
AMIGA HARDWARE REFERENCE MANUAL

TABLE OF CONTENTS

Chapter 1 INTRODUCTION

 Components of the Amiga2

 THE MC68000 AND THE AMIGA CUSTOM CHIPS.................2

 VCR AND DIRECT CAMERA INTERFACE........................5

 PERIPHERALS..5

 SYSTEM EXPANDABILITY AND ADAPTABILITY..................6

 About the Examples..7

 Some Caveats to Hardware Level Programmers9

Chapter 2 COPROCESSOR HARDWARE13

 Introduction...13

 ABOUT THIS CHAPTER....................................14

 What is a Copper Instruction?14

 The MOVE Instruction15

 The WAIT Instruction.....................................17

 HORIZONTAL BEAM POSITION..............................18

 VERTICAL BEAM POSITION18

 THE COMPARISON ENABLE BITS............................19

 Using the Copper Registers...............................20

 LOCATION REGISTERS20

 JUMP STROBE ADDRESS...................................21

 CONTROL REGISTER......................................21

 Putting Together a Copper Instruction List22

 COMPLETE SAMPLE COPPER LIST...........................24

 LOOPS AND BRANCHES25

 Starting and Stopping the Copper25

 STARTING THE COPPER AFTER RESET.......................25

 STOPPING THE COPPER...................................26

 Advanced Topics..27

 THE SKIP INSTRUCTION..................................27

 COPPER LOOPS AND BRANCHES AND COMPARISON ENABLE.......28

 USING THE COPPER IN INTERLACED MODE30

 USING THE COPPER WITH THE BLITTER.....................31

 THE COPPER AND THE 68000..............................31

 Summary of Copper Instructions32

Chapter 3 PLAYIELD HARDWARE................................33

 Introduction...33

 ABOUT THIS CHAPTER....................................34

 PLAYFIELD FEATURES34

 Forming a Basic Playfield38

 HEIGHT AND WIDTH OF THE PLAYFIELD.....................39

 BIT-PLANES AND COLOR39

 SELECTING HORIZONTAL AND VERTICAL RESOLUTION43

 ALLOCATING MEMORY FOR BIT-PLANES46

 CODING THE BIT-PLANES FOR CORRECT COLORING49

 DEFINING THE SIZE OF THE DISPLAY WINDOW50

 TELLING THE SYSTEM HOW TO FETCH AND DISPLAY DATA53

 DISPLAYING AND REDISPLAYING THE PLAYFIELD56

 ENABLING THE COLOR DISPLAY56

 BASIC PLAYFIELD SUMMARY57

 EXAMPLES OF FORMING BASIC PLAYFIELDS59

 Forming a Dual-playfield Display62

 Bit-Plane Assignment in Dual-playfield Mode62

 COLOR REGISTERS IN DUAL-PLAYFIELD MODE65

 DUAL-PLAYFIELD PRIORITY AND CONTROL66

 ACTIVATING DUAL-PLAYFIELD MODE67

 DUAL PLAYFIELD SUMMARY67

 Bit-planes and Display Windows of All Sizes68

 WHEN THE BIG PICTURE IS LRGR THAN THE DISPLAY WINDOW .68

 MAXIMUM DISPLAY WINDOW SIZE...........................74

 Moving (Scrolling) Playfields75

 VERTICAL SCROLLING....................................75

 HORIZONTAL SCROLLING77

 SCROLLED PLAYFIELD SUMMARY80

 Advanced Topics..81

 INTERACTIONS AMONG PLAYFIELDS AND OTHER OBJECTS81

 HOLD-AND-MODIFY MODE81

 FORMING A DISPLAY WITH SEVERAL DIFFERENT PLAYFELD84

 USING AN EXTERNAL VIDEO SOURCE84

 SUMMARY OF PLAYFIELD REGISTERS84

 Summary of Color Selection87

 COLOR REGISTER CONTENTS87

 SOME SAMPLE COLOR REGISTER CONTENTS88

 COLOR SELECTION IN LOW-RESOLUTION MODE88

 COLOR SELECTION IN HOLD-AND-MODIFY MODE90

 COLOR SELECTION IN HIGH-RESOLUTION MODE90

Chapter 4 SPRITE HARDWARE93

 Introduction...93

 ABOUT THIS CHAPTER....................................94

 Forming a Sprite ..94

 SCREEN POSITION94

 SIZE OF SPRITES97

 SHAPE OF SPRITES97

 SPRITE COLOR..98

 DESIGNING A SPRITE...................................101

 BUILDING THE DATA STRUCTURE..........................101

 Displaying a Sprite.....................................106

 SELECTING A DMA CHANNEL AND SETTING THE POINTERS.....107

 RESETTING THE ADDRESS POINTERS107

 SPRITE DISPLAY EXAMPLE...............................108

 Moving a Sprite...110

 Creating Additional Sprites.............................111

 SPRITE PRIORITY......................................112

 Reusing Sprite DMA Channels113

 Overlapped Sprites......................................115

 Attached Sprites117

 Manual Mode ..120

 Sprite Hardware Details121

 Summary of Sprite Registers.............................124

 POINTERS...124

 CONTROL REGISTERS....................................124

 DATA REGISTERS126

 Summary of Sprite Color Registers.......................126

 INTERACTIONS AMONG SPRITES AND OTHER OBJECTS128

Chapter 5 AUDIO HARDWARE..................................129

 Introduction..129

 INTRODUCING SOUND GENERATION.........................130

 THE AMIGA SOUND HARDWARE.............................133

 Forming and Playing a Sound134

 DECIDING WHICH CHANNEL TO USE........................134

 CREATING THE WAVEFORM DATA...........................134

 TELLING THE SYSTEM ABOUT THE DATA136

 SELECTING THE VOLUME136

 SELECTING THE DATA OUTPUT RATE.......................137

 PLAYING THE WAVEFORM140

 STOPPING THE AUDIO DMA...............................141

 SUMMARY..142

 EXAMPLE..142

 Producing Complex Sounds................................143

 JOINING TONES143

 PLAYING MULTIPLE TONES AT THE SAME TIME..............145

 MODULATING SOUND145

 Producing High-quality Sound............................148

 MAKING WAVEFORM TRANSITIONS148

 SAMPLING RATE148

 EFFICIENCY...149

 NOISE REDUCTION......................................150

 ALIASING DISTORTION150

 LOW-PASS FILTER152

 Using Direct (Non-DMA) Audio Output153

 The Equal-tempered Musical Scale........................154

 Decibel Values for Volume Ranges159

 The Audio State Machine.................................160

Chapter 6 BLITTER HARDWARE................................163

 Introduction..163

 Memory Layout ..164

 DMA Channels..164

 Function Generator......................................168

 DESIGNING THE LF CONTROL BYTE WITH MINTERMS..........169

 DESIGNING THE LF CONTROL BYTE WITH VENN DIAGRAMS.....172

 Shifts and Masks..173

 Descending Mode ..176

 Copying Arbitrary Regions...............................177

 Area Fill Mode..178

 Blitter Done Flag.......................................180

 MULTITASKING AND THE BLITTER181

 Interrupt Flag ...181

 Zero Flag...182

 Pipeline Register.......................................182

 Line Mode...184

 REGISTER SUMMARY FOR LINE MODE.......................186

 Blitter Speed ..188

 Blitter Operations and System DMA189

 Blitter Block Diagram...................................193

 Blitter Key Points......................................195

 EXAMPLE: ClearMem....................................195

 EXAMPLE: SimpleLine..................................197

 EXAMPLE: RotateBits..................................199

Chapter 7 SYSTEM CONTROL HARDWARE201

 Introduction..201

 Video Priorities202

 FIXED SPRITE PRIORITES202

 HOW SPRITES ARE GROUPED..............................203

 UNDERSTANDING VIDEO PRIORITIES203

 SETTING THE PRIORITY CONTROL REGISTER................204

 Collision Detection207

 HOW COLLISIONS ARE DETERMINED........................207

 HOW TO INTERPRET THE COLLISION DATA208

 HOW COLLISION DETECTION IS CONTROLLED209

 Beam Position Detection.................................210

 USING THE BEAM POSITION COUNTER......................210

 Interrupts ...211

 NONMASKABLE INTERRUPT212

 MASKABLE INTERRUPTS..................................212

 USER INTERFACE TO THE INTERRUPT SYSTEM212

 INTERRUPT CONTROL REGISTERS212

 SETTING AND CLEARING BITS............................213

 DMA Control ..217

 Processor Access to Chip Memory.........................217

 Reset and Early Startup Operation.......................219

Chapter 8 INTERFACE HARDWARE..............................221

 Introduction..221

 Controller Port Interface...............................222

 REGISTERS USED WITH THE CONTROLLER PORT..............223

Floppy Disk Controller,.............................235

 REGISTERS USED BY THE DISK SUBSYSTEM236

 DISK INTERRUPTS244

 The Keyboard..245

 HOW THE KEYBOARD DATA IS RECEIVED....................245

 TYPE OF DATA RECEIVED................................245

 LIMITATIONS OF THE KEYBOARD247

 Parallel Input/Output Interface.........................250

 Serial Interface250

 INTRODUCTION TO SERIAL CIRCUITRY250

 SETTING THE BAUD RATE................................250

 SETTING THE RECEIVE MODE251

 CONTENTS OF THE RECEIVE DATA REGISTER................251

 HOW OUTPUT DATA IS TRANSMITTED.......................253

 SPECIFYING THE REGISTER CONTENTS254

 Display Output Connections255

Appendix A Register Summary-Alphabetical Order............257

Appendix B Register Summary-Address Order.................281

Appendix C Custom Chip Pin Allocation List................289

Appendix D System Memory Map..............................293

Appendix E Interfaces295

Appendix F Complex Interface Adapters.....................317

 8520 Complex Interface Adaptor (CIA) Chips..............317

 Chip Register Map.......................................319

 Register Functional Description.........................320

 I/O PORTS (PRA, PRB, DDRA, DDRB).....................320

 HANDSHAKING..320

 INTERVAL TIMERS (TIMER A, TIMER B)...................320

 INPUT MODES..322

 BIT NAMES on READ-Register...........................322

 BIT NAMES on WRITE-Register322

 Time of Day Clock.......................................323

 BIT NAMES for WRITE TIME/ALARM or READ TIME..........323

 Serial Shift Register (SDR).............................324

 INPUT MODE ..324

 OUTPUT MODE ...324

 BIDIRECTIONAL FEATURE325

 Interrupt Control Register (ICR)325

 READ INTERRUPT CONTROL REGISTER326

 WRITE INTERRUPT CONTROL MASK326

 Control Registers327

 CONTROL REGISTER A327

 BIT MAP OF REGISTER CRA328

 BIT MAP OF REGISTER CRB329

 Port Signal Assignments.................................329

 Hardware Connection Details.............................332

 INTERFACE SIGNALS332

Appendix G AUTOCONFIG335

 Debugging AUTOCONFIG Boards.............................336

 Address Specification Table.............................337

Appendix H Keyboard.......................................343

 Keyboard Communications.................................344

 Keycodes..345

 "CAPS LOCK" Key...345

 "Out-of-Sync" Condition.................................346

 Power-Up Sequence346

 Reset Warning...348

 Hard Reset..348

 Special Codes...349

 Matrix Table..350

Appendix I External Disk Connector Interface Spec.353

 General...353

 Summary Table...354

 Signals When Driving a Disk.............................355

 Device I.D..357

Appendix J Hardware Example Include File..................359

Glossary ...365

Index ..373

 LIST OF FIGURES

Figure 1-1 Block Diagram for the Amiga Computer Family............11

Figure 2-1 Interlaced Bit-Plane in RAM............................30

Figure 3-1 How the Video Display Picture Is Produced..............34

Figure 3-2 What Is a Pixel?.......................................35

Figure 3-3 How Bit-planes Select a Color..........................37

Figure 3-4 Significance of Bit-Plane Data in Selecting Colors.....38

Figure 3-5 Interlacing..44

Figure 3-6 Effect of Interlaced Mode on Edges of Objects..........44

Figure 3-7 Memory Organization for a Basic Bit-Plane..............48

Figure 3-8 Combining Bit-planes...................................50

Figure 3-9 Positioning the On-screen Display......................51

Figure 3-10 Data Fetched for the First Line When Modulo=054

Figure 3-11 Data Fetched for the Second Line When Modulo=0........55

Figure 3-12 A Dual-playfield Display..............................63

Figure 3-13 How Bit-Planes Are Assigned to Dual Playfields........64

Figure 3-14 Memory Picture Larger than the Display................69

Figure 3-15 Data Fetch for the First Line When Modulo=40..........69

Figure 3-16 Data Fetch for the Second Line When Modulo=40.........70

Figure 3-17 Data Layout for First Line-Right Half of Big Picture..70

Figure 3-18 Data Layout for Second Line-Right Half of Big Picture.70

Figure 3-19 Display Window Horizontal Starting Position72

Figure 3-20 Display Window Vertical Starting Position72

Figure 3-21 Display Window Horizontal Stopping Position 73

Figure 3-22 Display Window Vertical Stopping Position74

Figure 3-23 Vertical Scrolling....................................76

Figure 3-24 Horizontal Scrolling78

Figure 3-25 Memory Picture Larger than the Display Window79

Figure 3-26 Data for Line 1 - Horizontal Scrolling79

Figure 3-27 Data for Line 2 - Horizontal Scrolling79

Figure 4-1 Defining Sprite On-screen Position.....................95

Figure 4-2 Position of Sprites96

Figure 4-3 Shape of Spaceship.....................................97

Figure 4-4 Sprite with Spaceship Shape Defined98

Figure 4-5 Sprite Color Definition99

Figure 4-6 Color Register Assignments100

Figure 4-7 Data Structure Layout103

Figure 4-8 Sprite Priority112

Figure 4-9 Typical Example of Sprite Reuse113

Figure 4-10 Typical Data Structure for Sprite Re-use114

Figure 4-11 Overlapping Sprites (Not Attached)116

Figure 4-12 Placing Sprites Next to Each Other117

Figure 4-13 Sprite Control Circuitry122

Figure 5-1 Sine Waveform ..131

Figure 5-2 Digitized Amplitude Values133

Figure 5-3 Example Sine Wave139

Figure 5-4 Waveform with Multiple Cycles149

Figure 5-5 Frequency Domain Plot of Low-Pass Filter151

Figure 5-6 Noise-free Output (No Aliasing Distortion)151

Figure 5-7 Some Aliasing Distortion152

Figure 5-8 Audio State Diagram162

Figure 6-1 How Images are Stored in Memory165

Figure 6-2 BLTxP and BLTxMOD calculations167

Figure 6-3 Blitter Minterm Venn Diagram172

Figure 6-4 Extracting a Range of Columns175

Figure 6-5 Use of the FCI Bit - Bit Is a 0179

Figure 6-6 Use of the FCI Bit - Bit Is a 1179

Figure 6-7 Single-Point Vertex Example180

Figure 6-8 Octants for Line Drawing184

Figure 6-9 DMA Time Slot Allocation190

Figure 6-10 Norma 68000 Cycle191

Figure 6-11 Time Slots Used by a Six Bit Plane Display192

Figure 6-12 Time Slots Used by a High Resolution Display192

Figure 6-13 Blitter Block Diagram194

Figure 7-1 Inter-Sprite Fixed Priorities202

Figure 7-2 Analogy for Video Priority203

Figure 7-3 Sprite playfield Priority206

Figure 7-4 Interrupt Priorities216

Figure 8-1 Controller Plug and Computer Connector222

Figure 8-2 Mouse Quadrature224

Figure 8-3 Joystick to Counter Connections227

Figure 8-4 Typical Paddle Wiring Diagram229

Figure 8-5 Effects of Resistance on Charging Rate230

Figure 8-6 Potentiometer Charging Circuit231

Figure 8-7 Chinon Timing Diagram236

Figure 8-8 Chinon Timing Diagram (cont.)237

Figure 8-9 The A1000 Keyboard, Showing Keycodes in Hex249

Figure 8-10 The A500/2000 Keyboard, Keycodes in Hex249

Figure 8-11 Starting Appearance of SERDAT and Shift Reg254

Figure 8-12 Ending Appearance of Shift Register..................254

Figure G-1 How to read the Address Specification Table338

 LIST OF TABLES

Table 2-1 Interrupting the 68000..................................31

Table 2-2 Copper Instruction Summary32

Table 3-1 Colors in a Single Playfield............................39

Table 3-2 Portion of the Color Table40

Table 3-3 Contents of the Color Registers41

Table 3-4 Sample Color Register Contents41

Table 3-5 Setting the Number of Bit-Planes........................42

Table 3-6 Lines in a Normal Playfield.............................43

Table 3-7 Playfield Memory Requirements, NTSC.....................46

Table 3-8 Playfield Memory Requirements, PAL47

Table 3-9 DIWSTRT AND DIWSTOP Summary.............................53

Table 3-10 Playfield 1 Color Registers-Low-resolution Mode........65

Table 3-11 Playfield 2 Color Registers-Low-resolution Mode........65

Table 3-12 Playfields 1 & 2 Color Registers High-res Mode.........66

Table 3-13 Maximum Allowable Vertical Screen Video................74

Table 3-14 Maximum Allowable Horizontal Screen Video75

Table 3-15 Color Register Contents................................87

Table 3-16 Some Register Values and Resulting Colors..............88

Table 3-17 Low-resolution Color Selection89

Table 3-18 Color Selection in Hold-and-modify Mode................90

Table 3-19 High-resolution Color Selection........................91

Table 4-1 Sprite Data Structure..................................102

Table 4-2 Sprite Color Registers105

Table 4-3 Color Registers for Sprite Pairs.......................112

Table 4-4 Data Words for First Line of Spaceship Sprite..........118

Table 4-5 Color Registers in Attached Sprites119

Table 4-6 Color Registers for Single Sprites.....................127

Table 4-7 Color Registers for Attached Sprites...................128

Table 5-1 Sample Audio Data Set for Channel 0135

Table 5-2 Volume Values ...137

Table 5-3 DMA and Audio Channel Enable Bits......................141

Table 5-4 Data Interpretation in Attach Mode.....................146

Table 5-5 Channel Attachment for Modulation......................147

Table 5-6 Sampling Rate and Frequency Relationship...............153

Table 5-7 Equal-tempered Octave for a 16 Byte Sample.............154

Table 5-8 Five Octave Even-tempered Scale........................156

Table 5-9 Decibel Values and Volume Ranges.......................159

Table 6-1 Table of Common Minterm Values.........................171

Table 6-2 Typical Blitter Cycle Sequence.........................183

Table 6-3 BLTCON1 Code Bits for Octant Line Drawing..............185

Table 7-1 Bits in BPLCON2..204

Table 7-2 Prirty of Plyflds Based on Values of Bits PF1P2-PF1P0..205

Table 7-3 CLXDAT Bits..208

Table 7-4 CLXCON Bits ...209

Table 7-5 Contents of the Beam Position Counter..................211

Table 7-6 Contents of DMA Register...............................218

Table 8-1 Typical Controller Connections223

Table 8-2 Determining the Direction of the Mouse.................226

Table 8-3 Interpreting Data from JOY0DAT and JOY1DAT.............228

Table 8-4 POTGO ($DFF034) and POTINP ($DFF016) Registers.........234

Table 8-5 Disk Subsystem ..238

Table 8-6 DSKLEN Register ($DFF024)..............................240

Table 8-7 DSKBYTR Register.......................................242

Table 8-8 ADKCON and ADKCONR Register............................243

Table 8-9 SERDATR / ADKCON Registers.............................252

Table G-1 Address Specification Table............................338

CHAPTER 1

INTRODUCTION

The Amiga family of computers consists of several models, each of which has been
designed on the same premise to provide the user with a low cost computer that features
high cost performance. The Amiga does this through the use of custom silicon hardware
that yields advanced graphics and sound features.

