY 

7    GND    GND    GND    GND    GND      SYSTEM GROUND 

8    CD     CD     CD     DCD    DCD      CARRIER DETECT 

9    -      -      +12v   +12v   -        +12 VOLT POWER 

10   -      -      -12v   -12v   -        -12 VOLT POWER 

11   -      -      AUDO   -      -        AUDIO OUTPUT 

12   S.SD   -      -      -      SI       SPEED INDICATE 

13   S.CTS  -      -      -      - 

14   S.TXD  -5Vdc  -      -      -        -5 VOLT POWER 

15   TXC    AUDO   -      -      -        AUDIO OUT OF AMIGA 

16   S.RXD  AUDI   -      -      -        AUDIO IN TO AMIGA 

17   RXC    EB     -      -      -        BUFFERED PORT CLOCK 716kHz 

18   -      INT2*  AUDI   -      -        INTERRUPT LINE TO AMIGA 

19   S.RTS  -      -      -      - 

20   DTR    DTR    DTR    DTR    DTR      DATA TERMINAL READY 

21   SQD    +5     -      -      -        + 5 VOLT POWER 

22   RI     -      RI     RI     RI       RING INDICATOR 

23   SS     +12Vdc -      -      -        +12 VOLT POWER 

24   TXC1   C2*    -      -      -        3.58 MHZ CLOCK 

25   -      RESB*  -      -      -        BUFFERED SYSTEM RESET 
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PARALLEL (CENTRONICS) PORT 

-------------------------- 

 

PIN     1000           500/2000           Commodore PC's 

---     ----           --------           -------------- 

1       DRDY*           STROBE*               STROBE* 

2       Data 0          Data 0                Data 0 

3       Data 1          Data 1                Data 1 

4       Data 2          Data 2                Data 2 

5       Data 3          Data 3                Data 3 

6       Data 4          Data 4                Data 4 

7       Data 5          Data 5                Data 5 

8       Data 6          Data 6                Data 6 

9       Data 7          Data 7                Data 7 

10      ACK*            ACK*                  ACK* 

11      BUSY (data)     BUSY                  BUSY 

12      POUT (cl)       POUT                  POUT 

13      SEL             SEL                   SEL 

14      GND             +5v pullup            AUTODXT 

15      GND             NC                    ERROR* 

16      GND             RESET*                INIT* 

17      GND             GND                   SLCT IN* 

18-22   GND             GND                   GND 

23      +5              GND                   GND 

24      NC              GND                   GND 

25      Reset*          GND                   GND 

 

KEYBOARD ...RJ11 

---------------- 

 

  A1000         A2000 

  -----         ----- 

1 +5 Volts      KCLK 

2 CLOCK         KDAT 

3 DATA          NC 

4 GND           GND 

5 -             +5 Volts 

 

Not Applicable to the A500. 

 

Video ...DB3 MALE 

----------------- 

 

For A500, A1000, A2000 unless otherwise stated 

 

1  XCLK*         13 GNDRTN (Return for XCLKEN*) 

2  XCLKEN*       14 ZD* 

3  RED           15 C1* 

4  GREEN         16 GND 

5  BLUE          17 GND 

6  DI            18 GND 

7  DB            19 GND 

8  DG            20 GND 

9  DR            21 A1000/2000   -5  VOLT POWER 

10 CSYNC*              A500      -12 VOLT POWER 

11 HSYNC*        22 +12 VOLT POWER 

12 VSYNC*        23 +5 VOLT POWER 
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RF Monitor ...8 PIN DIN (J2) A1000 only 

--------------------------------------- 

 

1 N.C. 

2 GND 

3 AUDIO LEFT 

4 COMP VIDEO 

5 GND 

6 N.C. 

7 +12 VOLT POWER 

8 ADIO RIGHT 

 

DISK EXTERNAL ...DB23 FEMALE 

---------------------------- 

 

For A500, A1000, and A2000 with A2000 differences noted. 

 

1  RDY*                         13 SIDEB* 

2  DKRD*                        14 WPRO* 

3  GND                          15 TK0* 

4  GND                          16 DKWEB* 

5  GND                          17 DKWDB* 

6  GND                          18 STEPB* 

7  GND                          19 DIRB 

8  MTRXD*                       20 SEL3B*     A2000 not used (1) 

9  SEL2B*   A2000 SEL3B* (1)    21 SEL1B*     A2000 SEL2B* (1) 

10 DRESB*                       22 INDEX* 

11 CHNG*                        23 +12 

12 +5 

 

(1) SEL1B* is not drive 1, but rather the first external drive. Not 

all elect lines may be implemented. 
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RAMEX . 60 PIN  EDGE  (156) (P1)   A1000  only 

---------------------------------------------- 

 

      gnd                  A  gnd 

    2 D15                  B  D14 

    3 +5                   C  +5 

    4 D12                  D  D13 

    5 gnd                  E  gnd 

    6 D11                  F  D10 

    7 +5                   H  +5 

    8 D8                   J  D9 

    9 gnd                  K  gnd 

   10 D7                   L  D6 

   11 +5                   M  +5 

   12 D4                   N  D5 

   13 gnd                  P  gnd 

   14 D3                   R  D2 

   15 +5                   S  +5 

   16 D0                   T  D1 

   17 gnd                  U  gnd 

   18 DRA4                 V  DRA3 

   19 DRA5                 W  DRA2 

   20 DRA6                 X  DRA1 

   21 DRA7                 Y  DRA0 

   22 gnd                  Z  gnd 

   23 RAS*                 AA RRW* 

   24 gnd                  BB gnd 

   25 gnd                  CC gnd 

   26 CASU0*               DD CASU1* 

   27 gnd                  EE gnd 

   28 CASL0*               FF CASL1* 

   29 +5                   HH +5 

   30 +5                   JJ +5 
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EXPANSION ...86 PIN EDGE (.1) (P2) 

---------------------------------- 

PIN     A500    A1000   A2000   A2000b FUNCTION 

---     ----    -----   -----   ------ -------- 

 1      x       x       x       x       ground 

 2      x       x       x       x       ground 

 3      x       x       x       x       ground 

 4      x       x       x       x       ground 

 5      x       x       x       x       +5VDC 

 6      x       x       x       x       +5VDC 

 7      x       x       x       x       No Connect 

 8      x       x       x       x       -5VDC 

 9      x       x                       No Connect 

                        x       x       28MHz Clock 

10      x       x       x       x       +12VDC 

11      x       x       x               No Connect 

                                x       /COPCFG (Configuration Out) 

12      x       x       x       x       CONFIG IN, Grounded 

13      x       x       x       x       Ground 

14      x       x       x       x       /C3 Clock 

15      x       x       x       x       CDAC Clock 

16      x       x       x       x       /C1 Clock 

17      x       x       x       x       /OVR 

18      x       x       x       x       RDY 

19      x       x       x       x       /INT2 

20              x                       /PALOPE 

        x               x               No Connect 

                                x       /BOSS 

21      x       x       x       x       A5 

22      x       x       x       x       /INT6 

23      x       x       x       x       A6 

24      x       x       x       x       A4 

25      x       x       x       x       ground 

26      x       x       x       x       A3 

27      x       x       x       x       A2 

28      x       x       x       x       A7 

29      x       x       x       x       A1 

30      x       x       x       x       A8 

31      x       x       x       x       FC0 

32      x       x       x       x       A9 

33      x       x       x       x       FC1 

34      x       x       x       x       A10 

35      x       x       x       x       FC2 

36      x       x       x       x       A11 

37      x       x       x       x       Ground 

38      x       x       x       x       A12 

39      x       x       x       x       A13 

40      x       x       x       x       /IPL0 

41      x       x       x       x       A14 

42      x       x       x       x       /IPL1 

43      x       x       x       x       A15 

44      x       x       x       x       /IPL2 

45      x       x       x       x       A16 

46      x       x       x       x       BEER* 

47      x       x       x       x       A17 

48      x       x       x       x       /VPA 

49      x       x       x       x       Ground 

50      x       x       x       x       E Clock 
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EXPANSION ...86 PIN EDGE (.1) (P2)             (cont.) 

------------------------------------------------------ 

 

PIN     A500      A1000   A2000   A2000b    FUNCTION 

---     ----      -----   -----   ------    -------- 

51      x         x       x       x         /VMA 

52      x         x       x       x         A18 

53      x         x       x       x         RST 

54      x         x       x       x         Al9 

55      x         x       x       x         /HLT 

56      x         x       x       x         A20 

57      x         x       x       x         A22 

58      x         x       x       x         A21 

59      x         x       x       x         A23 

60      x         x       x                 /BR 

                                  x         /CBR 

61      x         x       x       x         Ground 

62      x         x       x       x         /BGACK 

63      x         x       x       x         D15 

64      x         x       x                 /BG 

                                  x         /CBG 

65      x         x       x       x         D14 

66      x         x       x       x         /DTACK 

67      x         x       x       x         D13 

68      x         x       x       x         R/W 

69      x         x       x       x         D12 

70      x         x       x       x         /LDS 

71      x         x       x       x         D11 

72      x         x       x       x         /UDS 

73      x         x       x       x         Ground 

74      x         x       x       x         /AS 

75      x         x       x       x         D0 

76      x         x       x       x         D10 

77      x         x       x       x         D1 

78      x         x       x       x         D9 

79      x         x       x       x         D2 

80      x         x       x       x         D8 

81      x         x       x       x         D3 

82      x         x       x       x         D7 

83      x         x       x       x         D4 

84      x         x       x       x         D6 

85      x         x       x       x         Ground 

86      x         x       x       x         D5 

 

JOYSTICKS ...DB9 male 

--------------------- 

 

USAGE   JOYSTICK   MOUSE 

-----   --------   ----- 

1       FORWARD*  (MOUSE V) 

2       BACK*     (MOUSE H) 

3       T.FT*     (MOUSE VQ) 

4       RIGHT*    (MOUSE HQ) 

5       POT X     (or button 3 ..............if used ) 

6       FIRE*     (or button 1) 

7       +5 

8       GND 

9       POT Y     (or button 2 ) 
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************** PART 2 MORE OUTSIDE WORLD ******************** 

 

PARALLEL INTERFACE CONNECTOR SPECIFICATION 

 

The 25-pin D-type connector with pins (DB25P=male for the A1000, 

female for A500/A2000 and IBM compatibles) at the rear of the 

Amiga is nominally used to interface to parallel printers. In this 

capacity, data flow from the Amiga to the printer. This interface 

may be used for input or bi-directional data transfers. The 

implementation is similar to Centronics, but the pin assignment and 

drive characteristics vary significantly from that specification 

(See Pin assignment). Signal names correspond to those used in the 

other places in this appendix, when possible. 

 

PARALLEL CONNECTOR PIN ASSIGNNENT (J8) 

 

NAME       DIR         NOTES 

----       ---         ----- 

DRDY*      O           Output-data-ready signal to parallel device in 

                       output mode, used in conjunction with ACK* (pin 

                       10) for a two-line asynchronous handshake. 

                       Functions as input data accepted from Amiga in 

                       input mode (similar to ACK* in output mode). See 

                       timing diagrams in the following section. 

D0         I/O         + 

Dl         I/O         | 

D2         I/O         | 

D3         I/O         | D0-D7 comprise an eight-bit bidirectional bus 

D4         I/O         | for communication with parallel devices, 

D5         I/O         | nominally, a printer. 

D6         I/O         | 

D7         I/O         + 

ACK*       I           Output-data-acknowledge from parallel device in 

                       output mode, used in conjunction with DRDY* (pin ÿ 

                       1) for a two-line asynchronous handshake. 

                       Functions as input-data-ready from parallel device 

                       in input mode similar to DRDY* in output mode). 

                       See timing diagrams. The 8520 can be programmed to 

                       conditionally generate a level 2 interrupt to the 

                       68000 whenever the ACK* input goes active. 

BUSY       I/O         This is a general purpose I/O pin also connected 

                       to a serial data I/O pin (serial clock on pin 12). 

                       Note: Nominally used to indicate printer buffer full. 

POUT       I/O         This is a general purpose I/O pin to a serial 

                       clock I/O pin (serial data on pin 11). 

                       Note: Nominally used to indicate printer paper out. 

SEL        I/O         This is a general purpose I/O pin. 

                       Note: nominally a select output from the parallel 

                       device to the Amiga. On the A500/A2000 also shared 

                       with RS232 "ring indicator" signal. 

 

RESET*     O           Amiga System reset 
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PARALLEL CONNECTOR INTERFACE TIMING, OUTPUT CYCLE 

 

   PA<7:0>_____ ____________________________________________ ____ 

   PB<7:0>_____X____________________________________________X____ 

               |<-- T1 --->|                                | 

                           |        |<--------- T2 -------->| 

    DRDY* _________________V        V____________________________ 

     Output data ready     |________| 

                           |<- T3 ->| 

                           |<--- T4 ---->| 

    ACK* ________________________________|<- T5 -->|_____________ 

     Output data acknowledge             |         | 

 

        Microseconds 

        Min Typ Max 

        --- --- --- 

    T1: 4.3 -x- 5.3         Output data setup to ready delay. 

    T2: nsp -x- upc         Output data hold time. 

    T3: nsp 1.4 nsp         Output data ready width. 

    T4: 0   -x- upc         Ready to acknowledge delay. 

    TS: nsp -x- upc         Acknowledge width. 

 

nsp - not specified 

upc - under program control 

 

 

PARALLEL CONNECTOR INTERFACE TIMING, INPUT CYCLE 

 

   PA<7:0>_____ ____________________________________________ ____ 

   PB<7:0>_____X____________________________________________X____ 

               |<-- T1 --->| 

                           |                 T2 -->|<------>| 

    DRDY* _________________V         ______________|_____________ 

     input data ready      |________|              | 

                           |<- T3 ->|              | 

                           |<--- T4 ---->| 

    ACK* ________________________________|<- T5 -->|_____________ 

     input data acknowledge              |         | 

 

        Microseconds 

        Min Typ Max 

        --- --- --- 

    T1: 0   -x- upc         Input data setup time. 

    T2: nsp -x- upc         Input data hold time. 

    T3: nsp -x- upc         Input data ready width. 

    T4: upc -x- upc         Input data ready to data 

                            acknowledge delay. 

    TS: nsp 1.4 nsp         Input data acknowledge width. 

 

nsp=not specified 

upc=under program control 
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SERIAL INTERFACE CONNECTOR SPECIFICATION 

 

This 25-pin D-type connector with sockets (DB255=female) is used to 

interface to RS-232-C standard signals. Signal names correspond to 

those used in other places in this appendix, when possible. 

 

WARNING: Pin on the R5232 connector other than these standard ones 

described below may be connected to power or other non-R5232 standard 

signals. When making up RS232 cables, connect only those pins actually 

used for particular application. Avoid generic 25-connector "straight- 

thru" cables. 

 

SERIAL INTERFACE CONNECTOR PIN ASSIGNMENT (J6) 

 

R5-232-C 

 

NAME    DIR  STD NOTES 

----    ---  --- ------------------------------- 

FGND         y   Frame ground -- do not tie to signal ground 

TXD     O    y   Transmit data 

RXD     I    y   Receive data 

RTS     O    y   Request to send 

CTS     I    y   Clear to send 

DSR     I    y   Data set ready 

GND          y   Signal ground -- do not tie to frame ground 

CD      I    y   Carrier detect 

-5V          n*  50 ma maximum *** WARNING -5V *** 

AUDO    O    n*  Audio output from left (channels 0, 3) port, 

                 intended to send audio to the modem. 

AUDI    I    n*  Audio input to right (channels 1, 2) port, 

                 intended to receive audio from the modem; this 

                 input is mixed with the analog output of the 

                 right (channels 1, 2). It is not digitized or 

                 used by the computer in any way. 

DTR     O    y   Data terminal ready. 

RI      I    y   Ring Indicator (A500/A2000 only) shared with printer 

                 "select" signal. 