There are three distinct models that make up the Amiga computer family: the A500,
A1000, and A2000. Though the models differ in price and features, they have a common
hardware nucleus that makes them software compatible with one another. This chapter
describes the Amiga's hardware components and gives a brief overview of its graphics and
sound features.

- Introduction 1 -

COMPONENTS OF THE AMIGA

These are the hardware components of the Amiga:

o Motorola MC68000 16/32 bit main processor. The Amiga also supports the 68010,
68020, and 68030 processors as an option.

o 512K bytes of internal RAM, expandable to 1 MB on the A500 and A2000.

o 256K bytes of ROM containing a real time, multitasking operating system with sound,
graphics, and animation support routines.

o Built-in 3.5 inch double sided disk drive.

o Expansion disk port for connecting up to three additional disk drives, which may be
either 3.5 inch or 5.25 inch, double sided.

o Fully programmable RS-232-C serial port.

o Fully programmable parallel port.

o Two button opto-mechanical mouse.

o Two reconfigurable controller ports (for mice, joysticks, light pens, paddles, or custom
controllers).

o A professional keyboard with numeric keypad, 10 function keys, and cursor keys. A
variety of international keyboards are also supported.

o Ports for simultaneous composite video, and analog or digital RGB output.

o Ports for left and right stereo audio from four special purpose audio channels.

o Expansion options that allow you to add RAM, additional disk drives (floppy or hard),
peripherals, or co-processors.

THE MC6X000 AND THE AMIGA CUSTOM CHIPS
The Motorola 68000 is a 16/32 bit microprocessor. The system clock speed for NTSC
Amiga’s is 7.15909 megahertz (PAL 7.09379 MHz). These speeds may vary when using an

external system clock, such as from a genlock. The 68000 has an address space of 16
megabytes. In the Amiga, the 68000 can address over 8 megabytes of continuous random
access memory (RAM).

- 2 Introduction -

In addition to the 68000, the Amiga contains special purpose hardware known as the
"custom chips" that greatly enhance system performance. The term "custom chips" refers
to the 3 integrated circuits which were designed specifically for the Amiga computer.
These three custom chips (called Agnus, Paula, and Denise) each contain the logic to

handle a specific set of tasks, such as video, sound, direct memory access (DMA),
or graphics.

Among other functions, the custom chips provide the following:

 Bitplane generated, high resolution graphics capable of supporting both PAL and
NTSC video standards.

o On NTSC systems the Amiga typically produces a 320 by 200 non-interlaced

or 320 by 400 interlaced display in 32 colors and a 640 by 200 non-
interlaced or 640 by 400 interlaced display in 16 colors.

o On PAL systems, the Amiga typically produces a 320 by 256 non-interlaced

or 320 by 512 interlaced display in 32 colors, and a 640 by 256 non-
interlaced or 640 by 512 interlaced display in 16 colors.

Additional video modes allow for the display of up to 4,096 colors on screen
simultaneously (hold-and-modify) or provide for larger, higher resolution displays
(overscan).

 A custom display co-processor that allows changes to most of the special purpose

registers in synchronization with the position of the video beam. This allows such
special effects as mid-screen changes to the color palette, splitting the screen into
multiple horizontal slices each having different video resolutions and color depths,
beam synchronized interrupt generation for the 68000 and more. The co-processor
can trigger many times per screen, in the middle of lines, and at the beginning or
during the blanking interval. The co-processor itself can directly affect most of the
registers in the other custom chips, freeing the 68000 for general computing tasks.

 32 system color registers, each of which contains a twelve bit number as four bits

of RED, four bits of GREEN, and four bits of BLUE intensity information. This allows
a system color palette of 4,096 different choices of color for each register.

 Eight reusable 16 bit wide sprites with up to 15 color choices per sprite pixel (when

sprites arc paired). A sprite is an easily movable graphics object whose display is

entirely independent of the background (called a playfield); sprites can be
displayed over or under this background. A sprite is 16 low resolution pixels wide
and an arbitrary number of lines tall. After producing the last line of a sprite on the
screen, a sprite DMA channel may be used to produce yet another sprite image
elsewhere on screen (with at least one horizontal line between each reuse of a
sprite processor). Thus, many small sprites can be produced by simply reusing the
sprite processors appropriately.

 Dynamically controllable inter-object priority, with collision detection. This means

that the system can dynamically control the video priority between the sprite
objects and the bitplane backgrounds (playfields). You can control which object or
objects appear over or under the background at any time.

Additionally, you can use system hardware to detect collisions between objects and have
your program react to such collisions.

o Custom bit blitter used for high speed data movement, adaptable to bitplane animation.

The blitter has been designed to efficiently retrieve data from up to three sources,
combine the data in one of 256 different possible ways, and optionally store the combined
data in a destination area. This is one of the situations where the 68000 gives up memory
cycles to a DMA channel that can do the job more efficiently (see below). The bit blitter, in
a special mode, draws patterned lines into rectangularly organized memory regions at a
speed of about 1 million dots per second; and it can efficiently handle area fill.

o Audio consisting of four digital channels with independently programmable volume and
sampling rate. The audio channels retrieve their control and data via direct memory
access. Once started, each channel can automatically play a specified waveform without
further processor interaction. Two channels are directed into each of the two stereo audio
outputs. The audio channels may be linked together to provide amplitude or frequency
modulation or both forms of modulation simultaneously.

o DMA controlled floppy disk read and write on a full track basis. This means that the
built-in disk can read over 5600 bytes of data in a single disk revolution (11 sectors of
512 bytes each).

The internal memory shared by the custom chips and the 68000 CPU is also called "chip
memory". The original custom chips in the Amiga were designed to be able to physically
access up to 512K bytes of shared memory. The new version of the Agnus custom chip

was created which allows the graphics and audio hardware to access up to a full megabyte
of memory.

The Amiga 500 and 2000 models were designed to be able to accept the new Agnus
custom chip, called "Fat Agnus", due to its square shape. Hence, the A500 and A2000
have allocated a chip memory space of 1 MB. This entire 1 MB space is subject to the
arbitration logic that controls the CPU and custom chip accesses. On the A1000, only the
first 512K bytes of memory space is shared, chip memory.

These custom chips and the 68000 share memory on a fully interleaved basis. Since the
68000 only needs to access the memory bus during each alternate clock cycle in order to
run full speed, the rest of the time the memory bus is free for other activities. The custom
chips use the memory bus during these free cycles, effectively allowing the 68000 to run
at full rated speed most of the time. We say "most of the time" because there are some

occasions when the special purpose hardware steals memory cycles from the 68000, but
with good reason. Specifically, the coprocessor and the data moving DMA channel called
the blitter can each steal time from the 68000 for jobs they can do better than the 68000.
Thus, the system DMA channels are designed with maximum performance in mind. The
job to be done is performed by the most efficient hardware element available. Even when
such cycle stealing occurs, it only blocks the 68000's access to the internal, shared
memory. When using ROM or external memory, the 68000 always runs at full speed.

- 4 Introduction -

Another primary feature of the Amiga hardware is the ability to dynamically control which
part of the chip memory is used for the background display. audio, and sprites. The Amiga
is not limited to a small, specific area of RAM for a frame buffer. Instead, the system
allows display bitplanes, sprite processor control lists, coprocessor instruction lists, or

audio channel control lists to be located anywhere within chip memory.

This same region of memory can be accessed by the bit blitter. This means, for example,
that the user can store partial images at scattered areas of chip memory and use these
images for animation effects by rapidly replacing on screen material while saving and
restoring background images. In fact, the Amiga includes firmware support for display
definition and control as well as support for animated objects embedded within playfields.

VCR AND DIRECT CAMERA INTERFACE
In addition to the connectors for monochrome composite, and analog or digital RGB
monitors, the Amiga can be expanded to include a VCR or camera interface. This system
is capable of synchronizing with an external video source and replacing the system
background color with the external image. This allows development of fully integrated
video images with computer generated graphics. Laser disk input is accepted in the same
manner.

PERIPHERALS
Floppy disk storage is provided by a built in, 3.5 inch floppy disk drive. Disks are 80 track,
double sided, and formatted as 11 sectors per track, 512 bytes per sector (over 900,000
bytes per disk). The disk controller can read and write 320/360K IBM PC (MS-DOS)
formatted 3.5 or 5.25 inch disks, and 640/720K IBM PC (MS-DOS) formatted 3.5 inch

disks. External 3.5 inch or 5.25 inch disk drives can be added to the system through the
expansion connector. Circuitry for some of the peripherals resides on Paula. Other chips
handle various signals not specifically assigned to any of the custom chips, including
modem controls, disk status sensing, disk motor and stepping controls, ROM enable,
parallel input/output interface, and keyboard interface.

The Amiga includes a standard RS-232-C serial port for external serial input/output
devices.

A keyboard with numeric keypad, cursor controls and 10 function keys is included in the
base system. For maximum flexibility, both key-down and key-up signals are sent. The
Amiga also supports a variety of international keyboards. Many other types of controllers
can be attached through the two controller ports on the base unit. You can use a mouse,
joystick, keypad, track-ball, light pen, or steering wheel controller in either of the

controller ports.

- Introduction 5 -

SYSTEM EXPANDABILITY AND ADAPTABILITY
New peripheral devices may be easily added to all Amiga models. These devices are
automatically recognized and used by system software through a well defined, well
documented linking procedure called AUTOCONFIG.

On the A500 and A1000 models, peripheral devices can be added to the Amiga's 86 pin
expansion connector, including additional external RAM. Extra disk units may be added
from a connector at the rear of the unit.

The A2000 model provides the user with the same features as the A500 or A1000, but
with the added convenience of simple and extensive expandability. The 86 pin, external

connector of the A1000 and A500 is not externally accessible on the A2000. Instead, the
A2000 contains 7 internal slots that allow many types of expansion boards to be quickly
and easily added inside the machine. These expansion boards may contain coprocessors,
RAM expansion, hard disk controllers, video or I/O ports. There is also room to mount
both floppy and hard disks internally. The A2000 also supports the special Bridgeboard
coprocessor card. This provides a complete IBM PC on a card and allows the Amiga to run
MS-DOS compatible software, while simultaneously running native Amiga software.

- 6 Introduction -

ABOUT THE EXAMPLES

The examples in this book all demonstrate direct manipulation of the Amiga hardware.
However, as a general rule, it is not permissible to directly access the hardware in the

Amiga unless your software either has full control of the system, or has arbitrated via the
OS for exclusive access to the particular parts of the hardware you wish to control.

Almost all of the hardware discussed in this manual, most notably the Blitter, Copper,
playfield, sprite, CIA, trackdisk, and system control hardware, are in either exclusive or
arbitrated use by portions of the Amiga OS in any running Amiga system. Additional
hardware, such as the audio, parallel, and serial hardware, may be in use by applications

which have allocated their use through the system software.

Before attempting to directly manipulate any part of the hardware in the Amiga's
multitasking environment, your application must first be granted exclusive access to that
hardware by the operating system library, device, or resource which arbitrates its
ownership. The operating system functions for requesting and receiving control of parts of
the Amiga hardware are varied and are not within the scope of this manual. Generally
such functions, when available, will be found in the library, device, or resource which
manages that portion of the Amiga hardware in the multitasking environment. The
following list will help you to find the appropriate operating system functions or
mechanisms which may exist for arbitrated access to the hardware discussed in this
manual.

 Copper, Playfield, Sprite, Blitter - graphics.library

 Audio - audio.device
 Trackdisk - trackdisk.device, disk.resource
 Serial - serial.device, misc.resource
 Parallel - parallel.device, cia.resource, misc.resource
 Gameport - input.device, gameport.device, potgo.resource
 Keyboard - input.device, keyboard.device
 System Control - graphics.library, exec.library (interrupts)

Most of the examples in this book use the hw_examples.i file (see Appendix J) to define
the chip register names. hw_examples.i uses the system include file hardware/custom.i to
define the chip structures and relative addresses. The values defined in hardware/custom.i
and how examples.i are offsets from the base chip register address space. In general, this
base value is defined as _custom and is resolved during linking from amiga.lib. (_ciaa and
_ciab are also resolved in this way.)

Normally, the base address is loaded into an address register and the offsets given by
hardware/custom.i and hw_examples.i are then used to address the correct register.

- Introduction 7 -

NOTE
The offset values of the registers are the addresses that the Copper must use to talk to
the registers. For example, in assembler:

INCLUDE "exec/types.i"

INCLUDE "hardware/custom.i"

 XREF custom ; External reference

 Start: lea _custom,a0 ; Use a0 as base register

 move.w #$7FFF,intena(a0) ; Disable all interrupts

In C, you would use the structure definitions in hardware/custom.h For

example:

#include "exec/types.h"

#include "hardware/custom.h"

extern struct Custom custom;

/* You may need to define the above external as

** extern struct Custom far custom;

** Check you compiler manual.

*/

main()

{

custom.intena = 0x7FFF; /* Disable all interrupts */

}

The Amiga hardware include files are generally supplied with your compiler or assembler.
Listings of the hardware include files may also be found in the Addison-Wesley Amiga ROM
Kernel Manual "Includes and Autodocs". Generally, the include file label names are very
similar to the equivalent hardware register list names with the following typical

differences.

o Address registers which have low word and high word components are generally listed
as two word sized registers in the hardware register list, with each register name
containing either a suffix or embedded "L" or "H" for low and high. The include file label
for the same register will generally treat the whole register as a longword (32 bit)
register,
and therefore will not contain the "L" or "H" distinction.

o Related sequential registers which are given individual names with number suffixes in
the hardware register list, are generally referenced from a single base register definition
in the include files. For example, the color registers in the hardware list (COLOR00,
COLOR01, etc.) would be referenced from the "color" label defined in "hardware/custom.i"
(color+0, color+2, etc.).

o Examples of how to define the correct register offset can be found in the hw_examples.i
file listed in Appendix J.

- 8 Introduction -

SOME CAVEATS TO HARDWARE LEVEL PROGRAMMERS

The Amiga is available in a variety of models and configurations, and is further diversified
by a wealth of add-on expansion peripherals and processor replacements. In addition,

even standard Amiga hardware such as the keyboard and floppy disks, are supplied by a
number of different manufacturers and may vary subtly in both their timing and in their
ability to perform outside of their specified capabilities.

The Amiga operating system is designed to operate the Amiga hardware within spec,
adapt to different hardware and RAM configurations, and generally provide upward
compatibility with any future hardware upgrades or "add ons" envisioned by the

designers. For maximum upward compatibility, it is strongly suggested that programmers
deal with the hardware through the commands and functions provided by the Amiga
operating system.

If you find it necessary to program the hardware directly, then it is your responsibility to
write code which will work properly on various models and configurations. Be sure to
properly request and gain control of the hardware you are manipulating, and be especially
careful in the following areas:

Do not jump into ROM. Beware of any example code that calls routines in the $F80000 to
$FFFFFF range. These are ROM addresses and the ROM routines WILL move with every OS
revision. The only supported interface to system ROM code is through the provided library,
device, and resource calls.

Do not modify or depend on the format of any private system structures. This includes the
poking of copper lists, memory lists, and library bases.

Do not depend on any address containing any particular system structure or type of
memory. The system modules dynamically allocate their memory space when they are
initialized. The addresses of system structures and buffers differ with every OS, every
model, and every configuration, as does the amount of free memory and system stack
usage. Remember that all data for direct custom chip access must be in CHIP RAM. This
includes bit images (bitplanes, sprites, etc), sound samples, trackdisk buffers, and copper
lists.

Do not write spurious data to, or interpret undefined data from currently unused bits or
addresses in the custom chip space. All undefined bits must be set to zero for writes, and
ignored on reads.

Do not write data past the current end of custom chip space. Custom chips may be
extended or enhanced to provide additional registers, or to use currently undefined bits in
existing registers.

All custom chip registers are read only OR write only. Do not read write only registers, and
do not write to read only registers.

- Introduction 9 -

Do not read, write, or use any currently undefined address ranges. The current and future
usage of such areas is reserved by Commodore and is definitely subject to change.

If you are using the system libraries, devices, and resources, you must follow the defined

interface. Assembler programmers (and compiler writers) must enter functions through
the library base jump Tables, with arguments passed as longs and library base address in
A6. Results returned in D0 must be tested, and the contents of D0-D1/A0-A1 must be
assumed gone after a system call.

NOTE
The assembler TAS instruction should not be used in any Amiga program. The TAS

instruction assumes an indivisible read-modify-write but this can be defeated by system
DMA. Instead use BSET and BCLR. These instructions perform a test and set operation
which cannot be interrupted.

TAS is only needed for a multiple CPU system. On a single CPU system, the BSET and
BCLR instructions are identical to TAS, as the 68000 does not interrupt instructions in the
middle. BSET and BCLR first test, then set bits.

Do not use assembler instructions which are privileged on any 68000 family processor,
most notably MOVE SR,<ea> which is privileged on the 68010/20/30. Use the Exec
function GetCC() instead of MOVE SR, or use the appropriate non-privileged instruction as
shown below:

 CPU User Mode Super Mode

 68000 MOVE SR,<ea> MOVE SR,<ea>

 68010/20/30 MOVE CCR,<ea> MOVE SR,<ea>

All addresses must be 32 bits. Do not use the upper 8 bits for other data, and do not use
signed variables or signed math for addresses. Do not execute code on your stack or use
self-modifying code since such code can be defeated by the caching capabilities of some
68xxx processors. And never use processor or clock speed dependent software loops for
timing delays. See Appendix F for information on using an 8520 timer for delays.

NOTE
When strobing any register which responds to either a read or a write, (for example
copjmp2) be sure to use a MOVE.W #$00, not CLR.W. The CLR instruction causes a read
and a clear (two accesses) on a 68000, but only a single access on 68020 and above. This
will give different results on different processors.

If you are programming at the hardware level, you must follow hardware interfacing
specifications. All hardware is NOT the same. Do not assume that low level hacks for
speed or copy protection will work on all drives, or all keyboards, or all systems, or future
systems. Test your software on many different systems, with different processors, OS,
hardware, and RAM configurations.

- 10 Introduction -

Figure 1-1: Block Diagram for the Amiga Computer Family.

- Introduction 11 -

- 12 Introduction -

Chapter 2

COPROCESSOR HARDWARE

INTRODUCTION
The Copper is a general purpose coprocessor that resides in one of the Amiga's custom
chips. It retrieves is instructions via direct memory access (DMA). The Copper can control
nearly the entire graphics system, freeing the 68000 to execute program logic; it can also
directly affect the contents of most of the chip control registers. It is a very powerful tool
for directing mid-screen modifications in graphics displays and for directing the register

changes that must occur during the vertical blanking periods. Among other things, it can
control register updates, reposition sprites, change the color palette, update the audio
channels, and control the blitter.

- Coprocessor Hardware 13 -

One of the features of the Copper is its ability to WAIT for a specific video beam position,
then MOVE data into a system register. During the WAIT period, the Copper examines the
contents of the video beam position counter directly. This means that while the Copper is
waiting for the beam to reach a specific position, it does not use the memory bus at all.

Therefore, the bus is freed for use by the other DMA channels or by the 68000.

When the WAIT condition has been satisfied, the Copper steals memory cycles from either
the blitter or the 68000 to move the specified data into the selected special-purpose
register.

The Copper is a two-cycle processor that requests the bus only during odd-numbered

memory cycles. This prevents collision with audio, disk, refresh, sprites, and most low-
resolution display DMA access, all of which use only the even-numbered memory cycles.
The Copper, therefore, needs priority over only the 68000 and the blitter (the DMA
channel that handles animation, line drawing, and polygon filling).

As with all the other DMA channels in the Amiga system, the Copper can retrieve its
instructions only from the chip RAM area of system memory.

ABOUT THIS CHAPTER
In this chapter, you will learn how to use the special Copper instruction set to organize
mid-screen register value modifications and pointer register set-up during the vertical
blanking interval. The chapter shows how to organize Copper instructions into Copper
lists, how to use Copper lists in interlaced mode, and how to use the Copper with the
blitter. The Copper is discussed in this chapter in a general fashion. The chapters that deal

with playfields, sprites, audio, and the blitter contain more specific suggestions for using
the Copper.

WHAT IS A COPPER INSTRUCTION?

As a coprocessor, the Copper adds its own instruction set to the instructions already
provided by the 68000. The Copper has only three instructions, but you can do a lot with
them:

o WAIT for a specific screen position specified as x and y co-ordinates.

o MOVE n immediate data value into one of the special-purpose registers.

o SKIP the next instruction if the video beam has already reached a specified screen

position.

- 14 Coprocessor Hardware -

All Copper instructions consist of two 16-bit words in sequential memory locations. Each
time the Copper fetches an instruction, it fetches both words. The MOVE and SKIP
instructions require two memory cycles and two instruction words. Because only the odd
memory cycles are requested by the Copper, four memory cycle times are required per

instruction. The WAIT instruction requires three memory cycles and six memory cycle
times; it takes one extra memory cycle to wake up.

Although the Copper can directly affect only machine registers, it can affect the memory
by setting up a blitter operation. More information about how to use the Copper in
controlling the blitter can be found in the sections called "Control Register" and "Using the
Copper with the Blitter."

The WAIT and MOVE instructions are described below. The SKIP instruction is described in
the "Advanced Topics" section.

THE MOVE INSTRUCTION

The MOVE instruction transfers data from RAM to a register destination. The transferred
data is contained in the second word of the MOVE instruction; the first word contains the
address of the destination register. This procedure is shown in detail in the section called
"Summary of Copper Instructions."

 FIRST INSTRUCTION WORD (IR1)

 Bit 0 Always set to 0.

 Bits 8 - 1 Register destination address (DA8-1).

 Bits 15 - 9 Not used, but should be set to 0.

 SECOND INSTRUCTION WORD (IR2)

 Bits 15 - 0 16 bits of data to be transferred (moved) to the register

 destination.

- Coprocessor Hardware 15 -

The Copper can store data into the following registers:

o Any register whose address is $20 or above.

o Any register whose address is between $10 and $20 if the Copper danger bit is a 1. The
Copper danger bit is in the Copper's control register, COPCON, which is described in the
"Control Register" section.

o The Copper cannot write into any register whose address is lower than $10.

Appendix B contains all of the machine register addresses.

The following example MOVE instructions point bit-plane pointer 1 at $21000 and bit-
plane pointer 2 at S25000.2

 DC.W $00E0,$0002 ;Move $0002 to register $0E0 (BPL1PTH)

 DC.W $00E2,$1000 ;Move $1000 to register $0E2 (BPL1PTL)

 DC.W $00E4,$0002 ;Move $0002 to register $0E4 (BPL2PTH)

 DC.W $00E6,$5000 ;Move $5000 to register $0E6 (BPL2PTL)

Normally, the appropriate assembler ".i" files are included so that names, rather than
addresses, may be used for referencing hardware registers. It is strongly recommended
that you reference all hardware addresses via their defined names in the system include
files. This will allow you to more easily adapt your software to take advantage of future
hardware or enhancements. For example:

 INCLUDE "hardware/custom.i"

 DC.W bplpt+$00,$0002 ;Move $0002 into register $0E0 (BPLlPTH)

 DC.W bplpt+$02,$1000 ;Move $1000 into register $0E2 (BPLlPTL)

 DC.W bplpt+$04,$0002 ;Move $0002 into regi3ter $0E4 (PL2PTH)

 DC.W bplpt+$06,$5000 ;Move $5000 into register $0E6 (BPL2PTL)

For use in the hardware manual examples, we have made a special include file (see
Appendix J) that defines all of the hardware register names based off of the
"hardware/custom.i" file. This was done to make the examples easier to read from a
hardware point of view. Most of the examples in this manual are here to help explain the
hardware and are, in most cases, not useful without modification and a good deal of
additional code.

 1 Hexadecimal numbers are distinguished from decimal numbers by the $ prefix.
 2 All sample code segments are in assembly language.

- 16 Coprocessor Hardware -

THE WAIT INSTRUCTION

The WAIT instruction causes the Copper to wait until the video beam counters are equal to
(or greater than) the coordinates specified in the instruction. While waiting, the Copper is

off the bus and not using memory cycles.

The first instruction word contains the vertical and horizontal coordinates of the beam
position. The second word contains enable bits that are used to form a "mask" that tells
the system which bits of the beam position to use in making the comparison.

 FIRST INSTRUCTION WORD (IR1)

 Bit 0 Always set to 1.

 Bits 15 - 8 Vertical beam position (called VP).

 Bits 7 - 1 Horizontal beam position (called HP).

 SECOND INSTRUCTION WORD (IR2)

 Bit 0 Always set to 0.

 Bit 15 The blitter-finished-disable bit.

 Normally, this bit is a 1.

 (See the "Advanced Topics" section below.)

 Bits 14 - 8 Vertical position compare enable bits (called VE).

 Bits 7 - 1 Horizontal position compare enable bits (called HE).

The following example WAIT instruction waits for scan line 150 ($96) with the horizontal
position masked off.

 DC.W $9601,$FF00 ; Wait for line 150,

 ; ignore horizontal counters.

The following example WAIT instruction waits for scan line 255 and horizontal position

254. This event will never occur, so the Copper stops until the next vertical blanking
interval begins.

 DC.W $FFFF,$FFFE ; Wait for line 255,

 ; H = 254 (ends Copper list).

To understand why position VP=$FF HP=$FE will never occur, you must look at the

comparison operation of the Copper and the size restrictions of the position information.
Line number 255 is a valid line to wait for, in fact it is the maximum value that will fit into
this field. Since 255 is the maximum number, the next line will wrap to zero (line 256 will
appear as a zero in the

- Coprocessor Hardware 17 -

comparison.) The line number will never be greater than $FF The horizontal position has a
maximum value of $E2. This means that the largest number that will ever appear in the
comparison is $FFE2. When waiting for $FFE2, the line $FF will be reached, but the
horizontal position $FE will never happen. Thus, the position will never reach $FFFE.

You may be tempted to wait for horizontal position $FE (since it will never happen), and
put a smaller number into the vertical position field. This will not lead to the desired
result. The comparison operation is waiting for the beam position to become greater than
or equal to the entered position. If the vertical position is not $FF, then as soon as
the line number becomes higher than he entered number, the comparison will evaluate to
true and the wait will end.

The following notes on horizontal and vertical beam position apply to both the WAIT
instruction and o the SKIP instruction. The SKIP instruction is described below in the
"Advanced Topics" section.

HORIZONTAL BEAM POSITION
The horizontal beam position has a value of $0 to $E2. The least significant bit is not used
in the comparison, so there are 113 positions available for Copper operations. This
corresponds to 4 pixels in low resolution and 8 pixels in high resolution. Horizontal
blanking falls in the range of $0F to $35. The standard screen (320 pixels wide) has an
unused horizontal portion of $04 to $47 (during which only the background color is
displayed).

All lines are not the same length in NTSC. Every other line is a long line (228 color clocks,

0-$E3), with the others being 227 color clocks long. In PAL, they are all 227 long. The
display sees all these lines as 227 1/2 color clocks long, while the copper sees alternating
long & short lines.

VERTICAL BEAM POSITION
The vertical beam position can be resolved to one line, with a maximum value of 255.
There are actually 262 NTSC (312 PAL) possible vertical positions. Some minor
complications can occur if you want something to happen within these last six or seven
scan lines. Because there are only eight bits of resolution for vertical beam position
(allowing 256 different positions), one of the simplest ways to handle this is shown below.

- 18 Coprocessor Hardware -

 INSTRUCTION EXPLANATION

[... other instructions ...]

WAIT for position (0,255) At this point, the vertical

 counter appears to wrap to 0

 because the comparison works

 on the least significant bits

 of the vertical count.

WAIT for any horizontal position with Thus the total of 256+6 = 262

vertical position 0 through 256, covering lines of video beam travel

the last 6 lines of the scan before vertical during which Copper

blanking occurs. instructions can be executed.

NOTE
The vertical is like the horizontal - as there are alternating long and short lines, there are
also long and short fields (interlace only). In NTSC, the fields are 262, then 263 lines and

in PAL, 312,313.

This alteration of lines & fields produces the standard NTSC 4 field repeating pattern:

 short field ending on short line
 long field ending on long line
 short field ending on long line

 long field ending on short line
 & back to the beginning...

1 horizontal count takes 1 cycle of the system clock. (Processor is twice this)

 NTSC- 3,579,545 Hz
 PAL- 3,546,895 Hz

 genlocked- basic clock frequency plus or minus about 2%.

THE COMPARISON ENABLE BITS
Bits 14-1 are normally set to all 1s. The use of the comparison enable bits is described
later in the "Advanced Topics " section.

- Coprocessor Hardware 19 -

USING THE COPPER REGISTERS

There are several machine registers and strobe addresses dedicated to the Copper:

o Location registers

o Jump address strobes

o Control register

LOCATION REGISTERS

The Copper has two sets of location registers:

 COP1LCH High 3 bits of first Copper list address.
 COP1LCL Low 16 bits of first Copper list address.
 COP2LCH High 3 bits of second Copper list address.
 COP2LCL Low 16 bits of second Copper list address.

In accessing the hardware directly, you often have to write to a pair of registers that
contains the address of some data. The register with the lower address always has a
name ending in "H" and contains the most significant data, or high 3 bits of the address.
The register with the higher address has a name ending in "L" and contains the least
significant data, or low 15 bits of the address. Therefore, you write the 18-bit address by
moving one long word to the register whose name ends in "H." This is because when you
write long words with the 68000, the most significant word goes in the lower addressed

word.

In the case of the Copper location registers, you write the address to COP1LCH. In the
following text, for simplicity, these addresses are referred to as COP1LC or COP2LC.

The Copper location registers contain the two indirect jump addresses used by the
Copper. The Copper fetches its instructions by using its program counter and increments
the program counter after each fetch. When a jump address strobe is written, the
corresponding location register is loaded into the Copper program counter. This causes the
Copper to jump to a new location, from which its next instruction will be fetched.
Instruction fetch continues sequentially until the Copper is interrupted by another jump
address strobe.

- 20 Coprocessor Hardware -

NOTE
At the start of each vertical blanking interval, COP1LC is automatically used to start the
program counter. That is, no matter what the Copper is doing, when the end of vertical
blanking occurs, the Copper is automatically forced to restart its operations at the address

contained in COP1LC.

JUMP STROBE ADDRESS
When you write to a Copper strobe address, the Copper reloads its program counter from
the corresponding location register. The Copper can write its own location registers and
strobe addresses to perform programmed jumps. For instance, you might MOVE an
indirect address into the COP2LC location register. Then, any MOVE instruction that

addresses COPJMP2 strobes this indirect address into the program counter.

There are two jump strobe addresses:

 COPJMP1 Restart Copper from address contained in COP1LC.
 COPJMP2 Restart Copper from address contained in COP2LC.

CONTROL REGISTER
The Copper can access some special-purpose registers all of the time, some registers only
when a special control bit is set to a 1, some registers not at all. The registers that the
Copper can always affect are numbered $20 through $FF inclusive. Those it cannot affect
at all are numbered $00 to $0F inclusive. (See Appendix B for a list of registers
in address order.) The Copper control register is within this group ($00 to $0F). Thus it
takes deliberate action on the part of the 68000 to allow the Copper to write into a

specific range of the special-purpose registers.

The Copper control register, called COPCON, contains only one bit, bit #1. This bit, called
CDANG (for Copper Danger Bit) protects all registers numbered between $10 and $1F
inclusive. This range includes the blitter control registers. When CDANG is 0, these
registers cannot be written by the Copper. When CDANG is 1, these registers can be
written by the Copper. Preventing the Copper from accessing the blitter control registers
prevents a "runaway" Copper (caused by a poorly formed instruction list) from
accidentally affecting system memory.

NOTE
The CDANG bit is cleared after a reset.

- Coprocessor Hardware 21 -

PUTTING TOGETHER A COPPER INSTRUCTION LIST

The Copper instruction list contains all the register resetting done during the vertical
blanking interval and the register modifications necessary for making mid-screen

alterations. As you are planning what will happen during each display field, you may find it
easier to think of each aspect of the display as a separate subsystem, such as playfields,
sprites, audio, interrupts, and so on. Then you can build a separate list of things that must
be done for each sub-system individually at each video beam position.

When you have created all these intermediate lists of things to be done, you must merge
them together into a single instruction list to be executed by the Copper once for each

display frame. The alternative is to create this all-inclusive list directly, without the
intermediate steps.

For example, the bit-plane pointers used in playfield displays and the sprite pointers must
be rewritten during the vertical blanking interval so the data will be properly retrieved
when the screen display starts again. This can be done with a Copper instruction list that
does the following:

 WAIT until first line of the display
 MOVE data to bit-plane pointer 1
 MOVE data to bit-plane pointer 2
 MOVE data to sprite pointer 1
 and so on

As another example, the sprite DMA channels that create movable objects can be re-used
multiple times during the same display field. You can change the size and shape of the
reuses of a sprite; however, every multiple reuse normally uses the same set of colors
during a full display frame.
You can change sprite colors mid-screen with a Copper instruction list that waits until the
last line of the first use of the sprite processor and changes the colors before the first line
of the next use of the same sprite processor:

 WAIT for first line of display
 MOVE firstcolor1 to COLOR 17
 MOVE firstcolor2 to COLOR 18
 MOVE firstcolor3 to COLOR 19
 WAIT for last line +1 of sprite's first use
 MOVE secondcolor1 to COLOR 17

 MOVE secondcolor2 to COLOR 18
 MOVE secondcolor3 to COLOR 19
 and so on

- 22 Coprocessor Hardware -

As you create Copper instruction lists, note that the final list must be in the same order as
that in which the video beam creates the display. The video beam traverses the screen
from position (0,0) in the upper left hand corner of the screen to the end of the display
(226,262) NTSC (or (226,312) PAL) in the lower right hand corner. The first 0 in (0,0)

represents the x position. The second 0 represents the y position. For example, an
instruction that does something at position (0,100) should come after an instruction that
affects the display at position (0,60).

NOTE
Given the form of the WAIT instruction, you can sometimes get away with not sorting the
list in strict video beam order. The WAIT instruction causes the Copper to wait until the

value in the beam counter is equal to or greater than the value in the instruction.

This means, for example, if you have instructions following each other like this:

 WAIT for position (64,64)
 MOVE data
 WAIT for position (60,60)
 MOVE data

The Copper will perform both moves, even though the instructions are out of sequence.
The "greater than" specification prevents the Copper from locking up if the beam has
already passed the specified position. A side effect is that the second MOVE below will be
performed:

 WAIT for position (60,60)
 MOVE data
 WAIT for position (60,60)
 MOVE data

At the time of the second WAIT in this sequence, the beam counters will be greater than
the position shown in the instructions. Therefore, the second MOVE will also be performed.

Note also that the above sequence of instructions could just as easily be

 WAIT for position (60,60)
 MOVE data
 MOVE data

because multiple MOVEs can follow a single WAIT.

- Coprocessor Hardware 23 -

COMPLETE SAMPLE COPPER LIST
The following example shows a complete Copper list. This list is for two bitplanes-one at
$21000 and one at $25000. At the top of the screen, the color registers are loaded with
the following values:

 REGISTER COLOR

 COLOR00 white

 COLOR01 red

 COLOR02 green

 COLOR03 blue

At line 150 on the screen, the color registers are reloaded:

 REGISTER COLOR

 COLOR00 black

 COLOR01 yellow

 COLOR02 cyan

 COLOR03 magenta

The complete Copper list follows.

;

; Notes:

; 1. Copper lists must be in CHIP ram.

; 2. Bitplane addresses used in the example are arbitrary.

; 3. Destination register addresses in copper move instructions

; are offsets from the base address of the custom chips.

; 4. As always, hardware manual examples assume that your

; application has taken full control of the hardware,

; and is not conflicting with operating system use of

; the same hardware.

; 5. Many of the examples just pick memory addresses to

; be used. Normally you would need to allocate the

; required type of memory from the system with AllocMem()

; 6. As stated earlier, the code examples are mainly to help

; clarify the way the hardware works.

; 7. The following INCLUDEs are required by all example code

; in this chapter.

;

 INCLUDE "exec/types.i"

 INCLUDE "hardware/custom.i"

 INCLUDE "hardware/dmabits.i"

 INCLUDE "hardware/hw_examples.i"

- 24 Coprocessor Hardware -

COPPERLIST:

;

; Set up pointers to two bit planes

;

 DC.W BPL1PTH,$0002 ;Move S0002 into register $0E0 (BPL1PTH)

 DC.W BPL1PTL,$1000 ;Move $1000 into register $0E2 (BPL1PTL)

 DC.W BPL2PTH,$0002 ;Move $0002 into register $0E4 (BPL2PTH)

 DC.W BPL2PTL,$5000 ;Move $5000 into register $0E6 (BPL2PTL)

;

; Load color registers

;

 DC.W COLOR00,$0FFF ;Move white into register $180 (COLOR00

 DC.W COLOR01,$0F00 ;Move red into register $182 (COLOR01)

 DC.W COLOR02,$00F0 ;Move green into register $189 (COLOR02)

 DC.W COLOR03,$000F ;Move blue into register $186 (COLOR03)

;

; Specify 2 lo-res bitplanes

;

 DC.W BPLCON0,$2200 ;2 lores planes, color on

;

; Wait for line 150

;

 DC.W $9601,$FF00 ;Wait for line 150, ignore horiz. position

;

; Change color registers mid-display

;

 DC.W COLOR00,$0000 ;Move black into register $0180 (COLOR00)

 DC.W COLOR01,$0FF0 ;Move yellow into register $0182 (COLOR01)

 DC.W COLOR02,$00FF ;Move cyan into register $0184 (COLOR02)

 DC.W COLOR03,$0F0F :Move magenta into register $0186 (COLOR03)

;

; End Copper list by waiting for the impossible

;

 DC.W $FFFF,$FFFE ;Wait for line 255, H = 254 (never happens)

For more information about color registers, see Chapter 3, "Playfield

Hardware."

LOOPS AND BRANCHES
Loops and branches in Copper lists are covered in the "Advanced Topics" section below.

STARTING AND STOPPING THE COPPER

STARTING THE COPPER AFTER RESET
At power-on or reset time, you must initialize one of the Copper location registers
(COP1LC or COP2LC) and write to its strobe address before Copper DMA is tuned on. This
ensures a known start address and known state. Usually, COP1LC is used because this

particular register is reused during each vertical blanking time. The following sequence of
instructions shows how to

- Coprocessor Hardware 25 -

initialize a location register. It is assumed that the user has already

created the correct Copper instruction list at location "mycoplist."