RESB*   O    n*  Amiga system reset. 

 

NOTES: 

n*: See warning above 

See part 1 of this appendix for pin numbers. 

 

SERIAL INTERFACE CONNECTOR TIMING 

 

Maximum operating frequency is 19.2 KHz. Refer to EIA standard 

R5-232-C for operating and installation specifications. 

A rate of 31.25 KHz will be supported through the use of a MIDI adapter. 

 

Modem control signals (CTS, RTS, DTR, DSR, CD) are completely under 

software control. The modem control lines have no hardware affect 

on and are completely asynchronous to TXD and RXD. 
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SERIAL INTERFACE CONNECTOR ELECTRICAL CHARACTERISTICS 

 

OUTPUTS MIN  TYP MAX 

------- ---  --- --- 

Vo(-):  13.2 -x- -2.5   V      Negative output voltage range 

Vo(+):  8.0  -x-  13.2  V      Positive output voltage range 

Io:     -x-  -x-  10.0  ma     Output current 

 

INPUTS MIN  TYP MAX 

------ ---  --- --- 

Vi(+): 3.0  -x- 25.0   V       Positive input voltage range 

Vi(-): 25.0 -x- 0.5    V       Negative input voltage range 

Vhy:   -x-  1.0 -x-    V       Input hysteresis voltage 

Ii:    0.3  -x- 10.0   ma      Input current 

 

Unconnected inputs are interpreted the same as positive input voltages. 

 

GAME CONTROLLER INTERFACE CONNECTOR SPECIFICATION 

 

The two 9-pin D-type connectors with pins (male) are used to 

interface to four types of devices: 

 

1. Mouse or trackball, 3 buttons max. 

 

2. Digital joystick, 2 button max. 

 

3. Proportional (pot or proportional joystick), 2 buttons max. 

 

4. Light pen, including pen-pressed-to-screen button. 

 

The connector pin alignment are discussed in sections organized 

by similar hardware and/or software operating requirements as shown 

in the previous list. Signal names follow those used elsewhere 

in this appendix, when possible. 

 

J11 is the right controller port connector (JOY1DAT, POT1DAT). 

J12 is the left controller port connector (JOY0DAT, POT0DAT). 

 

NOTE: While most of the hardware discussed below is directly 

accessible, hardware should be accessed through ROM kernel software. 

This will keep future hardware changes transparent to the user. 
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GAME CONTROLLER INTERFACE TO MOUSE/TRACKBALL QUADRATURE INPUTS 

 

A mouse or trackball is a device that translates planar motion into 

pulse trains. Quadrature techniques are employed to preserve the 

direction as well as magnitude of displacement. The registers JOY0DAT 

and JOY1DAT become counter registers, with y displacement in the high 

byte and x in the low byte. Movement causes the following action: 

 

Up: y decrements 

Down: y increments 

Right: x increments 

Left: x decrements 

 

To determine displacement, JOYxDAT is read twice with corresponding x 

and y values subtracted (careful, modulo 128 arithmetic). Note that 

if either count changes by more than 127, both distance and direction 

become ambiguous. There is a relationship between the sampling 

interval and the maximum speed (that is, change in distance) that 

can be resolved as follows: 

 

Velocity < Distance(max) / SampleTime 

 

Velocity < SQRT(DeltaX**2 + DeltaY**2) / SampleTime 

 

For an Amiga with a 200 count-per-inch mouse sampling during each 

vertical blanking interval, the maximum velocity in either the X or Y 

direction becomes: 

 

Velocity < (128 Counts * 1 inch/200 Counts) / .017 sec = 38 in/sec 

 

which should be sufficient for most users. 

 

NOTE: The Amiga software is designed to do mouse update cycles during 

vertical blanking. The horizontal and vertical counters are always 

valid and may be read at any time. 

 

CONNECTOR PIN USAGE FOR MOUSE/TRACKBALL QUADRATURE INPUTS 

 

PIN  MNEMONIC    DESCRIPTION                    HARDWARE REGISTER/NOTES 

---  --------    -----------                    ----------------------- 

1       V        Vertical pulses                JOY[0/1]DAT<15:8> 

2       H        Horizontal pulses              JOY[0/1]DAT(7:0> 

3       VQ       Vertical quadrature pulses     JOY[0/1]DAT<15:8> 

4       HQ       Horizontal quadrature pulses   JOY[0/1]DAT<7:0> 

5       UBUT*    Unused mouse button            See Proportional Inputs. 

6       LBUT*    Left mouse button              See Fire Button. 

7       +5V      +5V, current limited 

8       Ground 

9       RBUT*    Right mouse button             See Proportional Inputs. 
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GAME PORT INTERFACE TO DIGITAL JOYSTICKS 

 

A joystick is a device with four normally opened switches arranged 90 

degree apart. The JOY[0/1]DAT registers become encoded switch input 

port as follows: 

 

Forward: bit9 xor bit#8 

Left: bit9 

Back: bit1 xor bit0 

Right: bit1 

 

Data is encoded to facilitate the mouse/trackball operating mode. 

 

NOTE: The right and left direction inputs are also designed to be 

right and left buttons, respectively, for use with proportional 

input. In this case, the forward and back inputs are not used, 

while right and left become button inputs rather than joystick inputs. 

 

The JOY[0/1]DAT registers are always valid and may be read at any time. 

 

CONNECTOR PIN USAGE FOR DIGITAL JOYSTICK INPUTS 

 

PIN  MNEMONIC   DESCRIPTION                   HARDWARE REGISTER/NOTES 

---  --------   -----------                   ----------------------- 

1    FORWARD*   Forward joystick switch       JOY[0/1]DAT<9 xor 8> 

2    BACK*      Back joystick switch          JOY[0/1]DAT(1 xor 0> 

3    LEFT*      Left joystick switch          JOY[0/1]DAT<9> 

4    RIGHT*     Right joystick switch         JOY[0/1]DAT<1> 

5    Unused 

6    FIRE*      Left mouse button             See Fire Button. 

7    +5V        125ma max, 200ma surge        Total both ports. 

8    Ground 

9    Unused 

 

GAME PORT INTERFACE TO FIRE BUTTONS 

 

The fire button are normally opened switches routed to the 8520 

adapter PRA0 a follow: 

 

    PRA0 bit 7 - Fire* left controller port 

    PRA0 bit 6 - Fire* right controller port 

 

Before reading this register, the corresponding bits of the data 

direction register must be cleared to define input mode: 

 

    DDRA0<7:6> cleared as appropriate 

 

NOTE: Do not disturb the settings of other bits in DDRA0 (Use of ROM 

kernel call is recommended). 

 

Fire buttons are always valid and may be read at any time. 
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CONNECTOR PIN USAGE FOR FIRE BUTTON INPUTS 

 

PIN MNEMONIC DESCRIPTION 

--- -------- ----------- 

1      -x- 

2      -x- 

3      -x- 

4      -x- 

5      -x- 

6      FIRE*     Left mouse button/fire button 

7      -x- 

8      ground 

9      -x- 

 

GAME PORT INTERFACE TO PROPORTIONAL CONTROLLERS 

 

Resistive (potentiometer) element linear taper proportional 

controllers are supported up to 528k Ohms max (470k +/- 10% 

recommended). The JOY[0/1]DAT registers contain digital 

translation values for y in the high byte and x in the low byte. 

A higher count value indicates a higher external resistance. 

The Amiga performs an integrating analog-to-digital conversion 

a follows: 

 

1. For the first 7 (NTSC) or 8 (PAL) horizontal display lines, 

the analog input capacitors are discharged and the positions 

counters reflected in the POT[0/1]DAT registers are held reset. 

 

For the remainder of the display field, the input capacitors are 

allowed to recharge through the resistive element in the external 

control device. 

 

2. The gradually increasing voltage is continuously compared to 

an internal reference level while counter keeps track of the 

number of lines since the end of the reset interval. 

 

3. When the input voltage finally exceeds the internal threshold 

for a given input channel, the current counter value is latched 

into the POT[0/1]DAT register corresponding to that channel. 

 

4. During the vertical blanking interval, the software examines 

the resulting POT[0/1]DAT register values and interprets the 

counts in terms of joystick position. 

 

NOTE: The POTY and POTX inputs are designated as "right mouse button" and 

"unused mouse button" respectively. An opened switch corresponds to high 

resistance, a closed switch to a low resistance. The buttons are also 

available in POTGO and POTINP registers. It is recommended that 

ROM kernel calls be used for future hardware compatibility. 

 

It is important to realize that the proportional controller is more of a 

"pointing" device than an absolute position input. It is up to the 

software to provide the calibration, range limiting and averaging functions 

needed to support the application's control requirements. 

 

The POT[0/1]DAT register are typically read during video blanking, 

but MAY be available prior to that. 
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CONNECTOR PIN USAGE FOR PROPORTIONAL INPUTS 

 

PIN MNEMONIC DESCRIPTION              HARDWARE REGISTER/NOTES 

--- -------- -----------              ----------------------- 

1   XBUT     Extra Button 

2   Unused 

3   LBUT*    Left button              See Digital Joystick 

4   RBUT*    Right button             See Digital Joystick 

5   POTX     X analog in              POT[0/1]DAT<7:0>, POTGO, POTINP 

6   Unused 

7   +5V      125ma max, 200 ma surge 

8   Ground 

9   POTY     Y analog in              POT[0,1]DAT<15:8>, POTGO, POTINP 

 

GAME PORT INTERFACE TO LIGHT PEN 

 

A light pen is an optoelectronic device whose light-sensitive portion 

is placed in proximity to a CRT. As the electron beam sweeps past the 

light pen, a trigger pulse is generated which can be enabled to latch the 

horizontal and vertical beam positions. There is no hardware bit to 

indicate this trigger, but this can be determined in the two ways 

as shown in chapter 8, "Interface Hardware." 

 

Light pen position is usually read during blanking, but MAY be available 

prior to that. 

 

CONNECTOR PIN USAGE FOR LIGHT PEN INPUTS 

 

PIN MNEMONIC DESCRIPTION               HARDWARE REGISTER/NOTES 

--- -------- -----------               ----------------------- 

1   Unused 

2   Unused 

3   Unused 

4   Unused 

5   LPENPR*   Light pen pressed        See Proportional Inputs 

6   LPENTG*   Light pen trigger        VPOSR, VHPOSR 

7   +5V       125ma max, 200 ma surge  Booth ports 

8   Ground 

9   Unused 

 

Note: depending on the maker, the light pen input may be either. 

 

                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Appendix E 309 - 



EXTERNAL DISK INTERFACE CONNECTOR SPECIFICATION 

 

The 23-pin D-type connector with sockets (DB23S) at the rear of the 

Amiga is nominally used to interface to MFM devices. 

 

EXTERNAL DISK CONNECTOR PIN ASSIGNMENT (J7) 

 

PIN NAME   DIR  NOTES 

--- ----   ---  ----- 

1   RDY*   I/O  If motor on, indicates disk installed and up to 

                speed. If motor not on, identification mode. See 

                below. 

2   DKRD*  I    MFM input data to Amiga. 

3   GND 

4   GND 

5   GND 

6   GND 

7   GND 

8   MTRXD* OC   Motor on data, clocked into drive’s motor-on flip-flop by 

                the active transition of SELxB*. 

                Guaranteed setup time is 1.4 usec. 

                Guaranteed hold time is 1.4 usec. 

9   SEL2B* OC   Select drive 2.* 

10  DRESB* OC   Amiga system reset. Drives should reset their 

                motor-on flip-flops and set their write-protect 

                flip-flops. 

11  CHNG*  I/O  Note: Nominally used as an open collector input. 

                Drive's change flop is set at power up or when no 

                disk is not installed. Flop is reset when drive is 

                selected and the head stepped, but only if a disk 

                is installed. 

12  +5V         270 ma maximum; 410 ma surge 

                When below 3.75V, drives are required to reset their 

                motor-on flopa, and set their write-protect flops. 

13  SIDEB* O    Side 1 if active, side 0 if inactive 

14  WPRO*  I/O  Asserted by selected, write-protected disk. 

15  TK0*   I/O  Asserted by selected drive when read/write head 

                is positioned over track 0. 

16  DKWEB* OC   Write gate (enable) to drive. 

17  DKWDB* OC   MFM output data from Amiga. 

18  STEPB* OC   Selected drive steps one cylinder in the direction 

                indicated by DIRB. 

19  DIRB   OC   Direction to step the head. Inactive to step 

                towards centre of disk (higher-numbered tracks). 

20 SEL3B*  OC   Select drive 3. * 

21 SEL1B*  OC   Select drive 1. * 

22 INDEX*  I/O  Index is a pulse generated once per disk revolution, 

                between the end and beginning of cylinders. The 

                8520 can be programmed to conditionally generate a 

                level 6 interrupt to the 68000 whenever the INDEX* 

                input goes active. 

23 +12V         160 ma maximum; 540 ma surge. 

 

* Note: the drive select lines are shifted as they pass through 

a string of daisy chained devices. Thus the signal that appears 

drive 2 select at the first drive shows up as drive 1 select 

at the second drive and so on... 
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EXTERNAL DISK CONNECTOR IDENTIFICATION MODE 

 

An identification mode is provided for reading a 32-bit serial 

identification data stream from an external device. To initialize 

this mode, the motor must be turned on, then off. See pin 8, 

MTRXD* for a discussion of how to turn the motor on and off. The 

transition from motor on to motor off reinitializes the serial 

shift register. 

After initialization, the SELxB* signal should be left in the 

inactive state. 

Now enter a loop where SELxB* is driven active, read serial input 

data on RDY* (pin 1), and drive SELxB* inactive. Repeat this loop 

a total of 32 times to read in 32 bits of data. The most significant 

bit is received first. 

 

EXTERNAL DISK CONNECTOR DEFINED IDENTIFICATIONS 

 

$0000 0000 - no drive present. 

$FFFF FFFF - Amiga standard 3.25 diskette. 

$5555 5555 - 48 TPI double-density, double-sided. 

 

As with other peripheral ID's, users should contact Commodore-Amiga 

for ID assignment. 

The serial input data is active low and must therefore be inverted 

to be consistent with the above Table. 

 

EXTERNAL DISK CONNECTOR LIMITATIONS 

 

1. The total cable length, including daisy chaining, must not exceed 

1 meter. 

 

2. A maximum of 3 external devices may reside on this interface, 

but specific implementations may support fewer external devices. 

 

3. Each device must provide a 1000-0hm pull-up resistor on those 

outputs driven by an open-collector device on the Amiga 

(pin 8-10, 16-21). 

 

4. The system provides power for only the first external device in the 

daisy chains. 
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************** PART 3 - INTERNAL CONNECTORS ******************* 

 

DISK INTERNAL ...34 PIN RIBBON (J10) 

------------------------------------ 

 

 1 GND             18 DIRB 

 2 CHNG*           19 GND 

 3 GND             20 STEPB* 

 4 MTROD* led)     21 GND 

 5 GND             22 DKWDB* 

 6 N.C.            23 GND 

 7 GND             24 DKWEB* 

 8 IND B *         25 GND 

 9 GND             26 TK0* 

10 SELOB*          27 GND 

11 GND             28 WPRO* 

12 N.C.            29 GND 

13 GND             30 DKRD* 

14 N.C.            31 GND 

15 GND             32 SIDEB* 

16 MTROD*          33 GND 

17 GND             34 RDY* 

 

DISK INTERNAL POWER ...4 PIN STRAIGHT (J13) 

------------------------------------------- 

+12 (some drive are +5 only) 

2 GND 

3 GND 

4 +5 
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********** PART 4 - PORT SIGNAL ASSIGNMENTS FOR 8520 ************ 

 

Address BFFR01 data bits 7-0 (A12*) (int2) 

------------------------------------------ 

 

PA7..game port 1, pin 6 (fire button*) 

PA6..game port 0, pin 6 fire button*) 

PA5..RDY*       disk ready* 

PA4..TK0*       disk track 00* 

PA3..WPRO*      write protect* 

PA2..CHNG*      disk change* 

PAl..LED*       led light (0=bright) / audio filter control (A500 & A2000) 

PA0..OVL        ROM/RAM overlay bit 

SP...KDAT       keyboard data 

CNT..KCLK       keyboard clock 

PB7..P7         data 7 

PB6..P6         data 6 

PB5..P5         data 5     Centronics parallel interface 

PB4..P4         data 4          data 

PB3..P3         data 3 

PB2..P2         data 2 

PBl..P1         data 1 

PB0..P0 data 0 

 

PC...drdy*                 Centronics control 

F....ack* 

 

Address BFDRFE data bits 15-8 (A13*) (int6) 

 

PA7..com line DTR*, driven output 

PA6..com line RTS*, driven output 

PA5..com line carrier detect* 

PA4..com line CTS* 

PA3..com line DSR* 

PA2..SEL      Centronics control 

PA1..POUT    +--- paper out -------------+ 

PA0..BUSY    | +--busy-----------------+ | 

             | |                       | | 

SPBUSY       | +- commodore serial bus-+ | 

CNT..POUT    + --commodore serial bus ---+ 

 

PB7..MTR*       motor 

PB6..SEL3*      select external 3rd drive 

PB5..SEL2*      select external 2nd drive 

PB4..SEL1*      select external 1st drive 

PB3..SEL0*      select internal drive 

PB2..SIDE*      side select* 

PB1..DIR        direction 

PB0..STEP*      step* 

 

PC...not used 

F....INDEX* disk index pulse* 
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       PORT 0 

      __________________       POTOX 

      \            5 o_/________________________ 

       \         9 o__/___________              | 

        \____________/   POTOY    |             | 

                                 \|/           \|/ 

                            ______V_____________V______ 

                           |             |             | 

                           | POT0Y       | POT0Y       | POT0DAT 

                           | COUNTER     | COUNTER     | DFF012 

                           |_____________|_____________| 

         PORT 1 

      __________________       POTOX 

      \              o_/________________________ 

       \           o__/___________              | 

        \____________/   POTOY    |             | 

                                 \|/           \|/ 

                            ______V_____________V______ 

                           | POT1Y       | POT1X       | 

                           | COUNTER     | COUNTER     | POT1DAT 

                           | LATCH       | LATCH       | DFF014 

                           |_____________|_____________| 

 

                            ___________________________ 

                           |                         | | POTGO 

                           |_________________________|_| DFF034 

 

                            ___________________________ 

                           |                           | POT1NP 

                           |___________________________| DFF016 

   POT COUNTERS 
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  PORT 1 __________________             PORT 2 __________________ 

         \  o  o  o  o  o /                    \  o  o  o  o  o / 

          \   o  o  o  o /                      \   o  o  o  o / 

           \__|_________/                        \__|_________/ 

     _________|                                     | 

    |FIRE 0\  ______________________________________| 

    |        |                               FIRE 1\ 

    |        | 

    |     ___|___________________________________________________ 

    |    | FIRE | FIRE |                                         | PRA 

    |    |  1\  |  0\  |                                         |$BFE001 

    |    |______|______|______|______|______|______|______|______| 

    |     7        |                                            0 

    |______________| 

          _______________________________________________________ 

         |      |      |                                         |Data 

         |   O  |   O  |   O      O      O      O      1      1  |direc- 

         |______|______|______|______|______|______|______|______|  tion 

            IN     IN    OUT    OUT    OUT    OUT    OUT    OUT   DDRA 

                                                                  $BFE201 

READING FIRE BUTTONS 
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   ____________________________________________ 

  |                                            | VPOSR read only 

  |                                            | DFF004 

  |____________________________________________| 

   ____________________________________________ 

  |                                            | VHPOSR read only 

  |                                            | DFF006 

  |____________________________________________| 

   ____________________________________________ 

  |                                 |          | BPLCON0 write only 

  |                                 |          | DFF104 

  |__|__|__|__|__|__|__|__|__|__|__||_|__|__|__| 

   15                               |3        0 

                                    |________Light Pen Enable 

   ____________________________________________ 

  |                                            | POT1NP read only 

  |                                            | DFF016 (Bit 8) 

  |__|__|__|__|__|__|__|__|__|__|__|__|__|__|__| 

   15                       |                 0 

                            |       PEN PRESS=POTOX 

                            |___________________ 

                                                | 

                          _________________     | 

                          \ o  o  o  o  o_/_____| 

                           \  o  o  o  o / 

                            \_|_________/ 

                              |PORT 0 

           Light Pen _________| 

 

               ________ 

                       | 

                      \|/ 

                       V_____Latches V & H positions 

  LIGHT PEN 
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APPENDIX F 
 

COMPLEX INTERFACE ADAPTERS 
 

 
This appendix contains information about the 8520 peripheral interface adapters. 
 
8520 COMPLEX INTERFACE ADAPTOR CIA) CHIPS 
 
Each Amiga system contains two 8520 Complex Interface Adaptor (CIA) chips. Each chip 
has 16 general purpose input/output pins, plus a serial shift register, three timers, an 

output pulse pin and an edge detection input. In the Amiga system various tasks are 
assigned to the chip's capabilities. 
 

                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Appendix F 317 - 



CIAA Address Map 

---------------- 

 Byte    Register               Data bits 

Address    Name    7     6     5    4    3     2     1    0 

------------------------------------------------------------------ 

BFE001    pra      /FIR1 /FIR0 /RDY /TK0 /WPRO /CHNG /LED OVL 

BFE101    prb      Parallel port 

BFE201    ddra     Direction for port A (BFE001);1 output (set to 0x03) 

BFE301    ddrb     Direction for port B (BFE101);1 output (can be in/out) 

BFE401    talo     CIAA timer A low byte (.715909 Mhz NTSC; .709379 Mhz PAL) 

BFE501    tahi     CIAA timer A high byte 

BFE601    tblo     CIAA timer B low byte (.715909 Mhz NTSC; .709379 Mhz PAL) 

BFE701    tbhi     CIAA timer B high byte 

BFE801    todlo    50/60 Hz event counter bits  7-0 (VSync or line tick) 

BFE901    todmid   50/60 Hz event counter bits 15-8 

BFEA01    todhi    50/60 Hz event counter bits 23-16 

BFEB01             not used 

BFEC01    sdr      CIAA serial data register (connected to keyboard) 

BFED01    icr      CIAA interrupt control register 

BFEE01    cra      CIAA control register A 

BFEF01    crb      CIAA control register B 

 

Note: CIAA can generate interrupt INT2. 

 

CIAB Address Map 

---------------- 

Byte Register Data bits 

Address   Name     7    6     5     4     3     2     1    0 

------------------------------------------------------------------- 

BFD000    pra      /DTR /RTS  /CD   /CTS  /DSR  SEL   POUT BUSY 

BFD100    prb      /MTR /SEL3 /SEL2 /SEL1 /SEL0 /SIDE DIR  /STEP 

BFD200    ddra     Direction for Port A (BFD000);1 = output (set to 0xFF) 

BFD300    ddrb     Direction for Port B (BFD100);1 - output (set to 0xFF) 

BFD400    talo     CIAB timer A low byte (.715909 Mhz NTSC; .709379 Mhz PAL) 

BFD500    tahi     CIAB timer A high byte 

BFD600    tblo     CIAB timer B low byte (.715909 Mhz NTSC; .709379 Mhz PAL) 

BFD700    tbhi     CIAB timer B high byte 

BFD800    todlo    Horizontal sync event counter bits 7-0 

BFD900    todmid   Horizontal sync event counter bits 15-8 

BFDA00    todhi    Horizontal sync event counter bits 23-16 

BFDB00             not used 

BFDC00    dr       CIAB serial data register (unused) 

BFDD00    icr      CIAB interrupt control register 

BFDE00    cra      CIAB Control register A 

BFDF00    crb      CIAB Control register B 

 

Note: CIAB can generate INT6. 
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CHIP REGISTER MAP 

 

Each 8520 has 16 registers that you may read or write. Here is the list 

of register and the access addresses of each within the memory space 

dedicated to the 8520: 

 

                   Register 

RS3 R52 RS1 RS0 (hex) NAME      MEANING 

------------------------------------------------------------ 

0   0   0   0   0     pra       Peripheral data register A 

0   0   0   1   1     prb       Peripheral data regigter B 

0   0   1   0   2     ddra      Data direction register A 

0   0   1   1   3     ddrb      Direction register B 

0   1   0   0   4     talo      Timer A low register 

0   1   0   1   5     tahi      Timer A high register 

0   1   1   0   6     tblo      Timer B low register 

0   1   1   1   7     tbhi      Timer B high register 

1   0   0   0   8     todlow    Event LSB 

1   0   0   1   9     todmid    Event 8-15 

1   0   1   D   A     todhi     Event S 

1   0   1   1   B               No connect 

1   1   0   0   C     sdr       Serial data register 

1   1   0   1   D     icr       Interrupt control register 

1   1   1   0   E     cra       Control register A 

I   1   1   1   F     crb       Control register B 

 

SOFTWARE NOTE: 

 

The operating system kernel has already allocated the use of 

several of the 8520 timers. 

 

CIAA, timer A - keyboard (used continuously to handshake 

                keystrokes). NOT AVAILABLE. 

 

CIAA, timer B - Virtual timer device (used continuously 

                whenever system Exec is in control; used 

                for task switching, interrupts and timing). 

CIAA, TOD     - 50/60 Hz timer used by timer.device. The 

                A1000 uses power line tick. The A500 uses 

                vertical sync. The A2000 has a jumper 

                selection. 

 

CIAB, timer A - not used 

 

CIAB, timer B - not used 

 

CIAB, TOD     - graphics.library video beam follower. This 

                timer counts at the horizontal sync rate, 

                and is used to synchronize graphics events 

                to the video beam. 

 

                Note that previous editions of this chart were incorrect. 
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REGISTER FUNCTIONAL DESCRIPTION 

 

I/O PORTS (PRA, PRB, DDRA, DDRB) 

 

Ports A and B each consist of an 8-bit peripheral data register (PR) and 

an 8-bit data direction register (DDR). If a bit in the DDR is set to a 

1, the corresponding bit position in the PR becomes an output. If a DDR 

bit is set to a 0, the corresponding PR bit is defined as an input. 

 

When you READ a PR register, you read the actual current state of the I/O 

pins (PA0-PA7, PB0-PB7, regardless of whether you have set them to be 

inputs or outputs. 

 

Ports A and B have passive pull-up devices as well as active pull-ups, 

providing both CMOS and TTL compatibility. Both ports have two TTL load 

drive capability. 

 

In addition to their normal IO operations, ports PB6 and PB7 also provide 

timer output functions. 

 

HANDSHAKING 

Handshaking occurs on data transfers using the PC output pin and the FLAG 

input pin. PC will go low on the third cycle after a port B access. This 

signal can be used to indicate "data ready" at port B or "data accepted" 

from port B. Handshaking on 16-bit data transfers (using both ports 

A and B) is possible by always reading or writing port A first. FLAG is a 

negative edge-sensitive input that can be used for receiving the PC 

output from another 8520 or as a general purpose interrupt input. Any 

negative transition on FLAG will set the FLAG interrupt bit. 

 

REG NAME D7   D6   D5   D4   D3   D2   D1   D0 

--- ---- --   --   --   --   --   --   --   -- 

0   PRA  PA7  PA6  PA5  PA4  PA3  PA2  PA1  PA0 

1   PRB  PB7  PB6  PB5  PB4  PB3  PB2  PB1  PB0 

2   DDRA DPA7 DPA6 DPA5 DPA4 DPA3 DPA2 DPA1 DPA0 

3   DDRB DPB7 DPB6 DPB5 DPB4 DPB3 DPB2 DPB1 DPB0 

 

INTERVAL TIMERS (TIMER A, TIMER B) 

 

Each interval timer consists of a 16-bit read-only timer counter and a 

16-bit write-only timer latch. Data written to the timer is latched into 

the timer latch, while data read from the timer is the present contents 

of the timer counter. 
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The latch is also called a prescalar in that it represents the countdown 

value which must be counted before the timer reaches an underflow (no 

more counts) condition. This latch (prescalar) value is a divider of the 

input clocking frequency. The timers can be used independently or linked 

for extended operations. Various timer operating modes allow generation 

of long time delays, variable width pulses, pulse trains, and variable 

frequency waveforms. Utilizing the CNT input, the timers can count 

external pulses or measure frequency, pulse width, and delay times of 

external signals. 

 

Each timer has an associated control register, providing independent 

control over each of the following functions: 

 

START/STOP 

A control bit allows the timer to be started or stopped by the 

microprocessor at any time. 

 

PB ON/OFF 

A control bit allows the timer output to appear on a port B output line 

(PB6 for timer A and PB7 for timer B). This function overrides the DDRB 

control bit and forces the appropriate PB line to become an output. 

 

TOGGLE/PULSE 

A control bit selects the output applied to port B while the PB on/off 

bit is ON. On every timer underflow, the output can either toggle or 

generate a single positive pulse of one cycle duration. 

The toggle output is set high whenever the timer is started, and set low 

by RES. 

 

ONE-SHOT/CONTINUOUS 

A control bit selects either timer mode. In one-shot mode, the timer will 

count down from the latched value to zero, generate an interrupt, reload 

the latched value, then stop. In continuous mode, the timer will count 

down from the latched value to zero, generate an interrupt, reload the 

latched value, and repeat the procedure continuously. 

 

In one-shot mode, a write to timer-high (register 5 for timer A, register 

7 for Timer B) will transfer the timer latch to the counter and initiate 

counting regardless of the start bit. 
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FORCE LOAD 

A strobe bit allows the timer latch to be loaded into the timer counter 

at any time, whether the timer is running or not. 

 

INPUT MODES 

Control bits allow selection of the dock used to decrement the timer. 

Timer A can count 02 clock pulses or external pulses applied to the CNT 

pin. Timer B can count 02 pulses, external CNT pulses, timer A underflow 

pulses, or timer A underflow pulses while the CNT pin is held high. 

 

The timer latch is loaded into the timer on any timer underflow, on a 

force load, or following a write to the high byte of the pre-scalar 

while the timer is stopped. If the timer is running, a write to the high 

byte will load the timer latch but not the counter. 

 

BIT NAMES on READ-Register 

 

REG NAME   D7   D6   D5   D4   D3   D2   D1   D0 

--- ----   --   --   --   --   --   --   --   -- 

4   TALO   TAL7 TAL6 TAL5 TAL4 TAL3 TAL2 TAL1 TAL0 

5   TAHI   TAH7 TAH6 TAH5 TAH4 TAH3 TAH2 TAH1 TAH0 

6   TBLO   TBL7 TBL6 TBLS TBL4 TBL3 TBL2 TBL1 TBL0 

7   TBHI   TBH7 TBH6 TBH5 TBH4 TBH3 TBH2 TBH1 TBH0 

 

 

BIT NAMES on WRITE-Register 

 

REG NAME   D7   D6   D5   D4   D3   D2   D1   D0 

--- ----   --   --   --   --   --   --   --   -- 

4   TALO   PAL7 PAL6 PAL5 PAL4 PAL3 PAL2 PAL1 PAL0 

5   TAHI   PAH7 PAH6 PAH5 PAH4 PAH3 PAH2 PAH1 PAH0 

6   TBLO   PBL7 PBL6 PBL5 PBL4 PBL3 PBL2 PBL1 PBL0 

7   TBHI   PBH7 PBH6 PBH5 PBH4 PBH3 PBH2 PBH1 PBH0 
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TIME OF DAY CLOCK 

TOD consists of a 24-bit binary counter. Positive edge transitions on 

this pin cause the binary counter to increment. The TOD pin has a passive 

pull-up on it. 