;

; Install the copper list

;

 LEA CUSTOM,a1 ; a1 = address of custom chips

 LEA MYCOPLIST(pc),a0 ; Address of our copper list

 MOVE.L a0,COP1LC(a1) ; Write whole longword address

 MOVE.W COPJMP1(a1),d0 ; Causes copper to load PC from COP1LC

;

; Then enable copper and raster dma

;

 MOVE.W #(DMAF SETCLR!DMAF_COPPER!DMAF_RASTER!DMAF_MASTER),DMACON(a1)

;

Now, if the contents of COP1LC are not changed, every time vertical blanking occurs the
Copper will restart at the same location for each subsequent video screen. This forms a
repeatable loop which, if the list is correctly formulated, will cause the displayed screen to

be stable.

STOPPING THE COPPER
No stop instruction is provided for the Copper. To ensure that it will stop and do nothing
until the screen display ends and the program counter starts again at the top of the
instruction list, the last instruction should be to WAIT for an event that cannot occur. A
typical instruction is to WAIT for VP = $FF and HP = $FE. An HP of greater than $E2 is not

possible. When the screen display ends and vertical blanking starts, the Copper will
automatically be pointed to the top of its instruction list, and this final WAIT instruction
never finishes.

You can also stop the Copper by disabling its ability to use DMA for retrieving instructions
or placing data. The register called DMACON controls all of the DMA channels. Bit7,
COPEN, enables Copper DMA when set to 1.

For information about controlling the DMA, see Chapter 7, "System Control Hardware."

- 26 Coprocessor Hardware -

ADVANCED TOPICS

THE SKIP INSTRUCTION

The SKIP instruction causes the Copper to skip the next instruction if the video beam
counters are equal to or greater than the value given in the instruction.

The contents of the SKIP instructions words are shown below. They are identical to the
WAIT instruction, except that bit 0 of the second instruction word is a 1 to identify this as
a SKIP instruction.

 FIRST INSTRUCTION WORD (IR1)

 Bit 0 Always set to 1.

 Bits 15 - 8 Vertical position (called VP).

 Bits 7 - 1 Horizontal position (called HP).

 Skip if the beam counter is equal to or

 greater than these combined bits

 (bits 15 through 1).

 SECOND INSTRUCTION WORD (IR2)

 Bit 0 Always set to 1.

 Bit 15 The blitter-finished-disable bit.

 (See "Using the Copper with the

 Blitter" below.)

 Bits 14 - 8 Vertical position compare enable bits (called VE).

 Bits 7 - 1 Horizontal position compare enable bits (called HE).

The notes about horizontal and vertical beam position found in the discussion of the WAIT
instruction apply also to the SKIP instruction.

- Coprocessor Hardware 27 -

The following example SKIP instruction skips the instruction following it if VP (vertical
beam position) is greater than or equal to 100 ($64).

 DC.W $6401,$FF01 ; If VP >= 100,

 ; skip next instruction (ignore HP)

COPPER LOOPS AND BRANCHES AND COMPARISON ENABLE
You can change the value in the location registers at any time and use this value to
construct loops in the instruction list. Before the next vertical blanking time, however, the
COP1LC registers must be repointed to the beginning of the appropriate Copper list. The
value in the COP1L location registers will be restored to the Copper's program counter at
the start of the vertical blanking period.

Bits 14-1 of instruction word 2 in the WAIT and SKIP instructions specify which bits of the
horizontal and vertical position are to be used for the beam counter comparison. The
position in instruction word 1 and the compare enable bits in instruction word 2 are tested
against the actual beam counters before any further action is taken. A position bit in
instruction word 1 is used in comparing the positions with the actual beam counters if and

only if the corresponding enable bit in instruction word 2 is set to 1. If the corresponding
enable bit is 0, the comparison is always true. For instance, if you care only about the
value in the last four bits of the vertical position, you set only the last four compare
enable bits, bits (11-8) in instruction word 2.

Not all of the bits in the beam counter may be masked. If you look at the description of
the IR2 (second instruction word) you will notice that bit 15 is the blitter-finished-disable
bit. This bit is not part of the beam counter comparison mask, it has its own meaning in
the Copper WAIT instruction. Thus, you cannot mask the most significant bit in WAIT or
SKIP instructions. In most situations this limitation does not come into play, however, the
following example shows how to deal with it.

This example will instruct the Copper to issue an interrupt every 16 scan lines. It might
seem that the way to do this would be to use a mask of $0F and then compare the result

with $0F. This should compare "true" for $1F, $2F, $3F, etc. Since the test is for greater
than or equal to, this would seem to allow checking for every 16th scan line. However, the
highest order bit cannot be masked, so it will always appear in the comparisons. When the
Copper is waiting for $0F and the vertical position is past 128 (hex $80), this test will
always be true. In this case, the minimum value in the comparison will be $80, which is
always greater than $0F, and the interrupt will happen on every scan line. Remember, the
Copper only checks for greater than or equal to.

In the following example, the Copper lists have been made to loop. The COP1LC and
COP2LC values are either set via the CPU or in the Copper list before this section of
Copper code. Also, it is assumed that you have correctly installed an interrupt server for
the Copper interrupt that will be generated every 16 lines. Note that these are non-
interlaced scan lines.

- 28 Coprocessor Hardware -

HOW IT WORKS:
Both loops are, for the most part, exactly the same. In each, the Copper waits until the
vertical position register has $?F (? is any hex digit) in it, at which point we issue a
Copper interrupt to the Amiga hardware. To make sure that the Copper does not loop

back before the vertical position has changed and cause another interrupt on the same
scan line, wait for the horizontal position to be $E2 alter each interrupt. Position $E2 is
horizontal position 113 for the Copper and the last real horizontal position available. This
will force the Copper to the next line before the next WAIT. The loop is executed by
writing to the COPJMP1 register. This causes the Copper to jump to the address that was
initialized in COP1LC.

The masking problem described above makes this code fail after vertical position 127. A
separate loop must be executed when vertical position is greater than or equal 127. When
the vertical position becomes greater than or equal to 127, the first loop instruction is
skipped, dropping the Copper into the second loop. The second loop is much the same as
the first, except that it waits for $?F with the high bit set (binary 1xxx1111). This is true
for both the vertical and the horizontal WAIT instructions. To cause the second loop, write
to the COPJMP2 register. The list is put into an infinite wait when VP >= 255 so that it will
end before the vertical blank. At the end of the vertical blanking period COP1LC is written
to by the operating system, causing the first loop to start up again.

NOTE
The COP1LC register is written at the end of the vertical blanking period by a graphics
interrupt handler which is in the vertical blank interrupt server chain. As long as this
server is intact, COP1LC will be correctly strobed at the end of each vertical blank.

;

; This is the data for the Copper list.

;

; It is assumed that COPPERL1 is loaded into COP1LC and

; that COPPERL2 is loaded into COP2LC by some other code.

;

COPPERL1:

 DC.W $0F01,$8F00 ; Wait for VP=0xxxllll

 DC.W INTREQ,$8010 ; Set the copper interrupt bit

 DC.W $00E3,$80FE ; Wait for Horizontal $E2

 ; This is so the line gets finished before

 ; we check if we are there (The wait above)

 DC.W $7F01,$7F01 ; Skip if VP>=127

 DC.W COPJMP1,$0 ; Force a jump to COP1LC

COPPERL2:

 DC.W $8F01,$8F00 ; Wait for Vp=1xxx1111

 DC.W INTREQ,$8010 ; Set the copper interrupt bit...

 DC.W $80E3,$80FE ; Wait for Horizontal $E2

 ; This is so the line gets finished before

 ; we check if we are there (The wait above)

 DC.W $FF01, $FE01 : Skip if VP>=255

- Coprocessor Hardware 29 -

 DC.W COPJMP2,$0 ; Force a jump to COP2LC

; Whatever cleanup copper code that might be needed here...

; Since there are 262 lines in NTSC, and we stopped at 255, there is a

; bit of time available

 DC.W $FFFF,$FFFE ; End of Copper list

USING THE COPPER IN INTERLACED MODE
An interlaced bit-plane display has twice the normal number of vertical lines on the
screen.
Whereas a normal NTSC display has 262 lines, an interlaced NTSC display has 524 lines.
PAL has 312 lines normally and 625 in interlaced mode. In interlaced mode, the video
beam scans the screen twice from top to bottom, displaying, in the case of NTSC, 262
lines at a time. During the first scan, the odd-numbered lines are displayed. During the
second scan, the even-numbered lines are displayed and interlaced with the odd-
numbered ones. The scanning circuitry thus treats an interlaced display as two display
fields, one containing the even-numbered lines and one containing the odd-numbered
lines. Figure 2-1 shows how an interlaced display is stored in memory.

 Odd Field Even field

 (time t) (time t+16.6ms) Data in memory

 | |

 | 1 |

 |_____________|

 | |

 _____________ _____________ | 2 |

 | | | | |_____________|

 | 1 | | 2 | | |

 |_____________| |_____________| | 3 |

 | | | | |_____________|

 | 3 | | 4 | | |

 |_____________| |_____________| | 4 |

 | | | | |_____________|

 | 5 | | 6 | | |

 |_____________| |_____________| | 5 |

 |_____________|

 | |

 | 6 |

 |_____________|

 Figure 2-1: (Interlaced Bit-Plane in RAM)

The system retrieves data for bit-plane displays by using pointers to the starting address
of the data in memory. As you can see, the starting address for the even-numbered fields
is one line greater than the starting address for the odd-numbered fields. Therefore, the
bit-plane pointer must contain a different value for alternate fields of the interlaced
display.

Simply, the organization of the data in memory matches the apparent organization on the
screen (i.e., odd and even lines are interlaced together). This is accomplished by having a
separate Copper instruction list for each field to manage displaying the data.

- 30 Coprocessor Hardware -

To get the Copper to execute the correct list, you set an interrupt to the 68000 just after
the first line of the display. When the interrupt is executed, you change the contents of
the COP1LC location register to point to the second list. Then, during the vertical blanking
interval, COP1LC will be automatically reset to point to the original list.

For more information about interlaced displays, see Chapter 3, "Playfield Hardware."

USING THE COPPER WITH THE BLITTER
If the Copper is used to start up a sequence of blitter operations, it must wait for the
blitter-finished interrupt before starting another blitter operation. Changing blitter
registers while the blitter is operating causes unpredictable results. For just this purpose,

the WAIT instruction includes an additional control bit, called BFD (for blitter
finished disable). Normally, this bit is a 1 and only the beam counter comparisons control
the WAIT.

When the BFD bit is a 0, the logic of the Copper WAIT instruction is modified. The Copper
will WAIT until the beam counter comparison is true and the blitter has finished. The
blitter has finished when the blitter-finished flag is set. This bit should be unset with
caution. It could possibly prevent some screen displays or prevent objects from being
displayed correctly.

For more information about using the blitter, see Chapter 6, "Blitter Hardware."

THE COPPER AND THE 68000
On those occasions when the Copper's instructions do not suffice, you can interrupt the

68000 and use its instruction set instead. The 68000 can poll for interrupt flags set in the
INTREQ register by various devices. To interrupt the 68000, use the Copper MOVE
instruction to store a 1 into the following bits of INTREQ:

Table 2-1: Interrupting the 68000

 BITNUMBER NAME FUNCTION

 15 SET/CLR Set/Clear control bit. Determines

 if bits written with a 1 get set

 or cleared.

 4 COPEN Co-processor interrupting 68000.

See Chapter 7, "System Control Hardware," for more information about interrupts.

- Coprocessor Hardware 31 -

SUMMARY OF COPPER INSTRUCTIONS

The Table below shows a summary of the bit positions for each of the Copper instructions.
See Appendix A for a summary of all registers.

 Table 2-2: Copper Instruction Summary

 Move Wait Skip

 Bit# IR1 IR2 IR1 IR2 IR1 IR2

 15 X RD15 VP7 BFD VP7 BFD

 14 X RD14 VP6 VE6 VP6 VE6

 13 X RD13 VPS VES VPS VES

 12 X RD12 VP4 VE4 VP4 VE4

 11 X RD11 VP3 VE3 VP3 VE3

 10 X RD10 VP2 VE2 VP2 VE2

 09 X RD09 VP1 VE1 VP1 VE1

 08 DA8 RD08 VP0 VE0 VP0 VE0

 07 DA7 RD07 HP8 HE8 HP8 HE8

 06 DA6 RD06 HP7 HE7 HP7 HE7

 05 DAS RD05 HP6 HE6 HP6 HE6

 04 DA4 RD04 HPS HES HPS HES

 03 DA3 RD03 HP4 HE4 HP4 HE4

 02 DA2 RD02 HP3 HE3 HP3 HE3

 01 DA1 RD01 HP2 HE2 HP2 HE2

 00 0 RD00 1 0 1 1

X = don't care, but should be a 0 for upward compatibility

IR1 = first instruction word

IR2 = second instruction word

DA = destination address

RD = RAM data to be moved to destination register

VP = vertical beam position bit

HP = horizontal beam position bit

VE = enable comparison (mask bit)

HE = enable comparison (mask bit)

BFD = blitter-finished disable

- 32 Coprocessor Hardware -

Chapter 3

PLAYFIELD HARDWARE

INTRODUCTION
The screen display consists of two basic parts, playfields, which are sometimes called
backgrounds, and sprites, which are easily movable graphics objects. This chapter
describes how to directly access hardware registers to form playfields.

- Playfield Hardware 33 -

This chapter begins with a brief overview of playfield features, including definitions of
some fundamental terms, and continues with the following major topics:

o Forming a single "basic" playfield, which is a playfield the same size as the display

screen. This section includes concepts that are fundamental to forming any playfield.

o Forming a dual-playfield display in which one playfield is superimposed upon another.
This procedure differs from that of forming a basic playfield in some details.

o Forming playfields of various sizes and displaying only part of a larger playfield.

o Moving playfields by scrolling them vertically and horizontally.

o Advanced topics to help you use playfields in special situations.

For information about movable sprite objects, see Chapter 4, "Sprite Hardware." There are
also movable playfield objects, which are subsections of a playfield. To move portions of a
playfield, you use a technique called playfield animation, which is described in Chapter 6,
"Blitter Hardware".

PLAYFIELD FEATURES
The Amiga produces its video displays with raster display techniques. The picture you see
on the screen is made up of a series of horizontal video lines displayed one after the
other. Each horizontal video line is made up of a series of pixels. You create a graphic
display by defining one or more bit-planes in memory and filling them with "1"s and "0"s

The combination of the "1"s and "0"s will determine the colors in your display.

Each line represents one sweep of an electron beam which is "painting" the picture as it
goes along.

 __

 | | |

 | | --->----->----->----->----->---->--- |

 | | ____________________________________ |

 | | ____________________________________ |

 | | ____________________________________ |

 | | __________________ |

 | | __________________ |

 | | |

 | | VIDEO PICTURE |

 | | __________________ |

 | | __________________ |

 | | ____________________________________ |

 | | ____________________________________ |

 | | _____________________________________ |

 | | ____________________________________ |

 \ / |__|

 Figure 3-1: How the Video display picture is produced

VIDEO PICTURE
The video beam produces each line by sweeping from left to right. It produces the full
screen by sweeping the beam from the top to the bottom, one line at a time.

- 34 Playfield Hardware –

The video beam produces about 262 video lines from top to bottom, of which 200
normally are visible on the screen with an NTSC system. With a PAL system, the beam
produces 312 lines, of which 256 are normally visible. Each complete set of lines
(262/NTSC or 312/PAL) is called a display field. The field time, i.e. the time required for a

complete display field to be produced, is approximately 1/60th of a second for an NTSC
system and approximately 1/50th of a second for PAL. Between display fields, the video
beam traverses the lines that are not visible on the screen and returns to the top of the
screen to produce another display field.

The display area is defined as a grid of pixels. A pixel is a single picture element, the
smallest addressable part of a screen display. The drawings below show what a pixel is

and how pixels form displays.

 | _ |

 | |_| <----------------------- The picture is formed from many

 | _ | elements. Each element is called

 | _|_|_ | a pixel.

 | |_|_|_| |

 | |_|_|_| <------------- Pixels are used together to build

 |_______________________| larger graphic objects.

 ___________________________ ____________________________

 | | | |

 | | | |

 | <------ 320 pixels -----> | | <------ 640 pixels ------> |

 | | | |

 | | | |

 | | | |

 | | | |

 |___________________________| |____________________________|

 In normal resolution mode, In high resolution mode,

 320 pixels fill a horizontal 640 pixels fill a horizontal

 line. line.

 Figure 3-2: What Is a Pixel?

The Amiga offers a choice in both horizontal and vertical resolutions. Horizontal resolution

can be adjusted to operate in low resolution or high resolution mode. Vertical resolution
can be adjusted to operate in interlaced or non-interlaced mode.

- Playfield Hardware 35 -

o In low-resolution mode, the normal playfield has a width of 320 pixels.

o High-resolution mode gives finer horizontal resolution 640 pixels in the same physical
display area.

o In non-interlaced mode, the normal NTSC playfield has a height of 200 video lines. The
normal mal PAL screen has a height of 256 video lines.

o Interlaced mode gives finer vertical resolution 400 lines in the same physical display
area in NTSC and 512 for PAL.

These modes can be combined, so you can have, for instance, an interlaced, high-
resolution display.

Note that the dimensions referred to as "normal" in the previous paragraph are nominal
dimensions and represent the normal values you should expect to use. Actually, you can
display larger playfields; the maximum dimensions are given in the section called "Bit-
Planes and Playfields of All Sizes." Also, the dimensions of the playfield in memory are
often larger than the playfield displayed on the screen. You choose which part of this
larger memory picture to display by specifying a different size for the display window.

A playfield taller than the screen can be scrolled, or moved smoothly, up or down. A
playfield wider than the screen can be scrolled horizontally, from left to right or right to
left. Scrolling is described in the section called "Moving (Scrolling) Playfields."

In the Amiga graphics system, you can have up to thirty-two different colors in a single
playfield, using normal display methods. You can control the color of each individual pixel
in the playfield display by setting the bit or bits that control each pixel. A display formed
in this way is called a bit-mapped display.

For instance, in a two-color display, the color of each pixel is determined by whether a
single bit is on or off. If the bit is 0, the pixel is one user-defined color, if the bit is 1, the
pixel is another color. For a four-color display, you build two bit-planes in memory. When
the playfield is displayed, the two bit-planes are overlapped, which means that each pixel
is now two bits deep. You can combine up to five bit-planes in this way. Displays made up
of three, four, or five bit-planes allow a choice of eight, sixteen, or thirty-two colors,
respectively.

The color of a pixel is always determined by the binary combination of the bits that define

it. When the system combines bit-planes for display, the combination of bits formed for
each pixel corresponds to the number of a color register. This method of colouring pixels
is called color indirection. The Amiga has thirty-two color registers, each containing bits
defining a user selected color (from a total of 4,096 possible colors).

Figure 3-3 shows how the combination of up to five bit-planes forms a code that selects
which one of the thirty-two registers to use to display the color of a playfield pixel.

- 36 Playfield Hardware -

 | _

 | |_| Bit plane 5

 | ____________________________ __

 | | _ |0 |_ --------

 | | |_| Bit plane 4 |_|0 |_ |

 | | _________________________ |_|1 |_ __ See below

 | | | _ |_|1 |_ /

 | | | |_| Bit plane 3 |_|1 | |

 | | | ______________________ |__| -----

 | | | _

 | | | |_| Bit plane 2

 | | | ___________________

 | | | _

 | | | |_| Bit plane 1

 | | |

 | | ^

 | | |

 | |

 | \-------------- One pixel

 Bits from planes 5,4,3,2,1

 Color Registers

 | |

 00000 | |

 |_______________________|

 | |

 00001 | |

 |_______________________|

 | |

 00010 | |

 |_______________________|

 | |

 00011 | |

 |_______________________|

 | |

 00100 | |

 |_______________________|

 | |

 | | |

 | | |

 ----- | \|/ |

 | |

 |_______________________|

 | |

 11111 | |

 |_______________________|

 Figure 3-3: How Bit-planes select a Color

Values in the highest numbered bit-plane have the highest significance in the binary
number. As shown in Figure 3-4, the value in each pixel in the highest-numbered bit-
plane forms the leftmost digit of the number. The value in the next highest-numbered bit-
plane forms the next bit, and so on.

- Playfield Hardware 37 -

Sample data for 4 pixels

 a b c d

 1 1 0 0 Data in Bit-Plane 5 Most Significant

 1 0 1 0 Data in Bit-Plane 4

 1 0 0 1 Data in Bit-Plane 3

 0 1 1 1 Data in Bit-Plane 2

 0 0 1 0 Data in Bit-Plane 1 Least Significant

 a Value 6 COLOR 6

 b Value 11 COLOR 11

 c Value 18 COLOR 18

 d Value 28 COLOR 28

 Figure 34: Significance of Bit-Plane Data in Selecting Colors

You also have the choice of defining two separate playfields, each formed from up to three
bit planes. Each of the two playfields uses a separate set of eight different colors. This is
called dual-playfield mode.

FORMING A BASIC PLAYFIELD

To get you started, this section describes how to directly access hardware registers to
form a single basic playfield that is the same size as the video screen. Here, "same size"

means that the playfield is the same size as the actual display window. This will leave a
small border between the playfield and the edge of the video screen. The playfield usually
does not extend all the way to the edge of the physical display.

To form a playfield, you need to define these characteristics:

o Height and width of the playfield and size of the display window (that is, how much of
the playfield actually appears on the screen).

o Color of each pixel in the playfield.

o Horizontal resolution.

- 38 Playfield Hardware -

o Vertical resolution, or interlacing.

o Data fetch and modulo, which tell the system how much data to put on a horizontal line
and how to fetch data from memory to the screen.

In addition, you need to allocate memory to store the playfield, set pointers to tell the
system where to find the data in memory, and (optionally) write a Copper routine to
handle redisplay of the playfield.

HEIGHT AND WIDTH OF THE PLAYFIELD
To create playfield that is the same size as the screen, you can use a width of either 320

pixels or 640 pixels, depending upon the resolution you choose. The height is either 200
or 400 lines for NTSC, 256 or 512 lines for PAL, depending upon whether or not you
choose interlaced mode.

BIT-PLANES AND COLOR
You define playfield color by:

1. Deciding how many colors you need and how you want to color each pixel.

2. Loading the colors into the color registers.

3. Allocating memory for the number of bit-planes you need and setting a pointer to each
bit-plane.

4. Writing instructions to place a value in each bit in the bit-planes to give you the correct
color.

Table 3-1 shows how many bit-planes to use for the color selection you need.

 Number of Number of

 Colors Bit-Planes

 1- 2 1

 3- 4 2

 5- 8 3

 9-16 4

 17-32 5

 Table 3-1: Colors in a single playfield.

- Playfield Hardware 39 -

THE COLOR TABLE
The color Table contains 32 registers, and you may load a different color into each of the
registers. Here is a condensed view of the contents of the color Table:

 Table 3-2: Portion of the Color Table

 Register Name Contents Meaning

 COLOR00 12 bits User-defined color for The

 background area and borders.

 COLOR01 12 bits User-defined color number 1

 (For example, the alternate color

 selection for a two-color playfield).

 COLOR02 12 bits User-defined color number 2.

 etc

 etc

 COLOR31 12 bits User-defined color number 31.

COLOR00 is always reserved for the background color. The background color shows in any
area on the display where there is no other object present and is also displayed outside
the defined display window, in the border area.

NOTE
If you are using the optional genlock board for video input from a camera, VCR, or laser
disk, the background color will be replaced by the incoming video display.

Twelve bits of color selection allow you to define, for each of the 32 registers, one of
4,096 possible colors, as shown in Table 3-3.

- 40 Playfield Hardware -

 Table 3-3: Contents of the Color Registers

 Bits

 Bits 15 -12 Unused

 Bits 11 - 8 Red

 Bits 7 - 4 Green

 Bits 3 - 0 Blue

Table 3-4 shows some sample color register bit assignments and the resulting colors. At
the end of the chapter is a more extensive list.

 Table 3-4: Sample Color Register Contents

 Contents of the Resulting

 Color Register Color

 $fff White

 $6fe Sky blue

 $db9 Tan

 $000 Black

Some sample instructions for loading color registers are shown below:

 LEA CUSTOM,a0 ; Get base address of custom hardware...

 MOVE.W #$FFF,COLOR00(a0) ; Load white into color register 0

 MOVE.W #$6FE,COLOR01(a0) ; Load sky blue into color register 1

NOTE
The color registers are write-only. Only by looking at the screen can you find out the
contents of each color register. As a standard practice, then, for these and certain other
write-only registers, you may wish to keep a "back-up" RAM copy. As you write to the
color register itself, you should update this RAM copy. If you do so, you will always know
the value each register contains.

SELECTING THE NUMBER OF BIT-PLANES
After deciding how many colors you want and how many bit-planes are required to give
you those colors, you tell the system how many bit-planes to use.

- Playfield Hardware 41 -

You select the number of bit-planes by writing the number into the register BPLCON0 (for
Bit Plane Control Register 0) The relevant bits are bits 14, 13, and 12, named BPU2,
BPU1, and BPU0 (for "Bit Planes Used"). Table 3-5 shows the values to write to these bits
and how the system assigns bit-plane numbers.

 Table 3-5: Setting the Number of Bit-Planes

 Number of Name(s) of

 Value Bit-Planes Bit-Planes

 000 None *

 001 1 PLANE 1

 010 2 PLANES 1 and 2

 011 3 PLANES 1 - 3

 100 4 PLANES 1 - 4

 101 5 PLANES 1 - 5

 110 6 PLANES 1 - 6 **

 111 7 Value not used.

* Shows only a background color; no playfield is visible.

** Sixth bit-plane is used only in dual-playfield mode and in hold-and-

modify mode (described in the section called "Advanced Topics").

NOTE
The bits in the BPLCON0 register cannot be set independently. To set any one bit, you

must reload them all.

The following example shows how to tell the system to use two low-resolution bit-planes.

 MOVE.W #$2200,BPLCON0+CUSTOM ; Write to it

Because register BPLCON0 is used for setting other characteristics of the display and the
bits are not independently, the example above also sets other parameters (all of these

parameters are described later in the chapter).

o Hold-and-modify mode is turned off.

o Single-playfield mode is set.

o Composite video color is enabled. (Not applicable in all models.)

- 42 Playfield Hardware -

o Genlock audio is disabled.

o Light pen is disabled.

o Interlaced mode is disabled.

o External resynchronization is disabled. (genlock)

SELECTING HORIZONTAL AND VERTICAL RESOLUTION
Standard home television screens are best suited for low-resolution displays. Low-
resolution mode provides 320 pixels for each horizontal line. High-resolution monochrome

and RGB monitors can produce displays in high-resolution mode, which provides 640
pixels for each horizontal line. If you define an object in low-resolution mode and then
display it in high-resolution mode, the object will be only half as wide.

To set horizontal resolution mode, you write to bit 15, HIRES, in register BPLCON0:

High-resolution modewrite 1 to bit 15.
Low-resolution modewrite 0 to bit 15.

Note that in high-resolution mode, you can have up to four bit-planes in the playfield and,
therefore, up to 16 colors.

Interlaced mode allows twice as much data to be displayed in the same vertical area as in
non-interlaced mode. This is accomplished by doubling the number of lines appearing on

the video screen. The following Table shows the number of lines required to fill a normal,
non-overscan screen.

 Table 3-6: Lines in a Normal Playfield

 NTSC PAL

 Non-interlaced 200 256

 Interlaced 400 512

In interlaced mode, the scanning circuitry vertically offsets the start of every other field by
half a scan line.

- Playfield Hardware 43 -

line 1_________________________

 | _________________________ |\

 | _________________________ | \

 | _________ | \

 | Field 1 | \ __________________

 | _________ | \ |___|______________|___Line 1

 | _________________________ | >|___|______________|___

 | _________________________ | / | | | Line 2

 |___________________________| / | | Video display|

 / | | (400 lines) |

line 1_________________________ / | | |

 | _________________________ | |__\|/_____________|

 | _________________________ |

 | _________ |

 | Field 2 | (same physical space as used

 | _________ | by a 200 line noninterlaced

 | _________________________ | display)

 | _________________________ |

 |___________________________|

 Figure 3-5: Interlacing

Even though interlaced mode requires a modest amount of extra work in setting registers
(as you will see later on in this section), it provides fine tuning that is needed for certain
graphics effects. Consider the diagonal line in Figure 3-6 as it appears in non-interlaced

and interlaced modes. Interlacing eliminates much of the jaggedness or "staircasing" in
the edges of the line.

Figure 3-6: Effect of Interlaced Mode on Edges of Objects

When you use the special blitter DMA channel to draw lines or polygons onto an interlaced
playfield, the playfield is treated as one display, rather than as odd and even fields.
Therefore, you still get the smoother edges provided by interlacing.

- 44 Playfield Hardware -

To set interlaced or non-interlaced mode, you write to bit 2, LACE, in register BPLCON0:

 Interlaced mode write 1 to bit 2.
 Non-interlaced mode write 0 to bit 2.

As explained above in "Setting the Number of Bit-Planes," bits in BPLCON0 are not
independently set.

The following example shows how to specify high-resolution and interlaced modes.

 MOVE.W #$A204,BPLCON0+CUSTOM ; Write to it

The example above also sets the following parameters that are also controlled through
register BPLCON0:

o High-resolution mode is enabled.

o Two bit-planes are used.

o Hold-and-modify mode is disabled.

o Single-playfield mode is enabled.

o Composite video color is enabled.

o Genlock audio is disabled.

o Light pen is disabled.

o Interlaced mode is enabled.

o External resynchronization is disabled.

The amount of memory you need to allocate for each bit-plane depends upon the
resolution modes you have selected, because high-resolution or interlaced playfields
contain more data and require larger bit-planes.

- Playfield Hardware 45 -

ALLOCATING MEMORY FOR BIT-PLANES
After you set the number of bit-planes and specify resolution modes, you are ready to
allocate memory. A bit-plane consists of an end-to-end sequence of words at consecutive
memory locations. When operating under the Amiga operating system, use a system call

such as AllocMem() to remove a block of memory from the free list and make it available
to the program. If the machine has been taken over, simply reserve an area of memory
for the bit-planes. Next, set the bit plane pointer registers (BPLxPTH/BPLxPTL) to point to
the starting memory address of each bitplane you are using. The starting address is the
memory word that contains the bits of the upper left-hand corner of the bit-plane.

Table 3-6 shows how much memory is needed for basic playfields. You may need to

balance your color and resolution requirements against the amount of available memory
you have.

 Table 3-7: Playfield Memory Requirements, NTSC

 Number of Bytes

 Picture Size Modes per Bit-Plane

 320 X 200 Low-resolution, 8,000

 non-interlaced

 320 X 400 Low-resolution, 16,000

 interlaced

 640 X 200 High-resolution, 16,000

 non-interlaced

 640 X 400 High-resolution, 32,000

 interlaced

- 46 Playfield Hardware -

Table 3-8: Playfield Memory Requirements, PAL

 Number of Bytes

 Picture Size Modes per Bit-Plane

 320 X 256 Low-resolution, 8,192

 non-interlaced

 320 X 512 Low-resolution, 16,384

 interlaced

 640 X 256 High-resolution, 16,384

 non-interlaced

 640 X 512 High-resolution, 32,768

 interlaced

NTSC EXAMPLE OF BIT PLANE SIZE
For example, using a normal, NTSC, low-resolution, non-interlaced display with 320 pixels

across each display line and a total of 200 display lines, each line of the bit-plane requires
40 bytes (320 bits divided by 8 bits per byte = 40). Multiply the 200 lines times 40 bytes
per line to get 8,000 bytes per bit-plane as given above.

A low-resolution, non-interlaced playfield made up of two bit-planes requires 16,000 bytes
of memory area. The memory for each bit-plane must be continuous, so you need to have
two 8,000-byte blocks of available memory.

Figure 3-7 shows an 8,000-byte memory area organized as 200 lines of 40 bytes each,
providing 1 bit for each pixel position in the display plane.

- Playfield Hardware 47 -

 _____________ _____________

 | | | | | | | | _____________________\ | | | | | | | |

 |_|_|_|_|_|_|_| / |_|_|_|_|_|_|_|

 Mem. Location N Mem. location N+38

 _____________ _____________

 | | | | | | | | _____________________\ | | | | | | | |

 |_|_|_|_|_|_|_| / |_|_|_|_|_|_|_|

 Mem. Location N+40 | Mem. location N+78

 |

 |

 |

 |

 _____________ \|/ _____________

 | | | | | | | | ___________V_________\ | | | | | | | |

 |_|_|_|_|_|_|_| / |_|_|_|_|_|_|_|

 Mem. Location N+7960 Mem. location N+7998

 Figure 3-7: Memory Organization for a Basic Bit-Plane

Access to bit-planes in memory is provided by two address registers, BPLxPTH and
BPLxPTL, for each bit-plane (12 registers in all). The "x" position in the name holds the
bit-plane number; for example BPL1PTH and BPL1PTL hold the starting address of PLANE
1. Pairs of registers with names ending in PTH and PTL contain 19-bit addresses. 68000
programmers may treat these as one 32-bit address and write to them as one long word.

You write to the high-order word, which is the register whose name ends in "PTH."

The example below shows how to set the bit-plane pointers. Assuming two
bit-planes, one at $21000 and the other at $25000, the processor sets
BPL1PT to $21000 and BPL2PT to $25000. Note that this is usually the
Copper's task.

;

; Since the bit plane pointer registers are mapped as a full 680x0 long-

; word data, we can store the addresses with a 32-bit move...

;

 LEA CUSTOM,a0 ; Get base address of custom hardware...

 MOVE.L $21000,BPL1PTH(a0) ; Write bit-plane 1 pointer

 MOVE.L $25000,BPL2PTH(a0) ; Write bit-plane 2 pointer

Note that the memory requirements given here are for the playfield only. You may need
to allocate additional memory for other parts of the display, sprites, audio, animation and
for your application programs. Memory allocation for other parts of the display is
discussed in the chapters describing those topics.

- 48 Playfield Hardware -

CODING THE BIT-PLANES FOR CORRECT COLORING
After you have specified the number of bit-planes and set the bit-plane pointers, you can
actually write the color register codes into the bit-planes.

A ONE-OR TWO-COLOR PLAYFIELD
For a one-color playfield, all you need do is write "0"s in all the bits of the single bit-plane
as shown in the example below. This code fills a low-resolution bit-plane with the
background color (COLOR00) by writing all "0"s into its memory area. The bit-plane starts
at $21000 and is 8,000 bytes long.

 LEA $21000,a0 ; Point at bit-plane

 MOVE.W #2000,d0 ; Write 2000 longwords = 8000 bytes

LOOP: MOVE.L #0,(a0)+ ; Write out a zero

 DBRA d0,LOOP ; Decrement counter and loop until done

For a two-color playfield, you define a bit-plane that has "0"s where you want the
background color and "1"s where you want the color in register 1. The following example
code is identical to the last example, except the bit-plane is filled with $FF00FF00 instead
of all 0's. This will produce two colors.

 LEA $21000,a0 ; Point at bit-plane

 MOVE.W #2000,d0 ; Write 2000 longwords = 8000 bytes

LOOP: MOVE.L #$FF00FF00,(a0)+ ; Write out $FF00FF00

 DBRA d0,LOOP ; Decrement counter & loop until done

A PLAYFIELD OF THREE OR MORE COLORS
For three or more colors, you need more than one bit-plane. The task here is to define
each bit-plane in such a way that when they are combined for display, each pixel contains
the correct combination of bits. This is a little more complicated than a playfield of one
bit-plane. The following examples show a four-color playfield, but the basic idea and
procedures are the same for playfields containing up to 32 colors.

Figure 3-8 shows two bit-planes forming a four-color playfield:

- Playfield Hardware 49 -

Figure 3-8: Combining Bit-planes

You place the correct "1"s and "0"s in both bit-planes to give each pixel in the picture
above the correct color.

In a single playfield you can combine up to five bit-planes in this way. Using five bit-
planes allows a choice of 32 different colors for any single pixel. The playfield color
selection charts at the end of this chapter summarize the bit combinations for playfields
made from four and five bit-planes.

DEFINING THE SIZE OF THE DISPLAY WINDOW

After you have completely defined the playfield, you need to define the size of the display
window, which is the actual size of the on-screen display. Adjustment of display window
size affects the entire display area, including the border and the sprites, not just the
playfield. You cannot display objects outside of the defined display window. Also, the size
of the border around the playfield depends on the size of the display window.

The basic playfield described in this section is the same size as the screen display area
and also the same size as the display window. This is not always the case; often the
display window is smaller than the actual "big picture" of the playfield as defined in
memory (the raster). A display window that is smaller than the playfield allows you to
display some segment of a large

- 50 Playfield Hardware -

playfield or scroll the playfield through the window. You can also define display windows
larger than the basic playfield. These larger playfields and different-sized display windows
are described in The section below called "Bit-Planes and Display Windows of All Sizes."

You determine the size of the display window by specifying the vertical and horizontal
positions at which the window starts and stops and writing these positions to the display
window registers. The resolution of vertical start and stop is one scan line. The resolution
of horizontal start and stop is one low-resolution pixel. Each position on the screen defines
the horizontal and vertical position of some pixel, and this position is specified by the x
and y coordinates of the pixel. This document shows the x and y coordinates in this form:
(x,y). Although the coordinates begin at (0,0) in the upper left-hand corner of the screen,

the first horizontal position normally used is $81 and the first vertical position is $2C. The
horizontal and vertical starting positions are the same both for NTSC and for PAL.

The hardware allows you to specify a starting position before ($81,$2C), but part of the
display may not be visible. The difference between the absolute starting position of (0,0)
and the normal starling position of ($81,$2C) is the result of the way many video display
monitors are designed. To overcome the distortion that can occur at the extreme edges of
the screen, the scanning beam sweeps over a larger area than the front face of the screen
can display. A starting position of ($81,$2C) centers a normal size display, leaving a
border of eight low-resolution pixel around The display window. Figure 3-9 shows the
relationship between the normal display window, the visible screen area, and the area
actually covered by the scanning beam.