 

A programmable alarm is provided for generating an interrupt at a desired 

time. The alarm registers are located at the same addresses as the 

corresponding TOD registers. Access to the alarm is governed by a control 

register bit. The alarm is write-only; any read of a TOD address will 

read time regardless of the state of the ALARM access bit. 

 

A specific sequence of events must be followed for proper setting and 

reading of TOD. TOD is automatically stopped whenever a write to the 

register occurs. The clock will not start again until after a write to 

the LSB event register. This assures that TOD will always start at the 

desired time. 

 

Since a carry from one stage to the next can occur at any time with 

respect to a read operation, a latching function is included to keep all 

TOD information constant during a read sequence. All TOD registers latch 

on a read of MSB event and remain latched until after a read of LSB 

event. 

The TOD clock continues to count when the output registers are latched. 

If only one register is to be read, there is no carry problem and the 

register can be read "on the fly" provided that any read of MSB event is 

followed by a read of LSB Event to disable the latching. 

 

BIT NAMES for WRITE TIME/ALARM or READ TIME 

 

REG NAME 

--- ---- 

 8  LSB Event     E7   E6   E5   E4   E3   E2   E1   E0 

 9  Event 8-15    E15  E14  E13  E12  E11  E10  E9   E8 

 A  MSB Event     E23  E22  E21  E20  E19  E18  E17  E16 

 

WRITE 

CRB7 = 0 

CRB7 = 1 ALARM 
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SERIAL SHIFT REGISTER (SDR) 

 

The serial port is a buffered, 8-bit synchronous shift register. A 

control bit selects input or output mode. In the Amiga system one shift 

register is used for the keyboard, and the other is unassigned. Note that 

the RS-232 compatible serial port is controlled by the Paula chip; see 

chapter 8 for details. 

 

INPUT MODE 

In input mode, data on the SP pin is shifted into the shift register on 

the rising edge of the signal applied to the CNT pin. After eight CNT 

pulses, the data in the shift register is dumped into the serial data 

register and an interrupt is generated. 

 

OUTPUT MODE 

In the output mode, Timer A is used as the baud rate generator. Data is 

shifted out on the SP pin at 1/2 the underflow rate of Timer A. The 

maximum baud rate possible is 02 divided by 4, but the maximum usable 

baud rate will be determined by line loading and the speed at which the 

receiver responds to input data. 

 

To begin transmission, you must first set up Timer A in continuous mode, 

and start the timer. Transmission will start following a write to the 

serial data register. The clock signal derived from Timer A appears as an 

output on the CNT pin. The data in the serial data register will be 

loaded into the shift register, then shifted out to the SP pin when a CNT 

pulse occurs. Data shifted out becomes valid on the next falling edge of 

CNT and remains valid until the next falling edge. 

 

After eight CNT pulses, an interrupt is generated to indicate that more 

data can be sent. If the serial data register was reloaded with new 

information prior to this interrupt, the new data will automatically be 

loaded into the shift register and transmission will continue. 

 

If no further data is to be transmitted after the eighth CNT pulse, CNT 

will return high and SP will remain at the level of the last data bit 

transmitted. 

 

SDR data is shifted out MSB first. Serial input data should appear in 

this same format. 
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BIDIRECTIONAL FEATURE 

The bi-directional capability of the shift register and CNT clock allows 

many 8520s to be connected to a common serial communications bus on which 

one 8520 acts as a master, sourcing data and shift clock while all other 

8520 chips act as slaves. Both CNT and SP outputs are open drain to allow 

such a common bus. Protocol for master/slave selection can be transmitted 

over the serial bus or via dedicated handshake lines. 

 

      REG NAME D7 D6 D5 D4 D3 D2 D1 D0 

      --- ---- -- -- -- -- -- -- -- -- 

      C   SDR  S7 S6 S5 S4 S3 S2 S1 S0 

 

INTERRUPT CONTROL REGISTER (ICR) 

 

There are five sources of interrupts on the 8520: 

 

   -Underflow from Timer A (timer counts down past 0) 

   -Underflow from Timer B 

   -TOD alarm 

   -Serial port full/empty 

   -Flag 

 

A single register provides masking and interrupt information. The 

interrupt control register consists of a write-only MASK register and a 

read-only DATA register. Any interrupt will set the corresponding bit in 

the DATA register. Any interrupt that is enabled by a 1-bit in that 

position in the MASK will set the IR bit (MSB) of the DATA register and 

bring the IRQ pin low. In a multichip system, the IR bit can be polled to 

detect which chip has generated an interrupt request. 

 

When you read the DATA register, its contents are cleared (set to 0), and 

the IRQ line returns to a high state. Since it is cleared on a read, you 

must assure that your interrupt polling or interrupt service code can 

preserve and respond to all bits which may have been set in the DATA 

register at the time it was read. With proper preservation and response, 

it is easily possible to intermix polled and direct interrupt service 

methods. 

 

You can set or clear one or more bits of the MASK register without 

affecting the current state of any of the other bits in the register. 

This is done by setting the appropriate state of the MSBit, which is 

called the set/clear bit. In bits 6-0, you yourself form a mask that 

specifies which of the bits you wish to affect. Then, using bit 7, you 

specify HOW the bits in corresponding positions in the mask are to be 

affected. 
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o  If bit 7 is a 1, then any bit 6-0 in your own mask byte which is set 

to a 1 sets the corresponding bit in the MASK register. Any bit that you 

have set to a 0 causes the MASK register bit to remain in its current 

state. 

 

o  If bit 7 is a 0, then any bit 6-0 in your own mask byte which is set 

to a 1 clears the corresponding bit in the MASK register. Again, any 0 

bit in your own mask byte causes no change in the contents of the 

corresponding MASK register bit. 

 

If an interrupt is to occur based on a particular condition, then that 

corresponding MASK bit must be a 1. 

 

Example: Suppose you want to set the Timer A interrupt bit (enable the 

Timer A interrupt), but want to be sure that all other interrupts are 

cleared. Here is the sequence you can use: 

 

        INCLUDE "hardware/cia.i" 

        XREF   ciaa               ; From amiga.lib 

        lea    ciaa,a0            ; Defined in amiga.lib 

        move.b 401111110,ciaicr(a0) 

 

MSB is 0, means clear any bit whose value is 1 in the rest of the byte 

 

        INCLUDE "hardware/cia.i" 

        XREF   ciaa                ; From amiga.lib 

        lea    ciaa,a0             ; Defined in amiga.lib 

        move.b %100000001,ciaicr(a0) 

 

MSB is 1, means set any bit whose value is 1 in the rest of the byte (do 

not change any values wherein the written value bit is a zero) 

 

READ INTERRUPT CONTROL REGISTER 

 

REG NAME       D7   D6   D5   D4   D3   D2   D1   D0 

--- ----       --   --   --   --   --   --   --   -- 

D   ICR        IR   0    0    FLG  SP   ALRM TB   TA 

 

WRITE INTERRUPT CONTROL MASK 

 

REG NAME       D7   D6   D5   D4   D3   D2   D1   D0 

--- ----       --   --   --   --   --   --   --   -- 

D   ICR        S/C  x    x    FLG  SP   ALRM TB   TA 
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CONTROL REGISTERS 

There are two control registers in the 8520, CRA and CRB. CRA is 

associated with Timer A and CRB is associated with Timer B. The format of 

the registers is as follows: 

 

CONTROL REGISTER A 

 

BIT NAME    FUNCTION 

 

0  START    1 = start Timer A, 0 - top Timer A. 

            This bit is automatically reset (= 0) when 

            underflow occurs during one-shot mode. 

 

1  PBON     1 = Timer A output on PB6, 0 = PB6 is normal operation. 

 

2  OUTMODE  1 = toggle, 0 = pulse. 

 

3  RUNMODE  1 = one-shot mode, 0 = continuous mode. 

 

4  LOAD     1 = force load (this is a strobe input, there is no 

            data storage; bit 4 will always read back a zero 

            and writing a 0 has no effect.) 

 

5  INMODE   1 = Timer A count positive CNT transition, 

            0 = Timer A counts 02 pulses. 

 

6  SPMODE   1 = Serial port=output (CNT is the source of the shift 

            clock) 

 

            0 = Serial port-input (external shift clock is 

            required) 

 

7  UNUSED 
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BIT MAP OF REGISTER CRA 

 

REG# NAME UNUSED  SPMODE   INMODE LOAD    RUNMODE OUTMODE PBON     START 

 

E    CRA  unused  0=input  0=02   1=force 0=cont. 0=pulse 0=PB60FF 0=stop 

          unused  1=output 1=CNT    load  1=one- 1=toggle 1-PB60N 1=start 

                                  (strobe)  shot 

 

                           |<------------Timer A Variables------------->| 

 

All unused register bits are unaffected by a write and forced to 0 on a 

read. 

 

CONTROL REGISTER B: 

 

BIT NAME   FUNCTION 

 

0  START   1=start Timer B, 0=stop Timer B. 

           This bit is automatically reset (=0) when 

           underflow occurs during one-shot mode. 

 

1  PBON    1=Timer B output on PB7, 0= PB7 is normal operation. 

 

2  OUTMODE 1=toggle, 0=pulse. 

 

   RUNMODE 1=one-shot mode, 0=continuous mode. 

 

4  LOAD    1=force load (this is a strobe input, there is no 

           data storage; bit 4 will always read back a 

           zero and writing a 0 has no effect.) 

 

6,5 INMODE Bits CRB6 and CRB5 select one of four possible 

           input modes for Timer B, as follows: 

 

           CRB6 CRB5  Mode Selected 

           ---- ----  -------------------------- 

           0    0     Timer B counts 02 pulses 

           0    1     Timer B counts positive CNT transitions 

           1    0     Timer B counts Timer A underflow pulses 

           1    1     Timer B counts Timer A underflow pulses 

                            while CNT pin is held high. 

 

7  ALARM   1=writing to TOD registers sets Alarm 

           0=writing to TOD registers sets TOD clock. 

           Reading TOD registers always reads TOD clock, 

           regardless of the state of the Alarm bit. 
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BIT MAP OF REGISTER CRB 

 

REG 

 #   NAME  ALARM   INMODE  LOAD    RUNMODE  OUTMODE  PBON    START 

 

 F   CRB   0=TOD   00-02   1=force 0=cont.  0=pulse 0=PB70FF 0=stop 

           1=Alarm 01=CNT    load  1=one-   1=toggle 1=PB70N 1=start 

                   10=Timer A (strobe) shot 

                   11=CNT+ 

                      Timer A 

 

                   <--------------Timer B Variables----------------> 

 

All unused register bits are unaffected by a write and forced to 0 on a 

read. 

 

PORT SIGNAL ASSIGNMENTS 

 

This part specifies how various signals relate to the available ports of 

the 8520. This information enables the programmer to relate the port 

addresses to the outside-world items (or internal control signals) which 

are to be affected. This part is primarily for the use of the systems 

programmer and should generally not be used by applications programmers. 

Systems software normally is conFigured to handle the setting of 

particular signals, no matter how the physical connections may change. 

 

NOTE 

In a multi-tasking operating system, many different tasks may be 

competing for the use of the system resources. Applications programmers 

should follow the established rules for resource access in order to 

assure compatibility of their software with the system. 
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Address BFEr01   data bits 7-0   (A12*) (INT2) 

 

PA7..game port 1, pin 6 (fire button*) 

PA6..game port 0, pin 6 (fire button*) 

PAS..RDY*        disk ready* 

PA4..TKO*        disk track 00* 

PA3..WPRO*       write protect* 

PA2..CHNG*       disk change* 

PAl..LED*        led light (0=bright) 

PAO..OVL         memory overlay bit 

SP...RDAT        keyboard data 

CNT..RCLR 

PB7..P7          data 7 

PB6..P6          data 6 

PB5..P5          data 5     Centronics parallel interface 

PB4..P4          data 4          data 

PB3..P3          data 3 

PB2..P2          data 2 

PBl..P1          data 1 

PBO..P0          data 0 

PC...drdy*               centronics control 

F....ack* 

 

Address BFDrOO   data bit 15-8   (A13*) (INT6) 

 

PA7..com line DTR*, driven output 

PA6..com line RTS*, driven output 

PA5..com line carrier detect* 

PA4..com line CTS* 

PA3..com line DSR* 

PA2..SEL         centronics control 

PA1..POUT        paper out ---+ 

PA0..BUSY        busy  -----+ | 

                            | | 

SP...BUSY        commodore -+ | 

CNT..POUT        commodore ---+ 

 

PB7..MTR*        motor 

PB6..SEL3*       select external 3rd drive 

PB5..SEL2*       select external 2nd drive 

PB4..SEL1*       select external 1st drive 

PB3..SEL0*       select internal drive 

PB2..SIDE*       side select* 

PBl..DIR         direction 

PBO..STEP*       step* (3.0 milliseconds minimum) 

 

PC...not used 

F....INDEX* disk index* 
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; A complete 8520 timing example. This blinks the power light at (exactly) 

; 3 millisecond intervals. It takes over the machine, 50 watch out! 

; 

; The base Amiga crystal frequencies are: 

;           NTSC    28.63636 MHz 

;           PAL     28.37516 MHz 

; 

; The two 16 bit timers on the 8520 chips each count down at 1/10 the CPU 

; clock, or 0.715909 MHz. That works out to 1.3968255 microseconds per 

count. 

; Under PAL the countdown is slightly slower, 0.709379 MHz. 

; 

; To wait 1/100 second would require waiting 10,000 microseconds. 

; The timer register would be set to (10,000 / 1.3968255 - 7159). 

; 

; To wait 3 milliseconds would require waiting 3000 microseconds. 

; The register would be set to (3000 / 1.3968255 - 2148). 

 

        INCLUDE "hardware/cia.i" 

        INCLUDE "hardware/custom.i" 

; 

        XREF _ciaa 

        XREF _ciab 

        XREF _custom 

; 

        lea  _custom,a3                ; Base of custom chips 

        lea  _ciaa,a4                  ; Get base address if CIA-A 

; 

        move.w S7fff,dmacon(a3)        ; Kill all chip interrupts 

; 

; Setup, only do once 

; This set all bits needed for timer A one-shot mode. 

; 

        move.b ciacra(a4),d0           ;Set control register A on CIAA 

        and.b  #%11000000,d0           ;Don't trash bits we are not 

        or.b   #%00001000,d0           ;using... 

        move.b d0,ciacra(a4) 

        move.b #%01111111,ciaicr(a4)   ;Clear all 8520 interrupts 

; 

        Set time (low byte THEN high byte) 

        And the low order with $ff 

        Shift the high order by 8 

; 

TIME    equ 2148 

        move.b (TIME&$FF),ciatalo(a4) 

        move.b (TIME>>8),ciatahi(a4) 

; 

;       Wait for the timer to count down 

busy_wait: 

; 

     btst.b #0,ciaicr(a4)           ;Wait for timer expired flag 

     beq.s  busy wait 

     bchg.b #CIAB LED,ciapra(a4)    ;Blink light 

     bset.b #0,ciacra(a4)           ;Restart timer 

     bra.s  busy_wait 

 

     END 
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HARDWARE CONNECTION DETAILS 

 

The system hardware selects the CIAs when the upper three address bits 

are 101. Furthermore, CIAA is selected when A12 is low, A13 high; CIAB is 

selected when A12 is high, A13 low. CIAA communicates on data bits 7-0, 

CIAB communicates on data bits 15-8. 

 

Address bits A11, A10, A9, and A8 are used to specify which of the 16 

internal registers you want to access. This is indicated by "r" in the 

address. All other bits are don't cares. So, CIAA is selected by the 

following binary address: 101x xxxx xx01 rrrr xxxx xxx0. CIAB address: 

101x xxxx xx10 rrrr xxxx xxx1 

 

With future expansion in mind, we have decided on the following 

addresses: CIAA = BFEr01; CIAB = BFDr00. Software must use byte accesses 

to these address, and no other. 