 (0,0)

 / ($81,$2C)

 /______/____________________________

 | ___/__________________________ |

 | | /_________________________ |\ |

 | | | /\ | | \|

 | | |<--|-------320----------->| | \

 | | | | | | |\

 | | | |200 | | | \Visible screen

 | | | | | | | boundaries

 | | | | | | |

 | | |___\/_____________________| | |

 | |__________________________/__| |

 |___________________________ /______|

 \ /

 _____Display _____/

 window starting &

 stopping positions

 Figure 3-9: Positioning the On-screen Display

- 51 Playfield Hardware -

SETTING THE DISPLAY WINDOW STARTING POSITION
A horizontal starting position of approximately $81 and a vertical starting position of
approximately $2C centers the display on most standard television screens. If you select
high-resolution mode (640 pixels horizontally) or interlaced mode (400 lines NTSC, 512

PAL) the starting position does not change. The starting position is always interpreted in
low-resolution, non-interlaced mode. In other words, you select a starting position that
represents the correct coordinates in low-resolution, non-interlaced mode.

The register DIWSTRT (for "Display Window Start") controls the display window starting
position. This register contains both the horizontal and vertical components of the display
window starting positions, known respectively as HSTART and VSTART. The following

example sets DIWSTRT for a basic playfield. You write $2C for VSTART and $81 for
HSTART.

 LEA CUSTOM,a0 ; Get base address of custom hardware...

 MOVE.W #$2C81,DIWSTRT(a0) ; Display window start register...

SETTING THE DISPLAY WINDOW STOPPING POSITION
You also need to set the display window stopping position, which is the lower right-hand
corner of the display window. If you select high-resolution or interlaced mode, the
stopping position does not change. Like the starting position, it is interpreted in low-
resolution, non-interlaced mode.

The register DIWSTOP (for Display Window Stop) controls the display window stopping
position. This register contains both the horizontal and vertical components of the display

window stopping positions, known respectively as HSTOP and VSTOP. The instructions
below show how to set HSTOP and VSTOP for the basic playfield, assuming a starting
position of ($81,$2C). Note that the HSTOP value you write is the actual value minus 256
($100). The HSTOP position is restricted to the right-hand side of the screen. The normal
HSTOP value is ($1C1) but is written as ($Cl). HSTOP is the same both for NTSC and for
PAL.

The VSTOP position is restricted to the lower half of the screen. This is accomplished in
the hardware by forcing the MSB of the stop position to be the complement of the next
MSB. This allows for a VSTOP position greater than 256 ($100) using only 8 bits.
Normally, the VSTOP is set to ($F4) for NTSC, ($2C) for PAL.

 The normal NTSC DIWSTRT is ($2C81).
 The normal NTSC DIWSTOP is ($F4C1).

 The normal PAL DIWSTRT is ($2C81).
 The normal PAL DIWSTOP is ($2CC1).

- 52 Playfield Hardware -

The following example sets DIWSTOP for a basic playfield to $F4 for the vertical position
and $C1 for the horizontal position.

 LEA CUSTOM,a0 ; Get base address of custom hardware...

 MOVE.W #$F4C1,DIWSTOP(a0) ; Display window stop register...

 Table 3-9: DIWSTRT AND DIWSTOP Summary.

 -Nominal Values- -Possible Values-

 NTSC PAL MIN MAX

 DIWSTRT:

 VSTART $2C $2C $00 $FF

 HSTART $81 $81 $00 $FF

 DIWSTOP:

 VSTOP $F4 $2C (=$12C) $80 $7F (=$17F)

 HSTOP $C1 $C1 $00 (=$100) $FF (=$1FF)

TELLING THE SYSTEM HOW TO FETCH AND DISPLAY DATA
After defining the size and position of the display window, you need to give the system the
on screen location for data fetched from memory. To do this, you describe the horizontal
positions where each line starts and stops and write these positions to the data-fetch
registers. The data-fetch registers have a four-pixel resolution (unlike the display window
registers, which have a one-pixel resolution). Each position specified is four pixels from
the last one. Pixel 0 is position 0; pixel 4 is position 1, and so on.

The data-fetch start and display window starting positions interact with each other. It is
recommended that data-fetch start values be restricted to a programming resolution of 16
pixels (8 clocks in low-resolution mode, 4 clocks in high-resolution mode). The hardware
requires some time after the first data fetch before it can actually display the data. As a
result, there is a difference between the value of window start and data-fetch start of 4.5
color clocks.

 The normal low-resolution DDFSTRT is ($0038).
 The normal high-resolution DDFSTRT is ($003C).

Recall that the hardware resolution of display window start and stop is twice the hardware
resolution of data fetch:

 $81

 --- -8.5=$38

 2

 $81

 --- -4.5=$3c

 2

- Playfield Hardware 53 -

The relationship between data-fetch start and stop is;

 DDFSTRT = DDFSTOP-(8*(word count-1))for low resolution

 DDFSTRT = DDFSTOP-(4*(word count-2))for high resolution

The normal low-resolution DDFSTOP is ($00D0). The normal high-resolution DDFSTOP is
($00D4)

The following example sets data-fetch start to $0038 and data-fetch stop to $00D0 for a
basic playfield.

 LEA CUSTOM,a0 ; Point to base hardware address

 MOVE.W #$0038,DDFSTRT(a0) ; Write to DDFSTRT

 MOVE.W #$00D0,DDFSTOP(a0) ; Write to DDFSTOP

You also need to tell the system exactly which bytes in memory belong on each horizontal
line of the display. To do this, you specify the modulo value. Modulo refers to the number
of bytes in memory between the last word on one horizontal line and the beginning of the
first word on the next line. Thus, the modulo enables the system to convert bit-plane data
stored in linear form (each data byte at a sequentially increasing memory address) into
rectangular form (one "line" of sequential data followed by another line). For the basic
playfield, where the playfield in memory is the same size as the display window, the
modulo is zero because the memory area contains exactly the same number of bytes as
you want to display on the screen. Figures 3-10 and 3-11 show the basic bit-plane layout

in memory and how to make sure the correct data is retrieved.

The bit-plane address pointers (BPLxPTH and BPLxPTL) are used by the system to fetch
the data to the screen. These pointers are dynamic; once the data fetch begins, the
pointers are continuously incremented to point to the next word to be fetched (data is
fetched two bytes at a time). When the end-of-line condition is reached (defined by the
data-fetch register, DDFSTOP) the modulo is added to the bit-plane pointers, adjusting
the pointer to the first word to be fetched for the next horizontal line.

Data for Line 1:

Location: START START+2 START+4 START+38

 Leftmost Next Word Next Word Last Display

 Display Word Word

 ^

Screen data fetch stops (DDFSTOP) for |

each horizontal line after the last word <----------------------|

on the line has been fetched.

Figure 3-10: Data Fetched for the First Line When Modulo = 0

- 54 Playfield Hardware -

After the first line is fetched, the bit-plane pointers BPLxPTH and BPLxPTL contain the
value START+40. The modulo (in this case, 0) is added to the current value of the pointer,
so when the pointer begins the data fetch for the next line, it fetches the data you want
on that line. The data for the next line begins at memory location START+40.

Data for Line 2:

Location: START+40 START+42 START+44 START+78

 Leftmost Next Word Next Word Last Display

 Display Word Word

 Figure 3-11: Data Fetched for the Second Line When Modulo = 0

Note that the pointers always contain an even number, because data is fetched from the
display a word at a time.

There are two modulo registers, BPL1MOD for the odd-numbered bit-planes and BPL2MOD
for the even-numbered bit-planes. This allows for differing modules for each playfield in
dual-playfield mode. For normal applications, both BPL1MOD and BPL2MOD will be the
same.

The following example sets the modulo to 0 for a low-resolution playfield with one bit-
plane. The bit-plane is odd-numbered.

 MOVE.W #0,BPL1MOD+CUSTOM ; Set modulo to 0

DATA FETCH IN HIGH-RESOLUTION MODE
When you are using high-resolution mode to display the basic playfield, you need to fetch
80 bytes for each line, instead of 40.

MODULO IN INTERLACED MODE
For interlaced mode, you must redefine the modulo, because interlaced mode uses two
separate scanning’s of the video screen for a single display of the playfield. During the

first scanning, the odd-numbered lines are fetched to the screen; and during the second
scanning, the even-numbered lines are fetched.

- Playfield Hardware 55 -

The bit-planes for a full-screen-sized, interlaced display are 400 NTSC (512 PAL), rather
than 200 NTSC (256 PAL), lines long. Assuming that the playfield in memory is the normal
320 pixels wide, data for the interlaced picture begins at the following locations (these are
all byte addresses):

 Line 1 START
 Line 2 START+40
 Line 3 START+80
 Line 4 START+120

and so on. Therefore, you use a modulo of 40 to skip the lines in the other field. For odd

fields, the bit-plane pointers begin at START. For even fields, the bit-plane pointers begin
at START+40

You can use the Copper to handle resetting of the bit-plane pointers for interlaced
displays.

DISPLAYING AND REDISPLAYING THE PLAYFIELD
You start playfield display by making certain that The bit-plane pointers are set and bit-
plane DMA is turned on. You turn on bit-plane DMA by writing a 1 to bit BPLEN in the
DMACON (for DMA control) register. See Chapter 7, "System Control Hardware," for
instructions on setting this register.

Each time The playfield is redisplayed, you have to reset the bit-plane pointers. Resetting
is necessary because the pointers have been incremented to point to each successive

word in memory and must be repointed to the first word for the next display. You write
Copper instructions to handle the redisplay or perform this operation as part of a vertical
blanking task.

ENABLING THE COLOR DISPLAY
The stock A1000 has a color composite output and requires bit 9 set in BPLCON0 to create
a color composite display signal. Without the addition of specialized hardware, the A500
and A2000 cannot generate color composite output.

NOTE
The color burst enable does not affect the RGB video signal. RGB video is correctly
generated regardless of the output of the composite video signal.

- 56 Playfield Hardware -

BASIC PLAYFIELD SUMMARY
The steps for defining a basic playfield are summarized below:

1. Define Playfield Characteristics

 a. Specify height in lines:

 o For NTSC:

 * 200 for non-interlaced mode.

 * 400 for interlaced mode.

 o For PAL:

 * 256 for non-interlaced mode.

 * 512 for interlaced mode.

 b. Specify width in pixels:

 o 320 for low-resolution mode.

 o 640 for high-resolution mode.

 c. Specify color for each pixel:

 o Load desired colors in color table registers.

 o Define color of each pixel in terms of the binary value that points
 at the desired color register.

 o Build bit-planes.

 o Set bit-plane registers.

 * Bits 12-14 in BPLCON0 - number of bit-planes (BPU2 - BPU0).

 * BPLxPTH - pointer to bit-plane starting position in memory
 (written as a long word).

- 57 Playfield Hardware -

 d. Specify resolution:

 o Low resolution:

 * 320 pixels in each horizontal line.

 * Clear bit 15 in register BPLCON0 (HIRES).

 o High resolution:

 * 640 pixels in each horizontal line.

 * Set bit 15 in register BPLCON0 (HIRES).

 e. Specify interlaced or non-interlaced mode:

 o Interlaced mode:

 * 400 vertical lines for NTSC, 512 for PAL.

 * Set bit 2 in register BPLCON0 (LACE).

 o Non-interlaced mode:

 * 200 vertical lines for NTSC, 256 for PAL.

 * Clear bit 2 in BPLCON0 (LACE).

2. Allocate Memory. To calculate data-bytes in the total bit-planes, use the following
formula: Bytes per line * lines in playfield * number of bit-planes

3. Define Size of Display Window.

 o Write start position of display window in DIWSTRT:

 * Horizontal position in bits 0 through 7 (low-order bits).

 * Vertical position in bits 8 through 15 (high-order bits).

 o Write stop position of display window in DIWSTOP:

 * Horizontal position in bits 0 through 7.

 * Vertical position in bits 8 through 15.

- Playfield Hardware 58 -

4. Define Data Fetch. Set registers DDFSTRT and DDFSTOP:

 o For DDFSTRT, use the horizontal position as shown in "Setting the
 Display Window Starting Position."

 o For DDFSTOP, use the horizontal position as shown in "Setting the
 Display Window Stopping Position."

5. Define Modulo. Set registers BPL1MOD and BPL2MOD. Set modulo to 0 for non-
interlaced, 40 for interlaced.

6. Write Copper Instructions To Handle Redisplay.

7. Enable Color Display. For the A1000: set bit 9 in BPLCON0 to enable the color display
on a composite video monitor. RGB video is not affected. Only the A1000 has color
composite video output, other machines cannot enable this feature using standard
hardware.

EXAMPLES OF FORMING BASIC PLAYFIELDS
The following examples show how to set the registers and write the coprocessor lists for
two different playfields.

The first example sets up a 320 x 200 playfield with one bit-plane, which is located at
$21000. Also, a Copper list is set up at $20000.

This example relies on the include file "hw examples.i", which is found in Appendix J.

 LEA CUSTOM,a0 ; a0 points at custom chip

 MOVE.W #$1200,BPLCON0(a0) ; One bit-plane, enable composite color

 MOVE.W #0,BPLCON1(a0) ; Set horizontal scroll value to 0

 MOVE.W #0,BPL1MOD(a0) ; Set modulo to 0 for all odd bit-planes

 MOVE.W #$0038,DDFSTRT(a0) ; Set data-fetch start to $38

 MOVE.W #$00D0,DDFSTOP(a0) ; Set data-fetch stop to $D0

 MOVE.W #$2C81,DIWSTRT(a0) ; Set DIWSTRT to $2C81

 MOVE.W #$F4C1,DIWSTOP(a0) ; Set DIWSTOP to $F4Cl

 MOVE.W #$0F00,COLOR00(a0) ; Set background color to red

 MOVE.W #$0FF0,COLOR01(a0) ; Set color register 1 to yellow

;

; Fill bit-plane with $FF00FF00 to produce stripes

;

 MOVE.L #$21000,a1 ; Point at beginning of bit-plane

 MOVE.L #$FF00FF00,d0 ; We will write $FF00FF00 long words

 MOVE.W #2000,d1 ; 2000 long words = 8000 bytes

;

LOOP:

 MOVE.L d0,(a1)+ ; Write a long word

 DBRA d1,LOOP ; Decrement counter and loop until done

;

; Set up Copper list at $20000

;

 MOVE.L #$20000,a1 ; Point at Copper list destination

 LEA COPPERL(pc).a2 ; Point a2 at Copper list data

- Playfield Hardware 59 -

CLOOP:

 MOVE.L (a2),(a1)+ ; Move a word

 CMPI.L #$FFFFFFFE,(a2)+ ; Check for last longword of Copper list

 BNE CLOOP ; Loop until entire copper list i9 moved

;

; Point Copper at Copper list

;

 MOVE.L #$20000,COP1LCH(a0) ; Write to Copper location register

 MOVE.W COPJMP1(a0),d0 ; Force copper to $20000

;

; Start DMA

;

 MOVE.W #(DMAF_SETCLR!DMAF_COPPER!DMAF_RASTER!DMAF_MASTER),DMACON(a0)

 ; Enable bit-plane and Copper DMA

 BRA ; Go do next task

;

; This is the data for the Copper list.

;

COPPERL:

 DC.W BPL1PTH,$0002 ; Move $0002 to address $0E0 (BPL1PTH)

 DC.W BPL1PTL,$1000 ; Move $1000 to address $0E2 (BPL1PTL)

 DC.W $FFFF,$FFFE ; End of Copper list

The second example sets up a high-resolution, interlaced display with one bitplane. This
example also relies on the include file "hw_examples.i", which is found in Appendix J.

 LEA CUSTOM,a0 ; Address of custom chips

 MOVE.W #$9204,BPLCON0(a0) ; Hires, one bit-plane, interlaced

 MOVE.W #0,BPLCON1(a0) ; Horizontal scroll value 0

 MOVE.W #80,BPL1MOD(a0) ; Modulo = 80 for odd bit-planes

 MOVE.W #80,BPL2MOD(a0) ; Ditto for even bit-planes

 MOVE.W #$003C,DDFSTRT(a0) ; Set data-fetch start for hires

 MOVE.W #$00D4,DDFSTOP(a0) ; Set data-fetch stop

 MOVE.W #$2C81,DIWSTRT(a0) ; Set display window start

 MOVE.W #$F4C1,DIWSTOP(a0) ; Set display window stop

;

; Set up color registers

;

 MOVE.W #$000F,COLOR00(a0) ; Background color = blue

 MOVE.W #$0FFF,COLOR01(a0) ; Foreground color = white

;Set up bit-plane at S20000

 LEA $20000,a1 ; Point a1 at bit-plane

 LEA CHARLIST(pc),a2 ; a2 points at character data

 MOVE.W #400,d1 ; Write 400 lines of data

 MOVE.W #20,d0 ; Write 20 long words per line

L1:

 MOVE.L (a2),(a1)+ ; Write a long word

 DBRA d0,L1 ; Decrement counter and loop until full

 MOVE.W #20,d0 ; Reset long word counter

 ADDQ.L #4,a2 ; Point at next word in char list

 CMPI.L #$FFFFFFFF,(a2) ; End of char list?

 BNE L2

 LEA CHARLIST(pc),a2 ; Yes, reset a2 to beginning of list

L2:

 DBRA d1,L1 ; Decrement line counter and loop until

 ; done

;

; Start DMA

;

 MOVE.W #(DMAF_SETCLR!DMAF_RASTER!DMAF_MASTER),DMACON(a0)

 ; Enable bit-plane DMA only, no Copper

; Because this example has no Copper list, it sits in a

; loop waiting for the vertical blanking interval. When it

; comes, you check the LOF (long frame bit in VPOSR. If

; LOF = 0, this is a short frame and the bit-plane pointers

; are set to point to S20050. If LOF = 1, then this is a

; long frame and the bit-plane pointers are set to point to

; $20000. This keeps the long and short frames in the

; right relationship to each other.

VLOOP:

 MOVE.W INTREQR(a0),d0 ; Read interrupt requests

 AND.W #$0020,d0 ; Mask off all but vertical blank

 BEQ VLOOP ; Loop until vertical blank comes

 MOVE.W #$0020,INTREQ(a0) ; Reset vertical interrupt

 MOVE.W VPOSR(a0),d0 ; Read LOF bit into d0 bit 15

 BPL VL1 ; If LOF = 0, jump

 MOVE.L #$20000,BPL1PTH(a0) ; LOF = 1, point to $20000

 BRA VLOOP ; Back to top

VL1:

 MOVE.L #$20050,BPL1PTH(a0) ; LOF = 0, point to $20050

 BRA VLOOP ; Back to top

;

; Character list

;

CHARLIST:

 DC.L $18FC3DF0,$3C6666D8,$3C66C0CC,$667CC0CC

 DC.L $7E66C0CC,$C36666D8,$C3FC3DF0,$00000000

 DC.L $FFFFFFFF

- 61 Playfield Hardware -

FORMING A DUAL-PLAYFIELD DISPLAY
For more flexibility in designing your background display, you can specify two playfields
instead of one. In dual-playfield mode, one playfield is displayed directly in front of the
other. For example, a computer game display might have some action going on in one

playfield in the back-ground, while the other playfield is showing a control panel in the
foreground. You can then change either the foreground or the background without having
to redesign the entire display. You can also move the two playfields independently.

A dual-playfield display is similar to a single-playfield display, differing only in these
aspects:

o Each playfield in a dual display is formed from one, two or three bit planes.

o The colors in each playfield (up to seven plus transparent) are taken from different sets
of color registers.

o You must set a bit to activate dual-playfield mode.

Figure 3-12 shows a dual-playfield display.

In Figure 3-12, one of the colors in each playfield is "transparent" (color 0 in playfield 1
and color 8 in playfield 2). You can use transparency to allow selected features of the
background playfield to show through.