 

INTERFACE SIGNALS 

 

CLOCK INPUT 

The 02 clock is a TTL compatible input used for internal device operation 

and as a timing reference for communicating with the system data bus. On 

the Amiga, this is connected to the 68000 "E" clock. The "E" clock runs 

at 1/10 of the CPU clock. This works out to .715909 Mhz for NTSC or 

.709379 Mhz for PAL. 

 

CS - CHIP-SELECT INPUT 

The CS input controls the activity of the 8520. A low level on CS while 

02 is high causes the device to respond to signals on the R/W and address 

(RS) lines. A high on CS prevents these lines from controlling the 8520. 

The CS line is normally activated (low) at 02 by the appropriate 

address combination. 

 

R/W - READ/WRITE INPUT 

The RW signal is normally supplied by the microprocessor and controls the 

direction of data transfers of the 8520. A high on R/W indicates a read 

(data transfer out of the 8520), while a low indicates a write (data 

transfer into the 8520). 
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RSRS0 - ADDRESS INPUTS 

The address inputs select the internal registers as described by the 

register map. 

 

DB7-DB0 - DATA BUS INPUTS/OUTPUTS 

The eight data bus output pins transfer information between the 8520 and 

the system data bus.  These pins are high impedance inputs unless CS is 

low and R/W and 02 are high, to read the device. During this read, the 

data bus output buffers are enabled, driving the data from the selected 

register onto the system data bus. 

 

IRQ - INTERRUPT REQUEST OUTPUT 

IRQ is an open drain output normally connected to the processor interrupt 

input. An external pull-up resistor holds the signal high, allowing 

multiple IRQ outputs to be connected together. 

The IRQ output is normally off (high impedance) and is activated low as 

indicated in the functional description. 

 

RES - RESET INPUT 

A low on the RES pin resets all internal registers. The port pins are set 

as inputs and port registers to zero (although a read of the ports will 

return all highs because of passive pull-ups). The timer control registers 

are set to zero and the timer latches to all ones. All other registers 

are reset to zero. 
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APPENDIX G 
 

AUTOCONFIG (TM) 
 

 
The AUTOCONFIG protocol is designed to allow the dynamic assignment of available 
address slots to expansion boards, eliminating the need for user configuration via 
jumpers. Upon reset, each board appeals in turn at $E80000. with readable identification 
information, most of which is in one's complement format, stored in the high nibbles of 
the first $40 words ($80 bytes) of the board. This identification information includes the 
size of the board, its address space preferences, type of board (memory or other), and a 

unique Hardware Manufacturer Number assigned by Commodore Amiga Technical 
Support, West Chester, Pennsylvania. 
 
Each board contains configuration hardware including an address latch appearing in the 
nibble at offset S0048 and a nibble at offset $004a. When A23 through A16 of the 
assigned board base address are written to this register, the board latches and appears at 
the assigned address, then passes a signal called CONFIG-OUT that causes the next board 
to appear at $E80000. To make certain types of boards less expensive, an expansion 
board's write registers may be organized as 
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either a byte-wide register or two nibble-wide registers. If the register is nibble-wide then 
it must latch the low nibble of the assigned address (at $4A) until the high nibble (at $48) 
is written. This allows the following algorithm to work with either type of board: 
 

    Write the low order address nibble to offset $4A 
    Write the entire address byte to offset $48 
 
Alternatively, many boards can be asked to "shut-up" (pass CONFIG-OUT and stop 
responding) by writing to offset S004c of the board. A bit in the nibble at offset $0008 
flags whether a board supports shut-up. 
 

All commercial expansion slot boards for the Amiga must implement the AUTOCONFIG 
protocol. More in-depth machine-specific information on the design and implementation of 
AUTOCONFIG boards is available from Commodore Amiga Technical Support. 
 
The Amiga operating system contains support for matching up disk-based drivers with 
AUTO-CONFIG boards. Since 1.3, the OS also supports initialisation of onboard ROM driver 
software. 
 
As a general rule, applications should not attempt to AUTOCONFIG expansion peripherals, 
but rather should allow the Amiga system software to handle all automatic configuration. 
Many boards contain registers which once activated could do irreparable damage, for 
example, data on a user's hard disk could be lost if the board had been configured 
improperly. 
 

However, certain types of low level stand-alone applications may need to configure 
hardware such as RAM boards without using the Amiga operating system. Such 
applications should only configure expansion RAM boards (boards which ask to be added 
to the free memory list) and known dedicated boards designed for specific applications. All 
other boards should be shut-up if the board supports shut-up, or configured and ignored if 
shut-up is not supported. (There are many boards which do not support shut-up). 
Configuration of boards should only be attempted by applications which take over the 
whole machine at reset. Presence of an AUTOCONFIG board waiting for configuration is 
determined by comparing the nibbles appearing at the initial AUTOCONFIG address with 
the valid values for such nibbles in the specifications. 
 
The AUTOCONFIG spec requires that boards be configured on boundaries that match their 
space requirements. For example, a 1 MB memory board should be configured on a 1 MB 
boundary. There are two exceptions to this rule: boards with a 4 MB address space are 

capable of being placed at S200000 and S600000 as well as being placed on 4 MB 
boundaries; 8 MB boards can be placed at S200000. These exceptions are necessary 
because the 8 MB space reserved for expansion in the current machine begins at 
$200000. 
 
DEBUGGING AUTOCONG BOARDS 
If there is a defect in your configuration information, your board may be ignored, may 
shut-up or may crash in a way that makes diagnosis difficult. There is a simple trick allows 
you to test the configuration information. Cut the CONFIGIN* line to your board and wire 
a switch into the line. Wire in the switch such that when it is set one way, the CONFIGIN* 
line will pass through 
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from the bus to the board. This allows the board to respond to the AUTOCONFIG process. 
When the switch is set the other way, it should be wired such that the input to the board 
is forced high This will disable the AUTOCONFIG of the board. 
 

Set the switch so that the CONFIGIN* line is forced high, then bring up the system. Your 
board will be invisible to the system software. Activate a debugger, and flip the switch, 
Your board should now respond at the normal $E80000 address. Your view of the board is 
identical to what the operating system sees when configuring your board. You can 
compare the bits with the expected values. 
 
NOTE 

The board to be debugged must be the last board in the system (closest to the PC slots, 
away fm the power supply.) Boards downstream of the board to be debugged will not be 
configured by the system. 
 
ADDRESS SPECIFICATION Table 
 
The following Table describes the board identification information and AUTOCONFIG 
registers which appear in the first $80 bytes of an AUTOCONFIG board at configuration 
time. 
 
NOTES 
o  Identification information is stored in the high nibbles of the even (word) addresses at 
the start of an AUTOCONFIG board. For example, the first two words of a board might 
contain $Cxxx 1xxx. The valid information in these first two words would be the $C high 

nibble of the word at offset $00). then the $1 (high nibble of the word at offset $02). 
Much of the information is interpreted by combining several nibbles, with low to high 
address nibbles containing high to low order parts of the resulting value. 
 
o  All nibbles of information, except for those at offsets $00/02 and $40/42, are stored in 
an inverted (one's complement) form and must be exclusive OR'd with $F before 
interpreting them according to the Table below. Unused nibbles (the three other nibbles in 
each word) may not be assumed to contain any particular value. All values written to the 
AUTOCONFIG area, including the assigned address, are written uninverted. 
 
o  All addresses are shown here as offsets from the base address $E80000 where boards 
appear at configuration time, so offset $02 is at $E80002, offset $04 at $E80004, etc. 
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Board Offset 

 ($00/02)   7  6  5  4      3  2  1  0  Description of nibbles 

 R/W info   \___  ___/      \___  ___/ 

                \/              \/ 

        Nibble at $E80000   Nibble at $E80002 

 

         Figure G-1: How to read the Address Specification Table 

 

 

NOTE 

The bit numbering ( 7 6 5 4 3 2 1 0 ) is for use when two nibbles are to 

be interpreted together as a byte. Physically, each nibble is the high 

nibble of the word at its address (i.e. bits 15 14 13 12). 

 

 

Figure G-1: Address Specification Table 

 

 OFFSET:       Address 1    Address 2              Description 

------------------------------------------------------------------------- 

($00/02)       7  6  5  4  3  2  1  0___Board size  000=8meg 100512k 

 Read          |  |  |  |  |  \__|__/               001=64k 101=1meg 

 Not Inverted  |  |  |  |  |                        010=128k 110=2meg 

               |  |  |  |  |                        011=256k 111=4meg 

               |  |  |  |  \-------- 1 = Next card is also on this board 

               |  |  |  \----------- 1 = Optional ROM vector valid 

               |  |  \-------------- 1 = Link into memory free list (RAM) 

               |  \____________ 

                \______________>---- Board type       00 = Reserved 

                                                      01 = Reserved 

                                                      10 = Reserved 

                                                      11 = Current type 

 

 

($04/06)       7  6  5  4  3  2  1  0   Manufacturers chosen product 

  Read         \___  ___/  \___  ___/             number 

Inverted           \/          \/ 

               Hi nibble   Lo nibble 

 

 

($08/0A)        7 6 5 4 3 2 1 0 (Remember - these read inverted) 

  Read          | | |_|_|_|_|_|_ Reserved - Should be 0 currently 

Inverted        | | 

                | \____________\ 0 = this board can be shut-up 

                |              / 1 = this board ignores shut-up 

                | 

                \______________\ 0 = any space OK 

                               / 1 = 8 Meg area preferred 
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OFFSET:         Address 1    Address 2      Description (cont.) 

------------------------------------------------------------------------- 

 

(SOC/OE)        7 6 5 4 3 2 1 0 

  Read          |_|_|_|_|_|_|_|_ Reserved - must be 0 

Inverted 

 

 

($10/12)        7  6  5  4  3  2  1  0    High byte of unique hardware 

  Read          \___  ___/  \___  ___/    manufacturer number assigned 

Inverted            \/          \/        to manufacturer. 

                 Hi nibble   Lo nibble    (Not developer number!) 

 

 

(S14/16)        7  6  5  4  3  2  1  0    Low byte of unique hardware 

Read            \___  ___/  \___  ___/    manufacturer number assigned 

Inverted            \/          \/        to manufacturer. 

                Hi nibble    Lo nibble    (Not developer number!) 

 

NOTE 

Manufacturer number is assigned by Commodore Amiga Technical Support in 

West Chester, Pennsylvania (CATS). Contact CATS for further information. 

 

($18/1A)        7  6  5  4  3  2  1  0  Optional aerial #, 1st byte (msb) 

($1C/lE)        7  6  5  4  3  2  1  0  Optional serial #, 2nd byte 

($20/22)        7  6  5  4  3  2  1  0  Optional serial #, 3rd byte 

($24/26)        7  6  5  4  3  2  1  0  Optional serial #, 4th byte (lsb) 

  Read 

Inverted 

 

 

(S28/2A)        7  6  5  4  3  2  1  0    Hi byte of optional ROM vector. 

  Read          \___  ___/  \___  ___/ 

Inverted            \/          \/ 

                Hi nibble   Lo nibble 

 

 

(S2C/2E)        7  6  5  4  3  2  1  0   Lo byte of optional ROM vector. 

  Read          \___  ___/  \___  ___/   If the "ROM vector valid" bit 

Inverted            \/          \/       is set in nibble S00 at start 

                 Hi nibble  Lo nibble    of the board, this optional ROM 

                                         vector is the offset from the 

                                         board base to ROM driver 

                                         structures. 

 

(S30/32)        7  6  5  4  3  2  1  0   Read - Reserved, must be 00 

  R/W                                    Write - optional reset of 

Inverted                                 board base register to 

                                         pre-configuration address 

 

($34/36)        7  6  5  4  3  2  1  0   Reserved, must be 00 

(S38/3A)        7  6  5  4  3  2  1  0   Reserved, must be 00 

(S3C/3E)        7  6  5  4  3  2  1  0   Reserved, must be 00 

Inverted 
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OFFSET:         Address 1   Address 2    Description (cont.) 

------------------------------------------------------------------------- 

(S40/42)        7  6  5  4  3  2  1  0   Write           Read 

  R/W           |  |  |  |  |  |  |  | 

Not Inverted    |  |  |  |  |  |  |  \_ Interrupt enable Interrupt enable 

                |  |  |  |  |  |  \____ User definable   Undefined 

                |  |  |  |  |  \_______ Local reset             Must be 0 

                |  |  |  |  \__________ User definable   Undefined 

                |  |  |  \_____________ User definable   INT2 pending 

                |  |  \________________ User definable   INT6 pending 

                |  \___________________ User definable   INT7 pending 

                \______________________ User definable   Board pull INT 

 

NOTE 

Use of the S40/42 registers is an optional feature which can be implemented 

by boards which generate interrupts. They make it possible for 

board-specific interrupt servers to determine if the current interrupt 

is being generated by their board, or by some other hardware using the 

same interrupt line. 

 

(S44/46)        7  6  5  4  3  2  1  0   Reserved, read must be 00 

  R/W                                    Write undefined 

Inverted 

 

(S48/4A)        7  6  5  4  3  2  1  0   Base add. register, write only. 

Write Only      \___  ___/  \___  ___/   These bits are compared with A23 

Not Inverted        \/          \/       through A16 (or fewer) to determine 

                Hi nibble    Lo nibble   the base address of the board. 

 

($4C/4E)        7  6 5   4   3  2  1  0  Optional shut-up register. 

Write Only      \___  ___/   \___  ___/  Any write to $4C will cause 

                    \/           \/      board to pass CONFIG-OUT and 

                     \_________________\ and then never respond again 

                                       / to any address, until RESET. A 

                                         bit in nibble $08 flags whether 

                                         the board can be shut-up. 

 

(S50 through S7E)                        Reserved, must be 00 

   Inverted 

 

Remember that an nibbles except S00/02 and $40/42 will actually appear 

inverted from the values in the above Table. For example, a "must be 0" 

nibble will appear as $F, and flags and hex values will also be inverted 

(i.e. a value of $1 will read as $E, etc). 
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/* 

 

* Examine all AUTOCONFIG(tm) boards in the system 

 

*/ 

 

include "exec/types.h" 

include "libraries/configvars.h" 

 

struct Library *OpenLibrary(); 

struct ConfigDev *FindConfigDev(); 

struct Library *ExpansionBase; 

 

void main() 

{ 

struct ConfigDev *myCD=0; 

 

ExpansionBase=OpenLibrary("expansion.library",0L); 

 

while(myCD=FindConfigDev(myCD,-1L,-1L)) /* search for any ConfigDev */ 

    { 

    printf("\n---ConfigDev structure found at location $%1x---\n",myCD); 

 

    /* These valuses are read directly from the board */ 

    printf("er Manufacturer         ="); 

        printf("%d,",myCD->cd Rom.er Manufacturer); 

        printf("S%x,",myCD->cd Rom.er Manufacturer); 

        printf("(-$%4x)\n",-myCD->cd Rom.er Manufacturer); 

 

    printf("er Product              ="); 

        printf("%d,",myCD->cd Rom.er Product); 

        printf("$%x,",myCDÑ>cd Rom.er Product); 

        printf("(-$%x)\n",-myCD->cd Rom.er Product); 

 

    printf("er Type                 =$%x\n",myCD->cd Rom.er Type); 

 

    printf("er Flags                ="); 

        printf("$%x\n",myCD->cd Rom.er Flags); 

 

    /* These values are generated when the AUTOCONFIG(tm) software 

 

    * relocate the board 

 

    printf("cd BoardAddr            =$%1x\n",myCD->cd BoardAddr); 

    printf("cd BoardSize            =$%1x (%ldK)\n", 

    myCD->cd BoardSize,((ULONG)myCD->cd BoardSize)/1024); 

 

    printf("cd Flags                =$%x\n",myCD->cd Flags); 

    } 

CloseLibrary(ExpansionBase); 

} 
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APPENDIX H 
 

KEYBOARD 
 

 
This appendix contains the keyboard interface specification for A1000, A500 and A2000. 
 
The keyboard plugs into the Amiga computer via a cable with four primary connections. 
The four wires provide 5-volt power, ground, and signals called KCLK (keyboard clock) 
and KDAT keyboard data). KCLK is unidirectional and always driven by the keyboard; 
KDAT is driven by both the keyboard and the computer. Both signals are open-collector, 

there are pullup resistors in both the keyboard (inside the keyboard microprocessor) and 
the computer. 
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KEYBOARD COMMUNICATIONS 
The keyboard transmits 8-bit data words serially to the main unit. Before the transmission 
starts, both KCLK and KDAT are high. The keyboard starts the transmission by putting out 
the first data bit (on KDAT), followed by a pulse on KCLK (low then high); then it puts out 

the second data bit and pulses KCLK until all eight data bits have been sent. After the end 
of the last KCLK pulse, the keyboard pulls KDAT high again. 
 
When the computer has received the eighth bit, it must pulse KDAT low for at least 1 
(one) microsecond, as a handshake signal to the keyboard. The handshake detection on 
the keyboard end will typically use a hardware latch The keyboard must be able to detect 
pulses greater than or equal to 1 microsecond. Software MUST pulse the line low for 85 

microseconds to ensure compatibility with all keyboard models. 
 
All codes transmitted to the computer are rotated one bit before transmission. The 
transmitted order is therefore 6-5-4-3-2-1-0-7. The reason for this is to transmit the 
up/down flag last, in order to cause a key-up code to be transmitted in case the keyboard 
is forced to restore lost sync (explained in more detail below). 
 
The KDAT line is active low; that is, a high level (+5V) is interpreted as 0, and a low level 
(0V) is interpreted as 1. 
 

    ___   ___   ___   ___   ___   ___   ___   ___   _______ 

KCLK   \_/   \_/   \_/   \_/   \_/   \_/   \_/   \_/ 

 

    _______________________________________________________ 

KDAT   \_____x_____x_____x_____x_____x_____x_____x_____/ 

         (6)   (5)   (4)   (3)   (2)   (1)   (0)   (7) 

 

        First                                     Last 

         sent                                     sent 

 

The keyboard processor sets the KDAT line about 20 microseconds before it pulls KCLK 
low. KCLK stays low for about 20 microseconds, then goes high again. The processor waits 
another 20 microseconds before changing KDAT. 
 
Therefore, the bit rate during transmission is about 60 microseconds per bit, or 17 
Kbits/sec. 
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KEYCODES 
Each key has a keycode associated with it (see accompanying Table). Keycodes are 
always 7 bits long. The eighth bit is a "key-up"/"key-down" flag; a 0 (high level) means 
that the key was pushed down, and a 1 (low level) means the key was released (the CAPS 

LOCK key is different – see below). 
 
For example, here is a diagram of the "B" key being pushed down. The keycode for "B" is 
$35=00110101; due to the rotation of the byte, the bits transmitted are 01101010. 
 

    ___   ___   ___   ___   ___   ___   ___   ___   _______ 

KCLK   \_/   \_/   \_/   \_/   \_/   \_/   \_/   \_/ 

 

    _______            ______      ______      ____________ 

KDAT       \__________/      \____/      \____/ 

 

        0     1     1     0     1     0     1     0 

 

In the next example, the "B" key is released. The keycode is still $35, except that bit 7 is 
set to indicate "key-up," resulting in a code of $B5 = 10110101. After rotating, the 
transmission will be 01101011: 
 

    ___   ___   ___   ___   ___   ___   ___   ___   _______ 

KCLK   \_/   \_/   \_/   \_/   \_/   \_/   \_/   \_/ 

 

    _______            ______      ______            ______ 

KDAT       \__________/      \____/      \__________/ 

 

        0     1     1     0     1     0     1     0 

 

 

CAPS LOCK KEY 
This key is different from all the others in that it generates a keycode only when it is 
pushed down, never when it is released. However, the up/down bit is still used. When 

pushing the CAPS LOCK key turns on the CAPS LOCK LED, the up/down bit will be 0; 
when pushing CAPS LOCK shuts off the LED, the up/down bit will be 1. 
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"OUT-OF-SYNC" CONDITION 
Noise or other glitches may cause the keyboard to get out of sync with the computer. This 
means that the keyboard is finished transmitting a code, but the computer is somewhere 
in the middle of receiving it. 

 
If this happens, the keyboard will not receive its handshake pulse at the end of its 
transmission. If the handshake pulse does not arrive within 143 ms of the last clock of the 
transmission, the keyboard will assume that the computer is still waiting for the rest of 
the transmission and is therefore out of sync. The keyboard will then attempt to restore 
sync by going into "resync mode." In this mode, the keyboard clocks out a 1 and waits for 
a handshake pulse. If none arrives within 143 ms, it clocks out another 1 and waits again. 

This process will continue until a handshake pulse arrives. 
 
Once sync is restored, the keyboard will have clocked a garbage character into the 
computer. That is why the key-up/key-down flag is always transmitted last. Since the 
keyboard clocks out 1's to restore sync, the garbage character thus transmitted will 
appear as a key release, which is less dangerous than a key hit. 
 
Whenever the keyboard detects that it has lost sync, it will assume that the computer 
failed to receive the keycode that it had been trying to transmit. Since the computer is 
unable to detect lost sync, it is the keyboard's responsibility to inform the computer of the 
disaster. It does this by transmitting a "lost sync" code (value $F9 = 11111001) to the 
computer. Then it retransmits the code that had been garbled. 
 
NOTE 

The only reason to transmit the "lost sync" code to the computer is to alert the software 
that something may be screwed up. The "lost sync" code does not help the recovery 
process, because the garbage keycode can't be deleted, and the correct key code could 
simply be retransmitted without telling the computer that there was an error in the 
previous one. 
 
POWER-UP SEQUENCE 
There are two possible ways for the keyboard to be powered up under normal 
circumstances: <1> the computer can be turned on with the keyboard plugged in, or <2> 
the keyboard can be plugged into an already "on" computer. The keyboard and computer 
must handle either case without causing any upset. 
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The first thing the keyboard does on power-up is to perform a self-test. This involves a 
ROM checksum test, simple RAM test, and watchdog timer test. Whenever the keyboard is 
powered up (or restarted - see below), it must not transmit anything until it has achieved 
synchronization with the computer. The way it does this is by slowly clocking out 1 bits, as 

described above, until it receives a handshake pulse. 
 
If the keyboard is plugged in before power-up, the keyboard may continue this process for 
several minutes as the computer struggles to boot up and get running. The keyboard 
must continue clocking out ls for however long is necessary, until it receives its 
handshake. 
 

If the keyboard is plugged in after power-up, no more than eight clocks will be needed to 
achieve sync. In this case, however, the computer may be in any state imaginable but 
must not be adversely affected by the garbage character it will receive. Again, because it 
receives a key release, the damage should be minimal. The keyboard driver must 
anticipate this happening and handle it, as should any application that uses raw keycodes. 
 
NOTE 
The keyboard must not transmit a "lost sync" code after re-synchronizing due to a power-
up or restart; only after re-synchronizing due to a handshake time-out. 
 
Once the keyboard and computer are in sync, the keyboard must inform the computer of 
the results of the self-test. If the self-test failed for any reason, a "self test failed" code 
(value $FC = 11111100) is transmitted (the keyboard does not wait for a handshake pulse 
after sending the" self test failed" code). After this, the keyboard processor goes into a 

loop in which it blinks the CAPS LOCK LED to inform the user of the failure. The blinks are 
coded as bursts of one, two, three, or four blinks, approximately one burst per second: 
 

   One blink     ROM checksum failure. 

   Two blinks    RAM test failed. 

   Three blinks  Watchdog timer test failed. 

   Four blinks   A short exists between two row lines 

                 or one of the seven special keys (not implemented). 

 
If the self-test succeeds, then the keyboard will proceed to transmit any keys that are 
currently down. First, it sends an "initiate power-up key stream" code (value $FD = 
11111101), followed by the key codes of all depressed keys (with keyup/down set to 
"down" for each key). After any keys are sent (usually there won't be any at all), a 
"terminate key stream" code (value $FE = 11111110) is sent. Finally, the CAPS LOCK LED 
is shut off. This marks the end of the start-up sequence, and normal processing 
commences. 
 
The usual sequence of events will therefore be: power-up; synchronize; transmit "initiate 
power-up key stream" ($FD); transmit "terminate key stream2 ($FE). 
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RESET WARNING 
 
NOTE 
Available on some A1000 and A2000 keyboards. You cannot rely on this feature for all 

Amiga’s. 
 
The keyboard has the additional task of resetting the computer on the command of the 
user. The user initiates Reset Warning by simultaneously pressing the CTRL key and the 
two "AMIGA" keys. 
 
The keyboard responds to this input by syncing up any pending transmit operations. The 

keyboard then sends a "reset warning" to the Amiga. This action alerts the Amiga 
software to finish up any pending operations (such as disk DMA) and prepare for reset. 
 
A specific sequence of operations ensure that the Amiga is in a state where it can respond 
to the reset warning. The keyboard sends two actual "reset warning" keycodes. The Amiga 
must handshake to the first code like any normal keystroke, else the keyboard goes 
directly to Hard Reset. On the second "reset warning" code the Amiga must drive KDAT 
low within 250 milliseconds, else the keyboard goes directly to Hard Reset. If the all the 
tests are passed, the Amiga has 10 full seconds to do emergency processing. When the 
Amiga pulls KDAT high again, the keyboard finally asserts hard reset. 
 
If the Amiga fails to pull KDAT high within 10 seconds, Hard Reset is asserted anyway. 
 
HARD RESET 

 
NOTE 
This happens after Reset Warning. Valid for all keyboards except the Amiga 500. 
 
The keyboard Hard Resets the Amiga by pulling KCLK low and starting a 500 millisecond 
timer. When one or more of the keys is released AND 500 milliseconds have passed, the 
keyboard will release KCLK. 500 milliseconds is the minimum time KCLK must be held low. 
The maximum KCLK time depends on how long the user holds the three keys down. 
 
NOTE 
Circuitry on the Amiga motherboard detects the 500 millisecond KCLK pulse. 
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After releasing KCLK, the keyboard jumps to its start-up code (internal RESET). This will 
initialize the keyboard in the same way as cold power-on. 
 
NOTE 

The keyboard must resend the "powerup key stream"! 
 
SPECIAL CODES 
The special codes that the keyboard uses to communicate with the main unit are 
summarized here. 
 
NOTE 

The special codes are 8-bit numbers; there is no up/down flag associated with them. 
 
However, the transmission bit order is the same as previously described. 
 

CODE    NAME              MEANING 

----------------------------------------------------------------------- 

78      Reset warning.     CTRL-AMIGA, AMIGA has been hit - 

                           computer will be reset in 10 seconds. (see text) 

F9      Last key code bad, next code i9 the same code 

                           retransmitted (used when keyboard and main unit 

                           get out of sync). 

FA      Keyboard output buffer overflow 

FB      Unused (was controller failure) 

FC      Keyboard self test failed 

FD      Initiate power-up key stream (keys pressed at powerup) 

FE      Terminate power-up key stream 

FF      Unused (was interrupt) 
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MATRIX Table 

 

        Row 5   Row 4   Row 3   Row 2   Row 1   Row 0 

Column (Bit 7) (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2) 

      +-------+-------+-------+-------+-------+-------+ 

  15  |(spare)|(spare)|(spare)|(spare)|(spare)|(spare)| 

(PD.7)|       |       |       |       |       |       | 

      |  (0E) |  (1C) | (2C)  | (47)  | (48)  | (49)  | 

      +-------+-------+-------+-------+-------+-------+ 

  14  |   *   |<SHIFT>| CAPS  |  TAB  |   -   |  ESC  | 

(PD.6)|note 1 |note 2 | LOCK  |       |   '   |       | 

      | (5D)  | (30)  | (62)  | (42)  | (00)  | (45)  | 

      +-------+-------+-------+-------+-------+-------+ 

  13  |   +   |   Z   |   A   |   Q   |   !   |   (   | 

(PD.5)|note 1 |       |       |       |   1   |note 1 | 

      | (5E)  | (31)  | (20)  | (10)  | (01)  | (5A)  | 

      +-------+-------+-------+-------+-------+-------+ 

  12  |   9   |   X   |   S   |   W   |   @   |  f1   | 

(PD.4)|note 3 |       |       |       |   2   |       | 

      | (3F)  | (32)  | (21)  | (11)  | (02)  | (50)  | 

      +-------+-------+-------+-------+-------+-------+ 

  11  |   6   |   C   |   D   |   E   |   #   |  f2   | 

(PD.3)|note 3 |       |       |       |   3   |       | 

      | (2F)  | (33)  | (22)  | (12)  | (03)  | (51)  | 

      +-------+-------+-------+-------+-------+-------+ 

  10  |   3   |   V   |   F   |   R   |   $   |  f3   | 

(PD.2)|note 3 |       |       |       |   4   |       | 

      | (1F)  | (34)  | (23)  | (13)  | (04)  | (52)  | 

      +-------+-------+-------+-------+-------+-------+ 

   9  |   .   |   B   |   G   |   T   |   %   |  f4   | 

(PD.1)|note 3 |       |       |       |   5   |       | 

      | (3C)  | (35)  | (24)  | (14)  | (05)  | (53)  | 

      +-------+-------+-------+-------+-------+-------+ 

   8  |   8   |   N   |   H   |   Y   |   -   |  f5   | 

(PD.0)|note 3 |       |       |       |   6   |       | 

      | (3E)  | (36)  | (25)  | (15)  | (06)  | (54)  | 

      +-------+-------+-------+-------+-------+-------+ 

   7  |   5   |   M   |   J   |   U   |   &   |   )   | 

(PC.7)|note 3 |       |       |       |   7   |note 1 | 

      | (2E)  | (37)  | (26)  | (16)  | (07)  | (5B   | 

      +-------+-------+-------+-------+-------+-------+ 

   6  |   2   |   <   |   K   |   I   |   *   |  f6   | 

(PC.6)|note 3 |   ,   |       |       |   8   |       | 

      | (1E)  | (38)  | (27)  | (17)  | (08)  | (55)  | 

      +-------+-------+-------+-------+-------+-------+ 

   5  | ENTER |   >   |   L   |   O   |   (   |   /   | 

(PC.5)|note 3 |   .   |       |       |   9   |note 1 | 

      | (43)  | (39)  | (28)  | (18)  | (09)  | (5C)  | 

      +-------+-------+-------+-------+-------+-------+ 
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        Row 5   Row 4   Row 3   Row 2   Row 1   Row 0 

Column (Bit 7) (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2) 

      +-------+-------+-------+-------+-------+-------+ 

   4  |   7   |   ?   |   :   |   P   |   )   |   f7  | 

(PC.4)|note 3 |   /   |   ;   |       |   O   |       | 

      | (3D)  | (3A)  | (29)  | (19)  | 0A)   | (56)  | 

      +-------+-------+-------+-------+-------+-------+ 

   3  |   4   |(spare)|   "   |   {   |   _   |   f8  | 

(PC.3)|note 3 |       |   '   |   [   |   -   |       | 

      | (2D)  | (3B)  | (2A)  | (1A)  | (0B)  | (57)  | 

      +-------+-------+-------+-------+-------+-------+ 

   2  |   1   | SPACE | <RET> |   }   |   +   |   f9  | 

(PC.2)|note 3 |  BAR  |note 2 |   ]   |   =   |       | 

      | (1D)  | (40)  | (2B)  | (1B)  | (0C)  | (58)  | 

      +-------+-------+-------+-------+-------+-------+ 

   1  |   0   | BACK  |  DEL  |RETURN |   |   |  f10  | 

(PC.1)|note 3 |SPACE  |       |       |   \   |       | 

      | (0F)  | (41)  | (46)  | (44)  | (0D)  | (59)  | 

      +-------+-------+-------+-------+-------+-------+ 

   0  |   -   | CURS  | CURS  | CURS  | CURS  | HELP  | 

(PC.0)|note 3 | DOWN  | RIGHT | LEFT  |  UP   |       | 

      | (4A)  | (4D)  | (4E)  | (4F)  | (4C)  | (5F)  | 

      +-------+-------+-------+-------+-------+-------+ 

 

note 1: A500 and A2000 keyboards only (numeric pad) 

note 2: International keyboards only (these keys are cutouts of the 

        larger key on the US ASCII version.) The key that generates 

        $30 is cut out of the left shift key. Key S2B is cut out of 

        return. These keys are labelled with country-specific markings. 

note 3: Numeric pad. 