In dual-playfield mode, each playfield is formed from up to three bitplanes. Color registers

0 through 7 are assigned to playfield 1, depending upon how many bit-planes you use.
Color registers 8 through 15 are assigned to playfield 2.

BIT-PLANE ASSIGNMENT IN DUAL-PLAYFIELD MODE

The three odd-numbered bit-planes (1, 3, and 5) are grouped together by the hardware
and may be used in playfield 1. Likewise, the three even-numbered bit-planes (2, 4, and
6) are grouped together and may be used in playfield 2. The bit-planes are assigned
alternately to each playfield, as shown in Figure 3-13.

NOTE
In high-resolution mode, you can have up to two bit-planes in each playfield, bit-planes 1
and 3 in playfield 1 and bit-planes 2 and 4 in playfield 2.

- 62 Playfield Hardware -

Figure 3-12: A dual Playfield display.

- Playfield Hardware 63 -

 Number of Bitplanes

 "turned on" Playfield 1* Playfield 2*

 0 None None

 1 |1 |

 |__________|

 __________ __________

 2 |1 | |2 |

 |__________| |__________|

 __________ __________

 3 |1 ________|_ |2 |

 |_|3 | |__________|

 |__________|

 __________ __________

 4 |1 ________|_ |2 ________|_

 |_|3 | |_|4 |

 |__________| |__________|

 __________ __________

 5 |1 ________|_ |2 ________|_

 |_|3 ________|_ |_|4 |

 |_|5 | |__________|

 |__________|

 __________ __________

 6 |1 ________|_ |2 ________|_

 |_|3 ________|_ |_|4 ________|_

 |_|5 | |_|6 |

 |__________| |__________|

 *NOTE: Either playfield may be placed "in front of" or

 "behind" the other using the "swap-bit"

 Figure 3-13: How Bitplanes are assigned to duel playfields.

- 64 Playfield Hardware -

COLOR REGISTERS IN DUAL-PLAYFIELD MODE
When you are using dual playfields, the hardware interprets color numbers for playfield 1
from the bit combinations of bit-planes 1, 3, and 5. Bits from PLANE 5 have the highest
significance and form the most significant digit of the color register number. Bits from

PLANE O have the lowest significance. These bit combinations select the first eight color
registers from the color palette as shown in Table 3-10.

 Table 3-10: Playfield 1 Color Registers Low-resolution Mode

 PLAYFIELD 1

 Bit Color

 Combination Selected

 000 Transparent mode

 001 COLOR1

 010 COLOR2

 011 COLOR3

 100 COLOR4

 101 COLORS

 110 COLOR6

 111 COLOR7

The hardware interprets color numbers for playfield 2 from the bit combinations of bit-
planes 2, 4, and 6. Bits from PLANE 6 have the highest significance. Bits from PLANE 2
have the lowest significance. These bit combinations select the color registers from the
second eight colors in the color Table as shown in Table 3-11.

 Table 3 Playfield 2 Color Registers Low-resolution Mode

 PLAYFIELD 2

 Bit Color

 Combination Selected

 000 Transparent mode

 001 COLOR09

 010 COLOR10

 011 COLOR11

 100 COLOR12

 101 COLOR13

 110 COLOR14

 111 COLOR15

- Playfield Hardware 65 -

Combination 000 selects transparent mode, to show the color of whatever object (the
other playfield, a sprite, or the background color) may be "behind" the playfield.

Table 3-12 shows the color registers for high-resolution, dual-playfield mode.

 Table 3-12: Playfields 1 and 2 Color Registers- High-resolution Mode

 PLAYFIELD 1

 Bit Color

 Combination Selected

 00 Transparent mode

 01 COLOR1

 10 COLOR2

 11 COLOR3

 PLAYFIELD 2

 Bit Color

 Combination Selected

 00 Transparent mode

 01 COLOR09

 10 COLOR10

 11 COLOR11

DUAL-PLAYFIELD PRIORITY AND CONTROL
Either playfield 1 or 2 may have priority; that is, either one may be displayed in front of
the other. Playfield 1 normally has priority. The bit known as PF2PRI (bit 6) in register
BPLCON2 is used to control priority. When PF2PRI = 1, playfield 2 has priority over
playfield 1. When PF2PRI = 0, playfield 1 has priority.

You can also control the relative priority of playfields and sprites. Chapter 7, "System

Control Hardware" shows you how to control the priority of these objects.

You can control the two playfields separately as follows:

o They can have different-sized representations in memory, and different portions of each
one can be selected for display.

o They can be scrolled separately.

- 66 Playfield Hardware -

NOTE
You must take special care when scrolling one playfield and holding the other stationary.
When you are scrolling low-resolution playfields, you must fetch one word more than the
width of the playfield you are trying to scroll (two words more in high-resolution mode) in

order to provide some data to display, when the actual scrolling takes place. Only one
data-fetch start register and one data-fetch stop register are available, and these are
shared by both playfields. If you want to scroll one playfield and hold the other, you must
adjust the data-fetch start and data-fetch stop to handle the playfield being scrolled.
Then, you must adjust the modulo and the bit-plane pointers of the playfield that is not
being scrolled to maintain its position on the display. In low-resolution mode, you adjust
the pointers by -2 and the modulo by -2. In high-resolution mode, you adjust the pointers

by -4 and the modulo by -4.

ACTIVATING DUAL PLAY-FIELD MODE
Writing a 1 to bit 10 (called DBLPF) of the bit-plane control register BPLCON0 selects dual-
playfield mode. Selecting dual-playfield mode changes both the way the hardware groups
the bit-planes for color interpretation all odd-numbered bit-planes are grouped together
and all even-numbered bit-planes are grouped together, and the way hardware can move
the bit-planes on the screen.

DUAL PLAYFIELD SUMMARY
The steps for defining dual playfields are almost the same as those for defining the basic
playfield. Only in the following steps does the dual-playfield creation process differ from
that used for the basic playfield.

o Loading colors into the registers. Keep in mind that color registers 0-7 are used by
playfield 1 and registers 8 through 15 are used by playfield 2 (if there are three bit-planes
in each playfield).

o Building bit-planes. Recall that playfield 1 is formed from PLANES 1, 3, and 5 and
playfield 2 from PLANES 2, 4, and 6.

o Setting the modulo registers. Write the modulo to both BPLlMOD and BPL2MOD as you
will be using both odd- and even-numbered bit-planes.

These steps are added:

o Defining priority. If you want playfield 2 to have priority, set bit 6 (PF2PRI) in BPLCON2
to 1.

o Activating dual-playfield mode. Set bit 10 (DBLPF) in BPLCON0 to 1.

- Playfield Hardware 67 -

BIT-PLANES AND DISPLAY WINDOWS OF ALL SIZES

You have seen how to form single and dual playfields in which the playfield in memory is
the same size as the display window. This section shows you how to define and use a

playfield whose big picture in memory is larger than the display window, how to define
display windows that are larger or smaller than the normal playfield size, and how to
move the display window in the big picture.

WHEN THE BIG PICTURE IS LARGER THAN THE DISPLAY WINDOW
If you design a memory picture larger than the display window, you must choose which
part of it to display. Displaying a portion of a larger playfield differs in the following ways

from displaying the basic playfields described up to now:

o If the big picture in memory is larger than the display window, you must respecify the
modules. The modulo must be some value other than 0.

o You must allocate more memory for the larger memory picture.

SPECIFYING THE MODULO
For a memory picture wider than the display window, you need to respecify the modulo so
that the correct data words are fetched for each line of the display. As an example,
assume the display window is the standard 320 pixels wide, so 40 bytes are to be
displayed on each line. The big picture in memory, however, is exactly twice as wide as
the display window, or 80 bytes wide. Also, assume that you wish to display the left half
of the big picture. Figure 3-14 shows the relationship between the big picture and the

picture to be displayed.

- 68 Playfield Hardware -

 START START+78

 | Width of the Bit-Plane Defined in RAM |

 | | |

 | Width of defined | |

 | screen on which | |

 | bit-plane data is | |

 | to appear | |

 | | |

Figure 3-14: Memory Picture Larger than the Display

Because 40 bytes are to be fetched for each line, the data fetch for line 1 is as shown in
Figure 3-15.

Data for Line 1:

Location: START START+2 START+4 START+38

 Leftmost Next Word Next Word Last Display

 Display Word Word

 ^

Screen data fetch stops (DDFSTOP) for |

each horizontal line after the last word -----------------------|

on the line has been fetched.

Figure 3-15: Data Fetch for the First Line When Modulo = 40

At this point, BPLxPTH and BPLxPTL contain the value START+40. The modulo, which is
40, is added to the current value of the pointer so that when it begins the data fetch for
the next line, it fetches the data you intend for that line. The data fetch for line 2 is shown
in Figure 3-16.

- Playfield Hardware 69 -

Data for Line 2:

Location: START+80 START+82 START+84... START+118

 Leftmost Next Word Next Word Last Display

 Display Word Word

Figure 3-16: Data Fetch for the Second Line When Modulo = 40

To display the right half of the big picture, you set up a vertical blanking routine to start
the bit-plane pointers at location START+40 rather than START with the modulo remaining
at 40. The data layout is shown in Figures 3-17 and 3-18.

Data for Line 1:

Location START+40 START+42 START-44... START+78

 Leftmost Next Word Next Word Last Display

 Display Word Word

 Figure 3-17: Data Layout for First Line Right Half of Big Picture

Now, the bit-plane pointers contain the value START+80. The modulo (40) is added to the
pointers so that when they begin the data fetch for the second line, the correct data is
fetched.

Data for Line 2:

Location: START+120 START+122 START+124... START+158

 Leftmost Next Word Next Word Last Display

 Display Word Word

 Figure 3-18: Data Layout for Second Line Right Half of Big Picture

Remember, in high-resolution mode, you need to fetch twice as many bytes as in low-

resolution mode. For a normal-sized display, you fetch 80 bytes for each horizontal line
instead of 40.

- 70 Playfield Hardware -

SPECIFYING THE DATA FETCH
The data-fetch registers specify the beginning and end positions for data placement on
each horizontal line of the display. You specify data fetch in the same way as shown in the
section called "Forming a Basic Playfield."

MEMORY ALLOCATION
For larger memory pictures, you need to allocate more memory. Here is a formula for
calculating memory requirements in general:

bytes per line * lines in playfield * # of bit-planes

Thus, if the wide playfield described in this section is formed from two bit-planes, it
requires:

80 * 200 * 2 = 32,000 bytes of memory

Recall that this is the memory requirement for the playfield alone. You need more memory
for any sprites, animation, audio, or application programs you are using.

SELECTING THE DISPLAY WINDOW STARTING POSITION
The display window starting position is the horizontal and vertical co-ordinates of the
upper left-hand corner of the display window. One register, DIWSTRT, holds both the
horizontal and vertical coordinates, known as HSTART and VSTART. The eight bits
allocated to HSTART are assigned to the first 256 positions, counting from the leftmost
possible position. Thus, you can start the display window at any pixel position within this

range.

- Playfield Hardware 71 -

FULL SCREEN AREA

 0 255 361

 | | |

 | HSTART of DISPLAY | |

 | WINDOW occurs in | |

 | this region. | |

 | | |

 Figure 3-19: Display Window Horizontal Starting Position

The eight bits allocated to VSTART are assigned to the first 256 positions counting down
from the top of the display.

FULL SCREEN AREA

 --- 0

 | ^ |

 | | |

 | Vstart of display window |

 | occurs in this region |

 | __v_|___255

 | (NTSC)____________262

 | |

 Figure 3-20: Display Window Vertical Starting Position

Recall that you select the values for the starting position as if the display were in low-
resolution, non-interlaced mode. Keep in mind, though, that for interlaced mode the
display window should be an even number of lines in height to allow for equal-sized odd
and even fields.

To set the display window starting position, write the value for HSTART into bits 0 through
7 and the value for VSTART into bits 8 through 15 of DIWSTRT.

- 72 Playfield Hardware -

SELECTING THE STOPPING POSITION
The stopping position for the display window is the horizontal and vertical coordinates of
the lower right-hand corner of the display window. One register, DIWSTOP, contains both
coordinates, known as HSTOP and VSTOP.

See the notes in the "Forming a Basic Playfield" section for instructions on setting these
registers.

FULL SCREEN AREA

 0 255 361

 --

 | | |

 | | HSTOP of DISPLAY |

 | | WINDOW occurs in |

 | | this region. |

 | | |

 --

Figure 3-21: Display Window Horizontal Stopping Position

Select a value that represents the correct position in low-resolution, non-interlaced mode.

- Playfield Hardware 73 -

FULL SCREEN AREA
 --- 0

 | |

 | _________________________________|___128

 | Vstop of display |

 | window occurs in |

 | the region. | (NTSC)______|___262

 | | |

 | | |

 Figure 3-22: Display Window Vertical Stopping Position

To set the display window stopping position, write HSTOP into bits 0 through 7 and VSTOP
into bits 8 through 15 of DIWSTOP.

MAXIMUM DISPLAY WINDOW SIZE
The maximum size of a playfield display is determined by the maximum number of lines
and the maximum number of columns. Vertically, the restrictions are simple. No data can
be displayed in the vertical blanking area. The following Table shows the allowable vertical
display area.

 Table 3-13: Maximum Allowable Vertical Screen Video

 Vertical Blank NTSC PAL

 Start 0 0

 Stop $15 (21) $1D (29)

 NTSC NTSC PAL PAL

 Normal Interlaced Normal Interlaced

 Displayable lines

 of screen video 241 483 283 567

 =525-(21*2) =625-(29*2)

Horizontally, the situation is similar. Strictly speaking, the hardware sets a rightmost limit
to DDFSTOP of ($D8) and a leftmost limit to DDFSTRT of ($18). This gives a maximum of
25 words fetched in low-resolution mode. In high-resolution mode the maximum here is
49 words,

- 74 Playfield Hardware -

because the rightmost limit remains ($D8) and only one word is fetched at this limit.
However, horizontal blanking actually limits the displayable video to 368 low-resolution
pixels (23 words). These numbers are the same both for NTSC and for PAL. In addition, it
should be noted that using a data-fetch start earlier than ($38) will disable some sprites.

 Table 3-14: Maximum Allowable Horizontal Screen Video

 LoRes HiRes

 DDFSTRT (standard) $0038 $003C

 DDFSTOP (standard) $00D0 $00d4

 DDFSTRT (hw limits) $0018 $0018

 DDFSTOP (hw limits) $00D8 $00D8

 max words fetched 25 49

 max display pixels 368 (low res)

MOVING (SCROLLING) PLAYFIELDS

If you want a background display that moves, you can design a playfield larger than the
display window and scroll it. If you are using dual playfields, you can scroll them
separately.

In vertical scrolling, the playfield appears to move smoothly up or down on the screen. All
you need do for vertical scrolling is progressively increase or decrease the starting address
for the bit-plane pointers by the size of a horizontal line in the playfield. This has the
effect of showing a lower or higher part of the picture each field time.

In horizontal scrolling the playfield appears to move from right-to-left or left-to-right on
the screen. Horizontal scrolling works differently from vertical scrolling you must arrange
to fetch one more word of data for each display line and delay the display of this data.

For either type of scrolling, resetting of pointers or data-fetch registers can be handled by
the Copper during the vertical blanking interval.

VERTICAL SCROLLING
You can scroll a playfield upward or downward in the window. Each time you display the
playfield, the bit-plane pointers start at a progressively higher or lower place in the big
picture in memory. As the value of the pointer increases, more of the lower part of the
picture is shown and the picture appears to scroll upward. As the value of the pointer
decreases, more of the upper part

- Playfield Hardware 75 -

is shown and the picture scrolls downward. On an NTSC system, with a display that has
200 vertical lines, each step can be as little as 1/200th of the screen. In interlaced mode
each step could be 1/400th of the screen if clever manipulation of the pointers is used,
but it is recommended that scrolling be done two lines at a time to maintain the odd/even

field relationship. Using a PAL system with 256 lines on the display, the step can be
1/256th of a screen, or 1/512th of a screen in interlace.

Figure 3-23: Vertical Scrolling

To set up a playfield for vertical scrolling you need to form bit-planes tall enough to allow
for the amount of scrolling you want, write software to calculate the bit-plane pointers for
the scrolling you want, and allow for the Copper to use the resultant pointers.

Assume you wish to scroll a playfield upward one line at a time. To accomplish this, before
each field is displayed, the bit-plane pointers have to increase by enough to ensure that
the pointers begin one line lower each time. For a normal-sized, low-resolution display in

which the modulo is 0, the pointers would be incremented by 40 bytes each time.

- 76 Playfield Hardware -

HORIZONTAL SCROLLING
You can scroll playfields horizontally from left to right or right to left on the screen. You
control the speed of scrolling by specifying the amount of delay in pixels. Delay means
that an extra word of data is fetched but not immediately displayed. The extra word is

placed just to the left of the window's leftmost edge and before normal data fetch. As the
display shifts to the right, the bits in this extra word appear on-screen at the left-hand
side of the window as bits on the right-hand side disappear off-screen. For each pixel of
delay, the on-screen data shifts one pixel to the right each display field. The greater the
delay, the greater the speed of scrolling. You can have up to 15 pixels of delay. In high-
resolution mode, scrolling is in increments of 2 pixels. Figure 3-24 shows how the delay
and extra data fetch combine to cause the scrolling effect.

To set up a playfield for horizontal scrolling, you need to;

o Define bit-planes wide enough to allow for the scrolling you need.

o Set the data-fetch registers to correctly place each horizontal line, including the extra
word, on the screen.

o Set the delay bits.

o Set the modulo so that the bit-plane pointers begin at the correct word for each line.

o Write Copper instructions to handle the changes during the vertical blanking interval.

SPECIFYING DATA FETCH IN HORIZONTAL SCROLLING
The normal data-fetch start for non-scrolled displays is ($38). If horizontal scrolling is
desired, then the data fetch must start one word sooner (DDFSTRT = $0030).
Incidentally, is will disable sprite 7. DDFSTOP remains unchanged. Remember that the
settings of the data-fetch registers affect both playfields.

SPECIFYING THE MODULO IN HORIZONTAL SCROLLING
As always, the modulo is two counts less than the difference between the address of the
next word you want to fetch and the address of the last word that was fetched. As an
example for horizontal scrolling, let us assume a 40-byte display in an 80-byte "big
picture." Because horizontal scrolling requires a data fetch of two extra bytes, the data for
each line will be 42 bytes long.

- Playfield hardware 77 -

Figure 3-24: Horizontal Scrolling

- 78 playfield hardware -

 START START+38 START+78

 __

 | | |

 | Display | |

 | window | |

 | width | |

 | | |

 | | |

 | | |

 | <--------- Memory Picture Width -----------> |

 |______________________|_______________________|

Figure 3-25: Memory Picture Larger Than the Display Window

Data for Line 1:

 Location: START START+2 START+4... START+40

 Leftmost Next Word Next Word Last Display

 display word word

Figure 3-26: Data for Line 1 - Horizontal Scrolling

At this point, the bit-plane pointers contain the value START+42. Adding the modulo of 38

gives the correct starting point for the next line.

Data for Line 2:

 Location: START+80 START+82 START+84 START+120

 Leftmost Next Word Next Word Last Display

 Display Word word

Figure 3-27: Data for Line 2 Horizontal Scrolling

In the BPLxMOD registers you set the modulo for each bit-plane used.