 

The following Table shows which keys are independently readable. These 

keys never generate ghosts or phantoms. 

 

       (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2) (Bit 1) (Bit 0) 

      +-------+-------+-------+-------+-------+-------+-------+ 

      | LEFT  | LEFT  | LEFT  | CTRL  | RIGHT | RIGHT | RIGHT | 

      | AMIGA |  ALT  | SHIFT |       | AMIGA |  ALT  | SHIFT | 

      | (66)  | (64)  | (60)  | (63)  | (67)  | (65)  | (61)  | 

      +-------+-------+-------+-------+-------+-------+-------+ 
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APPENDIX I 
 

EXTERNAL DISK CONNECTOR INTERFACE SPECIFICATION 
 

 
GENERAL 
The 23-pin female connector at the rear of the main computer unit is used to interface to 
and control devices that generate and receive MFM data. This interface can be reached 
either as a resource or under the control of a driver. The following pages describe the 
interface in both cases. 
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SUMMARY Table 

 

Pin #  Name    Note 

 

1      RDY-    I/O   ID and ready 

2      DKRD-   I     MFM input 

3      GRND    G     - 

4      GRND    G     - 

5      GRND    G     - 

6      GRND    G     - 

7      GRND    G     - 

8      MTRXD-  0     Motor control. 

9      SEL2B-  0*    Select drive 2 

10     DRESB-  0     Reset 

11     CHNG-   I/O   Msk changed 

12     +5v     PWR   540 mA average 870 mA surge 

13     SIDEB-  0     Side 1 if low 

14     WRPRO-  I/O   Write protect 

15     TK0-    I/O   Track 0 

16     DKWEB-  O     Write gate 

17     DKWDB-  O     Write data 

18     STEPB-  O     Step 

19     DIRB    O     Direction (high is out) 

20     SEL3B-  O*    Select drive 3 

21     SELlB-  O*    Select drive 1 

22     INDEX-  I/OO  Index 

23     +12v    PWR   120 mA average 370 mA surge 

 

KEY TO CLASS: 

 

G     ground, note connector shield grounded. 

 

I     input pulled up to 5v by 1K ohm. 

 

I/O   input in driver, but bidirectional input (1k pullup) 

 

O     output pulled though 1K to 5v 

 

O*    output, separates resources. 

 

PWR   available for external use, but currently used up by external drive. 
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SIGNALS WHEN DRIVING A DISK 

The following describes the interface under driver control. 

 

SEL1B-, SEL2B-, SEL3B- 

    Select lines for the three external disk drives active low. 

 

TK 

    A selected drive pulls this signal low whenever its read-write head 

is on track 00. 

 

RDY- 

    When a disk drive's motor is on, this line indicates the selected 

disk is installed and rotating at speed. The driver ignores this signal. 

When the motor is off this is used as a ID data line. See below. 

 

WPRO- (Pin #14) 

    A selected drive pulls this signal low whenever it has a write- 

protected diskette installed. 

 

INDEX- (Pin #22) 

    A selected drive pulses this signal low once for each revolution of 

its motor. 

 

SIDEB- (Pin #13) 

    The system drives this signal to all disk drives-low for side 1, high 

for side 0. 

 

STEPB- (Pin #18) 

    Pulsed to step the selected drive's head. 

 

DIRB (Pin #19) 

    The system drives this signal high or low to tell the selected drive 

which way to step when the STEPB- pulse arrives. Low means step in (to 

higher-numbered track); high means step out. 

 

DKRD- (Pin #2) 

    A selected drive will put out read data on this line. 

 

DKWDB- (Pin #17) 

    The system drives write data to all disks via this signal. The data 

is only written when DKWEB- is active (low). Data is written only to 

selected drives. 
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DKWEB- (Pin #16) 

    This signal causes a selected drive to start writing data (provided 

by DKWDB-) onto the disk. 

 

CHNG- (Pin #11) 

    A selected drive will drive this signal low whenever its internal 

"disk change" latch is set. 

This latch is set when the drive is first powered on, or whenever there 

is no diskette in the drive. To reset the latch, the system must select 

the drive, and step the head. Of course, the latch will not reset if 

there is no diskette installed. 

 

MTRXD- (Pin #8) 

    This is the motor control line for all four disk drives. When the 

system wants to turn on a disk drive motor, it first deselects the drive 

(if selected), pulls MTRXD- low, and selects the drive. To turn the motor 

off, the system deselects the drive, pulls MTRXD- high, and selects the 

drive. The system will always set MTRXD- at least 1.4 microseconds before 

it selects the drive, and will not change MTRXD- for at least 1.4 

microseconds after selecting the drive. An external drives must have 

logic equivalent to a D flip-flop, whose D input is the MTRXD signal, and 

whose clock input is activated by the off-to-on (high-to-low) transition 

of its SELxB- signal. As noted above, both the setup and hold times of 

MTRXD-with respect to SELxB- will always be at least 1.4 microseconds. 

The output of this flip-flop controls the disk drive motor. Thus, the 

system can control all four motors using only one signal on the cable 

(MIRXD-). 

 

DRESB- (Pin #10) 

    This signal is a buffered version of the system reset signal. Three 

things can make it go active low): 

 

o  System power-up (DRESB- will go low for approximately one second); 

 

o  System CPU executes a RESET instruction (DRESB- will go low for 

approximately 17 microseconds); 

 

o  Hard reset from keyboard (lasts as long as keyboard reset is held 

down). 

 

External disk drives should respond to DRESB- by shuffling off their motor 

flip-flops and write protecting themselves. 

 

A level of 3.75v or below on the 5v+ requires external disks to write- 

protect and reset the motor on line. 
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Device I.D. 

    This interface supports a method of establishing the type of disk(s) 

attached. The I.D. sequence is as follows. 

 

        1. Drive MTRXD- low. 

 

        2. Drive SELxB- low 

 

        3. Drive SELxB- high. 

 

        4. Drive MTRXD- high. 

 

        5. Drive SELxB- low 

 

        6. Drive SELxB- high. 

 

        7. Drive SELxB- low 

 

        8. Read and save state of RDY. 

 

        9. Drive SELxB- high. 

 

Repeat steps 6 to 9, 15 times more. 

 

Convert the 16 values of RDY- into a 16-bit word. The most significant 

bit is the first value and so on. This 16-bit quantity is the device I.D. 

 

The following I.D.s are defined: 

 

0000 0000 0000 0000  Reserved 

1111 1111 1111 1111  Amiga standard 3.25 

1010 1010 1010 1010  Reserved 

0101 0101 0101 0101  48 TPI double-density, double-sided 

1000 0000 0000 0000  Reserved 

0111 1111 1111 1111  Reserved 

0000 1111 xxxx xxxx  Available for users 

1111 0000 xxxx xxxx  Extension reserved 

xxxx 0000 0000 0000  Reserved 

xxxx 1111 1111 1111  Reserved 

0011 0011 0011 0011  Reserved 

1100 1100 1100 1100  Reserved 
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APPENDIX J 
 

HARDWARE EXAMPLE INCLUDE FILE 
 

 
This appendix contains an include file that maps the hardware register names, given in 
Appendix A and Appendix B, to names that can be resolved by the standard include files. 
Use of these names in code sections of this manual places the emphasis on what the code 
is doing, rather than getting bogged down in include file names. 
 
All code examples in this manual reference the names given in this file. 
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                           IFND      HARDWARE_HW_EXAMPLES_I 

HARDWARE_HW_EXAMPLES_I     SET       1 

** 

** 

** 

**        Filename: hardware/hw_examples.i 

**        $Release: 1.3 $ 

** 

**       (C) Copyright 1985,1986,1987,1988,1989 Commodore-Amiga, Inc. 

**           All Rights Reserved 

** 

** 

************************************************************************** 

    IFND HARDWARE_CUSTOM_I 

    INCLUDE "hardware/custom.i" 

    ENDC 

************************************************************************** 

* 

* This include file is designed to be used in conjunction with the hardware 

* manual examples. This file defines the register names based on the 

* hardware/custom.i definition file. There is no C-Language version of 

* this file. 

************************************************************************** 

* 

* This instruction for the copper will cause it to 

* wait forever since the wait command described in it 

* will never happen. 

* 

COPPER_HALT equ $FFFFFFFE 

* 

**************************************************************************** 

* 

* This is the offset in the 680x0 address space to the custom chip registers 

* It is the same as custom when linking with AMIGA.lib 

* 

CUSTOM          equ $DFF000 

* 

* Various control registers 

* 

DMACONR  equ     dmaconr         ; Just capitalization ..... 

VPOSR    equ     vposr           ; "          " 

VHPOSR   equ     vhpor           ; "          " 

JOY0DAT  equ     joy0dat         ; "          " 

JOY1DAT  equ     joy1dat         ; "          " 

CLXDAT   equ     clxdat          ; "          " 

ADKCONR  equ     adkconr         ; "          " 

POT0DAT  equ     pot0dat         ; "          " 

POT1DAT  equ     pot1dat         ; "          " 

POTINP   equ     potinp          ; "          " 

SERDATR  equ     serdatr         ; "          " 

INTENAR  equ     intenar         ; "          " 

INTREQR  equ     intreqr         ; "          " 

REFPTR   equ     refptr          ; "          " 

VPOSW    equ     vposw           ; "          " 

VHPOSW   equ     vhposw          ; "          " 

SERDAT   equ     serdat          ; "          " 

SERPER   equ     serper          ; "          " 

POTGO    equ     potgo           ; "          " 

JOYTEST  equ     joyteat         ; "          " 

STREQU   equ     strequ          ; "          " 

STRVBL   equ     strvbl          ; "          " 



STRHOR          equ     atrhor          ; "          " 

STRLONG         equ     atrlong         ; "          " 

DIWSTRT         equ     diwatrt         ; "          " 

DIWSTOP         equ     diwatop         ; "          " 

DDFSTRT         equ     ddfatrt         ; "          " 

DDFSTOP         equ     ddfatop         ; "          " 

DMACON          equ     dmacon          ; "          " 

INTENA          equ     intena          ; "          " 

INTREQ          equ     intreq          ; "          " 

* 

* Disk control registers 

* 

DSKBYTR         equ     dakbytr         ; Juat capitalization .... 

DSKPT           equ     dakpt           ; "          " 

DSKPTH          equ     dakpt 

DSKPTL          equ     dakpt+$02 

DSKLEN          equ     daklen          ; "          " 

DSKDAT          equ     dakdat          ; "          " 

DSKSYNC         equ     dakaync         ; "          " 

* 

* Blitter registers 

* 

BLTCON0         equ     bltcon0         ; Just capitalization 

BLTCON1         equ     bltcon1         ; "          " 

BLTAFWM         equ     bltafwm         ; "          " 

BLTALWM         equ     bltalwm 

BLTCPT          equ     bltcpt          ; "          " 

BLTCPTH         equ     bltcpt 

BLTCPTL         equ     bltcpt+$02 

BLTBPT          equ     bltbpt          ; "          " 

BLTBPTH         equ     bltbpt 

BLTBPTL         equ     bltbpt+$02 

BLTAPT          equ     bltapt          ; "          " 

BLTAPTH         equ     bltapt 

BLTAPTL         equ     bltapt+$02 

BLTDPT          equ     bltdpt          ; "          " 

BLTDPTH         equ     bltdpt 

BLTDPTL         equ     bltdpt+$02 

BLTSIZE         equ     bltaize         ; "          " 

BLTCMOD         equ     bltcmod         ; "          " 

BLTBMOD         equ     bltbmod         ; "          " 

BLTAMOD         equ     bltamod         ; "          " 

BLTDMOD         equ     bltdmod         ; "          " 

BLTCDAT         equ     bltcdat         ; "          " 

BLTBDAT         equ     bltbdat         ; "          " 

BLTADAT         equ     bltadat         ; "          " 

BLTDDAT         equ     bltddat         ; "          " 

* 

* Copper control registers 

COPCON          equ     copcon          ; Just capitalization .... 

COPINS          equ     copina          ; "          " 

COPJMP1         equ     copjmp1         ; "          " 

COPJMP2         equ     copjmp2         ; "          " 

COP1LC          equ     cop1lc          ; "          " 

COP1LCH         equ     cop1lc 

COP1LCL         equ     cop1lc+$02 

COP2LC          equ     cop2lc          ; "          " 

COP2LCH         equ     cop2lc 

COP2LCL         equ     cop2lc+$02 

* 

* Audio channels registers 



* 

ADKCON          equ     adkcon          ; Just capitalization 

 

AUD0LC          equ     aud0 

AUD0LCH         equ     aud0 

AUD0LCL         equ     aud0+$02 

AUD0LEN         equ     aud0+$04 

AUD0PER         equ     aud0+$06 

AUD0VOL         equ     aud0+$08 

AUD0DAT         equ     aud0+$0A 

 

AUD1LC          equ     aud1 

AUD1LCH         equ     aud1 

AUD1LCL         equ     aud1+$02 

AUD1LEN         equ     aud1+$04 

AUD1PER         equ     aud1+$06 

AUD1VOL         equ     aud1+$08 

AUD1DAT         equ     aud1+$0A 

 

AUD2LC          equ     aud2 

AUD2LCH         equ     aud2 

AUD2LCL         equ     aud2+$02 

AUD2LEN         equ     aud2+$04 

AUD2PER         equ     aud2+$06 

AUD2VOL         equ     aud2+$08 

AUD2DAT         equ     aud2+$0A 

 

AUD3LC          equ     aud3 

AUD3LCH         equ     aud3 

AUD3LCL         equ     aud3+$02 

AUD3LEN         equ     aud3+$04 

AUD3PER         equ     aud3+$06 

AUD3VOL         equ     aud3+$08 

AUD3DAT         equ     aud3+$0A 

* 

* The bitplane registers 

* 

BPLlPT          equ     bplpt+$00 

BPLlPTH         equ     bplpt+$00 

BPLlPTL         equ     bplpt+$02 

BPL2PT          equ     bplpt+$04 

BPL2PTH         equ     bplpt+$04 

BPL2PTL         equ     bplpt+$06 

BPL3PT          equ     bplpt+$08 

BPL3PTH         equ     bplpt+$08 

BPL3PTL         equ     bplpt+$0A 

BPL4PT          equ     bplpt+$0C 

BPL4PTH         equ     bplpt+$0C 

BPL4PTL         equ     bplpt+$0E 

BPLSPT          equ     bplpt+$10 

BPL5PTH         equ     bplpt+$10 

BPL5PTL         equ     bplpt+$12 

BPL6PT          equ     bplpt+$14 

BPL6PTH         equ     bplpt+$14 

BPL6PTL         equ     bplpt+$16 

 

BPLCON0         equ     bplcon0         ; Juat capitalization 

BPLCON1         equ     bplcon1         ; "          " 

BPLCON2         equ     bplcon2         ; "          " 

BPL1MOD         equ     bpl1mod         ; "          " 

BPL2MOD         equ     bpl2mod 



DPL1DATA    equ   bpldat+$00 

DPL2DATA    equ   bpldat+$02 

DPL3DATA    equ   bpldat+$04 

DPL4DATA    equ   bpldat+$06 

DPL5DATA    equ   bpldat+$08 

DPL6DATA    equ   bpldat+$0A 

* 

* Sprite control registers 

* 

SPR0PT      equ   Sprpt+$00 

SPR0PTH     equ   SPR0PT+$00 

SPR0PTL     equ   SPR0PT+$02 

SPR1PT      equ   sprpt+$04 

SPR1PTH     equ   SPR1PT+$00 

SPR1PTL     equ   SPR1PT+$02 

SPR2PT      equ   sprpt+$08 

SPR2PTH     equ   SPR2PT+$00 

SPR2PTL     equ   SPR2PT+S02 

SPR3PT      equ   sprpt+$0C 

SPR3PTH     equ   SPR3PT+$00 

SPR3PTL     equ   SPR3PT+$02 

SPR4PT      equ   sprpt+$10 

SPR4PTH     equ   SPR4PT+$00 

SPR4PTL     equ   SPR4PT+$02 

SPR5PT      equ   sprpt+$14 

SPRSPTH     equ   SPRSPT+$00 

SPRSPTL     equ   SPRSPT+$02 

SPR6PT      equ   sprpt+$18 

SPR6PTH     equ   SPR6PT+$00 

SPR6PTL     equ   SPR6PT+$02 

SPR7PT      equ   sprpt+$1C 

SPR7PTH     equ   SPR7PT+$00 

SPR7PTL     equ   SPR7PT+$02 

; 

; Note: SPRxDATB is defined as being +$06 from SPRxPOS. 

: sd_datab should be defined as $06, however, in the 1.3 assembler 

; include file hardware/custom.i it is incorrectly defined as $08. 

SPR0POS     equ   spr+$00 

SPR0CTL     equ   SPR0POS+sd_ct1 

SPR0DATA    equ   SPR0POS+sd dataa 

SPR0DATB    equ   SPR0POS+$06 ; should use sd datab ... 

 

SPR1POS     equ   spr+$08 

SPR1CTL     equ   SPR1POS+sd_ctl 

SPR1DATA    equ   SPR1POS+sd_dataa 

SPR1DATB    equ   SPR1P05+$06 ; should use sd datab ... 

 

SPR2POS     equ   spr+$10 

SPR2CTL     equ   SPR2POS+sd_ctl 

SPR2DATA    equ   SPR2POS+sd_dataa 

SPR2DATB    equ   SPR2POS+$06 ; should use sd datab ... 

 

SPR3POS     equ   spr+$18 

SPR3CTL     equ   SPR3POS+sd ctl 

SPR3DATA    equ   SPR3POS+sd dataa 

SPR3DATB    equ   SPR3P05+$06 ; should use sd datab ... 

 

SPR4POS     equ   spr+$20 

SPR4CTL     equ   SPR4POS+sd ctl 

SPR4DATA    equ   SPR4POS+sd dataa 

SPR4DATB    equ   SPR4P05+$06 ; should use sd datab ... 



SPR5POS         equ     spr+$28 

SPR5CTL         equ     SPR5POS+ad_ctl 

SPR5DATA        equ     SPR5POS+Ad_dataa 

SPR5DATB        equ     SPR5P05+$06     ; should use ad_datab 

 

SPR6POS         equ     spr+$30 

SPR6CTL         equ     SPR6POS+ad_ctl 

SPR6DATA        equ     SPR6POS+sd_dataa 

SPR6DATB        equ     SPR6P05+$06     ; should use sd_datab 

 

SPR7POS         equ     spr+$38 

SPR7CTL         equ     SPR7POS+sd_ctl 

SPR7DATA        equ     SPR7POS+sd_dataa 

SPR7DATB        equ     SPR7P05+$06     ; should use ad_datab 

* 

* Color registers... 

* 

COLOR00         equ     color+$00 

COLOR01         equ     color+$02 

COLOR02         equ     color+$04 

COLOR03         equ     color+$06 

COLOR04         equ     color+$08 

COLOR05         equ     color+$0A 

COLOR06         equ     color+$0C 

COLOR07         equ     color+$0E 

COLOR08         equ     color+$10 

COLOR09         equ     color+$12 

COLOR10         equ     color+$14 

COLOR11         equ     color+$16 

COLOR12         equ     color+$18 

COLOR13         equ     color+$1A 

COLOR14         equ     color+$1C 

COLOR15         equ     color+$1E 

COLOR16         equ     color+$20 

COLOR17         equ     color+$22 

COLOR18         equ     color+$24 

COLOR19         equ     color+$26 

COLOR20         equ     color+$28 

COLOR21         equ     color+$2A 

COLOR22         equ     color+$2C 

COLOR23         equ     color+$2E 

COLOR24         equ     color+$30 

COLOR25         equ     color+$32 

COLOR26         equ     color+$34 

COLOR27         equ     color+$36 

COLOR28         equ     color+$38 

COLOR29         equ     color+$3A 

COLOR30         equ     color+$3C 

COLOR31         equ     color+$3E 

 

************************************************************************* 

ENDC     ; HARDWARE_HW_EXAMPLES_I 

                          

                                 



GLOSSARY 
 
 
AGNUS 

One of the three main Amiga custom chips. Contains the blitter, copper, and DMA 
circuitry. 
 
ALIASING DISTORTION 
A side effect of sound sampling, where two additional frequencies are produced, distorting 
the sound output. 
 

ALT KEYS 
Two keys on the keyboard to the left and right of the Amiga keys. 
 
AMIGA KEYS 
Two keys on the keyboard to the left and right of the space bar. 
 
AMIGADOS 
The Amiga operating system. 
 
AMPLITUDE 
The voltage or current output expressed as volume from a sound speaker. 
 
AMPLITUDE MODULATION 
A means of increasing audio effects by using one audio channel to alter the amplitude of 

another. 
 
ATTACH MODE 
In sprites, a mode in which a sprite uses two DMA channels for additional colors. In sound 
production, combining two audio channels for frequency/amplitude modulation or for 
stereo sound. 
 
AUTOMATIC MODE 
In sprite display, the normal mode in which the sprite DMA channel, once it starts up, 
automatically retrieves and displays all of the data for a sprite. In audio, the normal mode 
in which the system retrieves sound data automatically through DMA. 
 
BARREL SHIFTER 
Blitter circuit that allows movement of images on pixel boundaries. 

 
BAUD RATE 
Rate of data transmission through a serial port. 
 
BEAM COUNTERS 
Registers that keep track of the position of the video beam. 
 
BIT-MAP 
The complete definition of a display in memory, consisting of one or more bit-planes and 
information about how to organize the rectangular display. 
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BITPLANE 
A contiguous series of display memory words, treated as if it were a rectangular shape. 
 
BIT-PLANE ANIMATION 

A means of animating the display by moving around blocks of playfield data with the 
blitter. 
 
BLANKING INTERVAL 
Time period when the video beam is outside the display area. 
 
BLITTER 

DMA channel used for data copying and line drawing. 
 
CHIP MEMORY 
Memory accessible to the Amiga custom chips. On the current generation of machines, 
this section of memory starting at address  (See Fast Memory.) 
 
CLEAR 
Giving a bit the value of 0. 
 
CLI 
See command line interface. 
 
CLIPPING 
When a portion of a sprite is outside the display window and thus is not visible. 

 
COLLISION 
A means of detecting when sprites, playfields, or playfield objects attempt to overlap in 
the same pixel position or attempt to cross some pre-defined boundary. 
 
COLOR DESCRIPTOR WORDS 
Pairs of words that define each line of a sprite. 
 
COLOR INDIRECTION 
The method used by Amiga for colouring individual pixels in which the binary number 
formed from all the bits that define a given pixel refers to one of the 32 color registers. 
 
COLOR PALETTE 
See Color Table. 

 
COLOR REGISTER 
One of 32 hardware registers containing colors that you can define. 
 
COLOR Table 
The set of 32 color registers. 
 
COMMAND LINE INTERFACE 
The command line interface to system commands and utilities. 
 
COMPOSITE VIDEO 
A video signal, transmitted over a single coaxial cable, which includes both picture and 
sync information. 
 

CONTROLLER 
Hardware device, such as mouse or light pen, used to move the pointer or furnish some 
other input to the system. 

 



COORDINATES 
A pair of numbers shown in the form (x,y), where x is an offset from the left side of the 
display or display window and y is an offset from the top. 
 

COPPER 
Display-synchronized coprocessor that resides on one of the Amiga custom chips and 
directs the graphics display. 
 
COPROCESSOR 
Processor that adds its instruction set to that of the main processor. 
 

CURSOR KEYS 
Keys for moving something on the screen. 
 
DATA FETCH 
The number of words fetched for each line of the display. 
 
DELAY 
In playfield horizontal scrolling, specifies how many pixels the picture will shift for each 
display field. Delay controls the speed of scrolling. 
 
DENISE 
One of the three main Amiga custom chips. Contains the circuitry for the color palette, 
sprites, and video output. 
 

DEPTH 
Number of bit-planes in a display. 
 
DIGITAL-TO-ANALOG CONVERTER 
A device that converts a binary quantity to an analog level. 
 
DIRECT MEMORY ACCESS 
An arrangement whereby intelligent devices can read or write memory directly, without 
having to interrupt the processor. 
 
DISPLAY FIELD 
One complete scanning of the video beam from top to bottom of the video display screen. 
 
DISPLAY MODE 

One of the basic types of display; for example, high or low resolution, interlaced or non-
interlaced, single or dual playfield. 
 
DISPLAY TIME 
The amount of time to produce one display field, approximately 1/60th of a second. 
 
DISPLAY WINDOW 
The portion of the bit-map selected for display. Also, the actual size of the on-screen 
display. 
 
DMA 
See direct memory access. 
 
DUAL-PLAYFIELD MODE 

A display mode that allows you to manage two separate display memories, giving you two 
separately controllable displays at the same time. 
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EQUAL-TEMPERED SCALE 
A musical scale where each note is the 12th root of 2 above the note below it. 
 
EXEC 

Low-level primitives that support the AmigaDOS operating system. 
 
FAST MEMORY 
Memory not accessible by the custom chips. Care must be taken to present only chip 
memory address to the custom chips. See Chip Memory. 
 
FONT 

A set of letters, numbers, and symbols sharing the same size and design. 
 
FREQUENCY 
The number of times per second a waveform repeats. 
 
FREQUENCY MODULATION 
A means of changing sound quality by using one audio channel to affect the period of the 
waveform produced by another channel. Frequency modulation increases or decreases the 
pitch of the sound. 
 
GENLOCK 
An optional feature that allows you to bring in a graphics display from an external video 
source. 
 

HIGH RESOLUTION 
A horizontal display mode in which 640 pixels are displayed across a horizontal line in a 
normal-sized display. 
 
HOLD-AND-MODIFY 
A display mode that gives you extended color selection up to 4,096 colors on the screen at 
one time. 
 
INTERLACED MODE 
A vertical display mode where 400 lines are displayed from top to bottom of the video 
display in a normal-size display. 
 
JOYSTICK 
A controller device that freely rotates and swings from left to right, pivoting from the 

bottom of the shaft; used to position something on the screen. 
 
LIGHT PEN 
A controller device consisting of a stylus and Tablet used for drawing something on the 
screen. 
 
LOW RESOLUTION 
A horizontal display mode in which 320 pixels are displayed across a horizontal line in a 
normal-sized display. 
 
MANUAL MODE 
Non-DMA output. In sprite display, a mode in which each line of a sprite is written in a 
separate operation. In audio output, a mode in which audio data words are written one at 
a time to the output. 
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MIDI 
A standardized musical instrument interface used by many musical instruments. 
 
MICROSECOND (US) 

One millionth of second (1/1,000,000). 
 
MILLISECOND (MS) 
One thousandth of second (1/1,000). 
 
MINTERM 
One of eight possible logical combinations of data bits from three different data sources. 

 
MODULO 
A number defining which data in memory belongs on each horizontal line of the display. 
Refers to the number of bytes in memory between the last word on one horizontal line 
and the beginning of the first word on the next line. 
 
MOUSE 
A controller device that can be rolled around to move something on the screen; also has 
buttons to give other forms of input. 
 
MULTITASKING 
A system in which many tasks can be operating at the same time, with no task forced to 
be aware of any other task. 
 

NANOSECOND (NS) 
One billionth of a second (1/1,000,000,000). 
 
NON-INTERLACED MODE 
A display mode in which 200 lines are displayed from top to bottom of the video display in 
a normal-sized display. 
 
NTSC 
National Television Standards Committee specification for composite video. The base 
Amiga crystal frequency for NTSC is 28.63636 Mhz. 
 
OVERSCAN 
Area scanned by the video beam but not visible on the video display screen. 
 

PADDLE CONTROLLER 
A game controller that uses a potentiometer (variable resistor) to position objects on the 
screen. 
 
PAL 
A European television standard similar to (but incompatible with) NTSC. Stands for "Phase 
Alternate Line." The base Amiga crystal frequency for PAL is 28.37516 Mhz. 
 
PARALLEL PORT 
A connector on the back of the Amiga that is used to attach parallel printers and other 
parallel add-ons. 
 
PAULA 
One of the three main Amiga custom chips. Contains audio, disk, and interrupt circuitry. 
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PITCH 
The quality of a sound expressed as its highness or lowness. 
 
PIXEL 

One of the small elements that makes up the video display. The smallest addressable 
element in the video display. 
 
PLAYFIELD 
One of the basic elements in Amiga graphics; background for all other display elements. 
 
PLAYFIELD OBJECT 

Subsection of a playfield that is used in playfield animation. 
 
PLAYFIELD ANIMATION 
See bit-plane animation. 
 
POINTER REGISTER 
Register that is continuously incremented to point to a series of memory locations. 
 
POLARITY 
True or false state of a bit. 
 
POTENTIOMETER 
An electrical analog device used to adjust some variable value. 
 

PRIMITIVES 
Amiga graphics, text, and animation library functions. 
 
QUANTIZATION NOISE 
Audio noise introduced by round-off errors when you are trying to reproduce a signal by 
approximation. 
 
RAM 
Random access (volatile) memory. 
 
RASTER 
The area in memory that completely defines a bit-map display. 
 
READ-ONLY 

Describes a register or memory area that can be read but not written. 
 
RESOLUTION 
On a video display, the number of pixels that can be displayed in the horizontal and 
vertical directions. 
 
ROM 
See read-only memory. 
 
SAMPLE 
One of the segments of the time axis of a waveform. 
 
SAMPLING RATE 
The number of samples played per second. 

 
SAMPLING PERIOD 
The value that determines how many clock cycles it takes to play one data sample. 
                    



SCROLLING 
Moving a playfield smoothly in a vertical or horizontal direction. 
 
SERIAL PORT 

A connector on the back of the Amiga used to attach modems and other serial add-ons. 
 
SET 
Giving a bit the value of 1. 
 
SHARED MEMORY 
The RAM used in the Amiga for both display memory and executing programs. 

 
SPRITE 
Easily movable graphics object that is produced by one of the eight sprite DMA channels 
and is independent of the playfield display. 
 
STROBE ADDRESS 
An address you put out to the bus in order to cause some other action to take place; the 
actual data written or read is ignored. 
 
TASK 
Operating system module or application program. Each task appears to have full control 
over its own virtual 68000 machine. 
 
TIMBRE 

Tone quality of a sound. 
 
TRACKBALL 
A controller device that you spin with your hand to move something on the screen; may 
have buttons for other forms of input. 
 
TRANSPARENT 
A special color register definition that allows a background color to show through. Used in 
dual-playfield mode. 
 
UART 
The circuit that controls the serial link to peripheral devices, short for Universal 
Asynchronous Receiver/Transmitter. 
 

VIDEO PRIORITY 
Defines which objects (playfields and sprites) are shown in the foreground and which 
objects are shown in the background. Higher-priority objects appear in front of lower-
priority objects. 
 
VIDEO DISPLAY 
Everything that appears on the screen of a video monitor or television. 
 
WRITE-ONLY 
Describes a register that can be written to but cannot be read. 
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