- Playfield Hardware 79 -

SPECIFYING AMOUNT OF DELAY
The amount of delay in horizontal scrolling is controlled by bits 7-0 in BPLCON1. You set
the delay separately for each playfield; bits 3-0 for playfield 1 (bit-planes 1, 3, and 5) and
bits 7-4 for playfield 2 (bit-planes 2, 4, and 6).

NOTE
Always set all six bits, even if you have only one playfield. Set 3-0 and 7-4 to the same
value if you are using only one playfield.

The following example sets the horizontal scroll delay to 7 for both playfields.

 MOVE.W #$77,BPLCON1+CUSTOM

SCROLLED PLAYFIELD SUMMARY
The steps for defining a scrolled playfield are the same as those for defining the basic
playfield, except for the following steps:

o Defining the data fetch. Fetch one extra word per horizontal line and start it 16 pixels
before the normal (unscrolled) data-fetch start.

o Defining the modulo. The modulo is two counts less than when there is no scrolling.

These steps are added:

o For vertical scrolling, reset the bit-plane pointers for the amount of the scrolling

increment. Reset BPLxPTH and BPLxPTL during the vertical blanking interval.

o For horizontal scrolling, specify the delay. Set bits 7-0 in BPLCON1 for 0 to 15 bits of
delay.

- 80 Playfield Hardware -

ADVANCED TOPICS

This section describes features that are used less often or are optional.

INTERACTIONS AMONG PLAYFIELDS AND OTHER OBJECTS
Playfields share the display with sprites. Chapter 7, "System Control Hardware," shows
how playfields can be given different video display priorities relative to the sprites and
how playfields can collide with (overlap) the sprites or each other.

HOLD-AND-MODIFY MODE
This is a special mode that allows you to produce up to 4,096 colors on the screen at the

same time. Normally, as each value formed by the combination of bit-planes is selected,
the data contained in the selected color register is loaded into the color output circuit for
the pixel being written on the screen. Therefore, each pixel is colored by the contents of
the selected color register.

In hold-and-modify mode, however, the value in the color output circuitry is held, and one
of the three components of the color (red, green, or blue) is modified by bits coming from
certain preselected bit-planes. After modification, the pixel is written to the screen.

The hold-and-modify mode allows very fine gradients of color or shading to be produced
on the screen. For example, you might draw a set of 16 vases, each a different color,
using all 16 colors in the color palette. Then, for each case, you use hold-and-modify to
very finely shade or highlight or add a completely different color to each of the vases.
Note that a particular hold-and-modify pixel can only change one of the three color values

at a time. Thus, the effect has a limited control.

In hold and modify mode, you use all six bit-planes. Planes 5 and 6 are used to modify the
way bits from planes 1- 4 are treated, as follows:

o If the 6-5 bit combination from planes 6 and 5 for any given pixel is 00, normal color
selection procedure is followed. Thus, the bit combinations from planes 4-1, in that order
of significance, are used to choose one of 16 color registers (registers 0 - 15).

o If only five bit-planes are used, the data from the sixth plane is automatically supplied
with the value as 0.

o If the 6-5 bit combination is 01, the color of the pixel immediately to the left of this pixel
is duplicated and then modified. The bit-combinations from planes 4-1 are used to replace

the four "blue" bits in the corresponding color register.

- Playfield Hardware 81 -

o If the 6-5 bit combination is 10, the color of the pixel immediately to the left of this pixel
is duplicated and then modified. The bit-combinations from planes 4 -1 are used to
replace the four "red" bits.

o If the 6-5 bit combination is 11, the color of the pixel immediately to the left of this pixel
is duplicated and then modified. The bit-combinations from planes 4 -1 are used to
replace the four "green" bits.

Using hold-and-modify mode, it is possible to get by with defining only one color register,
which is COLOR0, the color of the background. You treat the entire screen as a
modification of that original color, according to the scheme above.

Bit 11 of register BPLCON0 selects hold-and-modify mode. The following bits in BPLCON0
must be set for hold-and-modify mode to be active:

o Bit HOMOD, bit 11, is 1.

o Bit DBLPF, bit 10, is 0 (single-playfield mode specified).

o Bit HIRES, bit 15, is 0 (low-resolution mode specified).

o Bits BPU2, BPUI, and BPU0 - bits 14, 13, and 12, are 101 or 110 (five or six bit-planes
active).

The following example code generates a six-bit-plane display with hold-and-modify mode

turned on. All 32 color registers are loaded with black to prove that the colors are being
generated by hold-and-modify. The equates are the usual and are not repeated here.

; First, set up the control registers.

;

 LEA CUSTOM,a0 ; Point a0 at custom chips

 MOVE.W #$6A00,BPLCON0(a0) ; Six bit-planes, hold-and-modify mode

 MOVE.W #0,BPLCON1(a0) ; Horizontal scroll = 0

 MOVE.W #0,BPL1MOD(a0) ; Modulo for odd bit-planes = 0

 MOVE.W #0,BPL2MOD(a0) ; Ditto for even bit-planes

 MOVE.W #$0038,DDFSTRT(a0) ; Set data-fetch start

 MOVE.W #$00D0,DDFSTOP(a0) ; Set data-fetch stop

 MOVE.W #$2C81,DIWSTRT(a0) ; Set display window start

 MOVE.W #$F4C1,DIWSTOP(a0) ; Set display window stop

;

;Set all color registers = black to prove that hold-and-modify mode is ;

;working

;

 MOVE.W #32,d0 ; Initialize counter

 LEA CUSTOM+COLOR00,a1 ; Point al at first color register

CREGLOOP:

 MOVE.W #$0000,(a1)+ ; Write black to a color register

 DBRA d0,CREGLOOP ; Decrement counter and loop till done

;

; Fill six bit-planes with an easily recognizable pattern.

;

; NOTE: This is just for example use. Normally these bit planes would

; need to be allocated from the system MEMF_CHIP memory pool.

;

- 82 Playfield Hardware -

 MOVE.W #2000,d0 ; 2000 longwords per bit-plane

 MOVE.L #$21000,a1 ; Point a1 at bit-plane 1

 MOVE.L #$23000,a2 ; Point a2 at bit-plane 2

 MOVE.L #$25000,a3 ; Point a3 at bit-plane 3

 MOVE.L #$27000,a4 ; Point a4 at bit-plane 4

 MOVE.L #$29000,a5 ; Point a5 at bit-plane 5

 MOVE.L #$2B000,a6 ; Point a6 at bit-plane 6

FPLLOOP:

 MOVE.L #$55555555,(a1)+ ; Fill bit-plane 1 with $55555555

 MOVE.L #$33333333,(a2)+ ; Fill bit-plane 2 with $33333333

 MOVE.L #$0F0F0F0F,(a3)+ ; Fill bit-plane 3 with $0F0F0F0F

 MOVE.L #$00FF00FF,(a4)+ ; Fill bit-plane 4 with $00FF00FF

 MOVE.L #$CF3CF3CF,(a5)+ ; Fill bit-plane 5 with $CF3CF3CF

 MOVE.L #$3CF3CF3C,(a6)+ ; Fill bit-plane 6 with $3CF3CF3C

 DBRA d0,FPLLOOP ; Decrement counter & loop till done

;

; Set up a Copper list at $20000.

;

; NOTE: As with the bit planes, the copper list location should be allocated

; from the system MEMF_CHIP memory pool.

;

 MOVE.L #$20000,a1 ; Point al at Copper list dest

 LEA COPPERL(pc),a2 ; Point a2 at Copper list image

CLOOP:

 MOVE.L (a2),(a1)+ ; Move a long word

 CMPI.L #$FFFFFFFE,(a2)+ ; Check for end of Copper list

 BNE CLOOP ; Loop until entire Cop list moved

;

;Point Copper at Copper list

;

 MOVE.L #$20000,COP1LCH(a0) ; Load Copper jump register

 MOVE.W COPJMP1(a0),d0 ; Force load into Copper P.C.

;

; Start DMA.

;

 MOVE.W #$8380,DMACON(a0) ; Enable bit-plane and Copper DMA

 BRAnext stuff to do

;

; Copper list for six bit-planes. Bit-plane 1 is at $21000; 2 is at $23000;

; 3 is at $25000; 4 is at $27000; 5 is at $29000; 6 is at $2B000.

;

; NOTE: These bit-plane addresses are for example purposes only.

; See note above.

;

COPPERL:

 DC.W BPL1PTH,$0002 ; Bit-plane 1 pointer = $21000

 DC.W BPL1PTL,$1000

 DC.W BPL2PTH,$0002 ; Bit-plane 2 pointer = $23000

 DC.W BPL2PTL,$3000

 DC.W BPL3PTH,$0002 ; Bit-plane 3 pointer = $25000

 DC.W BPL3PTL,$5000

 DC.W BPL4PTH,$0002 ; Bit-plane 4 pointer = $27000

 DC.W BPL4PTL,$7000

 DC.W BPL5PTH,$0002 ; Bit-plane 5 pointer = $29000

 DC.W BPL5PTL,$9000

 DC.W BPL6PTH,$0002 ; Bit-plane 6 pointer = $2B000

 DC.W BPL6PTL,$B000

 DC.W $FFFF,$FFFE ; Wait or the impossible, i.e., quit

- Playfield Hardware 83 -

FORMING A DISPLAY WITH SEVERAL DIFFERENT PLAYFIELDS
The graphics library provides the ability to split the screen into several "ViewPorts", each
with its own colors and resolutions. See the Amiga ROM Kernel Manual for more
information.

USING AN EXTERNAL VIDEO SOURCE
An optional board that provides genlock is available for the Amiga. Genlock allows you to
bring in your graphics display from an external video source (such as a VCR, camera, or
laser disk player). When you use genlock, the background color is replaced by the display
from this external video source. For more information, see the instructions furnished with
the optional board.

SUMMARY OF PLAYFIELD REGISTERS
This section summarizes the registers used in this chapter and the meaning of their bit
settings. The color registers are summarized in the next section. See Appendix A for a
summary of all registers.

BPLCON0 - Bit Plane Control

NOTE

Bits in this register cannot be independently set.

 Bit 0 - unused

 Bit 1 - ERSY (external synchronization enable)

 1 = External synchronization enabled (allows genlock synchronization

 to occur)

 0 = External synchronization disabled

 Bit 2 - LACE (interlace enable)

 1 = interlaced mode enabled

 0 = non-interlaced mode enabled

 Bit 3 - LPEN (light pen enable)

 Bits 4-7 not used (make 0)

- 84 Playfield Hardware -

 Bit 8 - GAUD (genlock audio enable)

 1 = Genlock audio enabled

 0 = Genlock audio disabled (in blanking periods, this bit goes out

 on the pixel switch

 Bit 9 - COLOR ON (color enable)

 1 = composite video color-burst enabled

 0 = composite video color-burst disabled

 Bit 10 - DBLPF (double-playfield enable)

 1 = dual playfields enabled

 0 = single playfield enabled

 Bit 11 - HOMOD (hold-and-modify enable)

 1 = hold-and-modify enabled

 0 = hold-and-modify disabled

 Bits 14, 13,12 - BPU2, BPU1, BPU0

 Number of bit-planes used.

 000 = only a background color

 001 = 1 bit-plane, PLANE 1

 010 = 2 bit-planes, PLANES 1 and 2

 011 = 3 bit-planes, PLANES 1- 3

 100 = 4 bit-planes, PLANES 1- 4

 101 = 5 bit-planes, PLANES 1- 5

 110 = 6 bit-planes, PLANES 1- 6

 111 not used

 Bit 15 - HIRES (high-resolution enable)

 1 = high-resolution mode

 0 = low-resolution mode

BPLCON1 - Bit-plane Control

 Bits 3-0 - PF1H(3-0)

 Playfield 1 delay

 Bits 7-4 - PF2H(3-0)

 Playfield 2 delay

 Bits 15-8 not used

- Playfield Hardware 85 -

BPLCON2 - Bit-plane Control

 Bit 6 - PF2PRI

 1 = Playfield 2 has priority

 0 = Playfield 1 has priority

 Bits 0-5 Playfield sprite priority

 Bits 7-15 not used

DDFSTRT - Data-fetch Start

 (Beginning position for data fetch)

 Bits 15-8 - not used

 Bits 7-2 - pixel position H8-H3

 Bits 1-0 only respected in HiRes Mode.

 Bits 1-0 - not used

DDFSTOP - Data-fetch Stop

 (Ending position for data fetch)

 Bits 15-8 - not used

 Bits 7-2 - pixel position H8-H3

 Bit H3 only respected in HiRes Mode.

 Bits 1-0 - not used

BPLxPTH - Bit-plane Pointer

 (Bit-plane pointer high word, where x is the bit-plane number)

BPLxPTL - Bit-plane Pointer

 (Bit-plane pointer low word, where x is the bit-plane number)

DIWSTRT - Display Window Start

 (Starting vertical and horizontal coordinates)

 Bits 15-8 - VSTART (V7-V0)

 Bits 7-0 - HSTART (H7-H0)

- 86 Playfield Hardware -

DIWSTOP - Display Window Stop

 (Ending vertical and horizontal coordinates)

 Bits 15-8 - VSTOP (V7-V0)

 Bits 7-0 - HSTOP (H7-H0)

BPL1MOD - Bit-plane Modulo

 (Odd-numbered bit-planes, playfield 1)

BPL2MOD - Bit-plane Modulo

 (Even-numbered bit-planes, playfield 2)

SUMMARY OF COLOR SELECTION

This section contains summaries of playfield color selection including color register
contents, example colors, and the differences in color selection in high-resolution and low-
resolution modes.

COLOR REGISTER CONTENTS
Table 3-15 shows the contents of each color register. All color registers are write-only.

 Table 3-15: Color register contents

 Bits Contents

 15-12 (Unused - set to 0)

 11- 8 Red

 7- 4 Green

 3- 0 Blue

- Playfield Hardware 87 -

SOME SAMPLE COLOR REGISTER CONTENTS
Table 3-16 shows a variety of colors and the hexadecimal values to load into the color
registers for these colors.

Table 3-16: Some Register Values and Resulting Colors

 Value Color Value Color

 $FFF White $1FB Light aqua

 $D00 Brick red $6FE Sky blue

 $F00 Red $6CE Light blue

 $F80 Red-orange $00F Blue

 $F90 Orange $61F Bright blue

 $FB0 Golden orange $06D Dark blue

 $FD0 Cadmium yellow $91F Purple

 $FF0 Lemon yellow $ClF Violet

 $BF0 Lime green $FlF Magenta

 $8E0 Light green $FAC Pink

 $0F0 Green $DB9 Tan

 $2C0 Dark green $C80 Brown

 $0B1 Forest green $A87 Dark brown

 $0BB Blue green $CCC Light grey

 $0DB Aqua $999 Medium grey

 $000 Black

COLOR SELECTION IN LOW-RESOLUTION MODE
Table 3-17 shows playfield color selection in low-resolution mode. If the bit combinations

from the playfields are as shown, the color is taken from the color register number
indicated.

- 88 Playfield Hardware -

Table 3-17: Low-resolution Color Selection

 Singe Playfield Dual Playfields

 Normal Mode Hold-and-modify Mode Color Register

 (Bit-planes 5,4,3,2,1) (Bit-planes 4,3,2,1) Number

 Playfield 1

 Bit-planes 5,3,1

 00000 0000 000 0 *

 00001 0001 001 1

 00010 0010 010 2

 00011 0011 011 3

 00100 0100 100 4

 00101 0101 101 5

 00110 0100 110 6

 00111 0111 111 7

 Playfield 2

 Bit-planes 6,4,2

 01000 1000 000 ** 8

 01001 1001 001 9

 01010 1010 010 10

 01011 1011 011 11

 01100 1100 100 12

 01101 1101 101 13

 01110 1110 110 14

 01111 1111 111 15

 10000 | | 16

 10001 | | 17

 10010 | | 18

 10011 | | 19

 10100 NOT NOT 20

 10101 USED USED 21

 10110 IN IN 22

 10111 THIS THIS 23

 11000 MODE MODE 24

 11001 | | 25

 11010 | | 26

 11011 | | 27

 11100 | | 28

 11101 | | 29

 11110 | | 30

 11111 | | 31

* Color register 0 always defines the background color.

** Selects "transparent" mode instead of selecting color register 8.

- Playfield Hardware 89 -

COLOR SELECTION IN HOLD-AND-MODIFY MODE
In hold-and-modify mode, the color register contents are changed as shown in Table 3-
18. This mode is in effect only if bit 10 of BPLCON0 = 1.

 Table 3-18: Color Selection in Hold-and-modify Mode

 Bitplane 6 Bitplane 5 Result

 0 0 Normal operation (use color register itself)

 0 1 Hold green and red B = Bit-plane 4-1 contents

 0 Hold green and blue R = Bit-plane 4-1 contents

 Hold blue and red G = Bit-plane 4-1 contents

COLOR SELECTION IN HIGH-RESOLUTION MODE
Table 3-19 shows playfield color selection in high-resolution mode. If the bit-combinations
from the playfields are as shown, the color is taken from the color register number
indicated.

- 90 Playfield Hardware -

 Table 3-19 High-resolution Color Selection

 Single Dual Color

 Playfield Playfields Register

 Bit-planes 4,3,2,1 Number

 Playfield 1

 Bit-planes 3,1

 0000 00 * 0 **

 0001 01 1

 0010 10 2

 0011 11 3

 0100 | 4

 0101 NOT USED 5

 0110 IN THIS MODE 6

 0111 | 7

 Playfield 2

 Bit-planes 4.2

 1000 00 * 8

 1001 01 9

 1010 10 10

 1011 11 11

 1100 | 12

 1101 NOT USED 13

 1110 IN THIS MODE 14

 1111 | 15

* Selects "transparent" mode.

** Color register 0 always defines the background color.

- Playfield Hardware 91 -

- 92 Playfield Hardware -

CHAPTER 4

SPRITE HARDWARE

INTRODUCTION

Sprites are hardware objects that are created and moved independently of the playfield
display and independently of each other. Together with playfields, sprites form the
graphics display of the Amiga. You can create more complex animation effects by using
the blitter, which is described in the chapter called "Blitter Hardware." Sprites are

produced on-screen by eight special-purpose sprite DMA channels. Basic sprites are 16
pixels wide and any number of lines high. You can choose from three colors for a sprite's
pixels, and a pixel may also be transparent,

Showing any object behind the sprite. For larger or more complex objects, or for more
color choices, you can combine sprites.

- Sprite Hardware 93 -

Sprite DMA channels can be reused several times within the same display field. Thus, you
are not limited to having only eight sprites on the screen at the same time.

ABOUT THIS CHAPTER

This chapter discusses the following topics:

o Defining the size, shape, color, and screen position of sprites.

o Displaying and moving sprites.

o Combining sprites for more complex images, additional width, or additional colors.

o Reusing a sprite DMA channel multiple times within a display field to create more than
eight sprites on the screen at one time.

FORMING A SPRITE

To form a sprite, you must first define it and then create a formal data structure in
memory. You define a sprite by specifying its characteristics:

o On-screen width of up to 16 pixels.

o Unlimited height.

o Any shape.

o A combination of three colors, plus transparent.

o Any position on the screen.

SCREEN POSITION
A sprite's screen position is defined as a set of X,Y coordinates. Position (0,0), where X =
0 and Y = 0, is the upper left-hand corner of the display. You define a sprite's location by
specifying the coordinates of its upper left-hand pixel. Sprite position is always defined as
though the display modes were low-resolution and non-interlaced. The X,Y coordinate
system and definition of a sprite's position are graphically represented in Figure 4-1.
Notice that because of display overscan, position (0,0) (that is, X = 0, Y = 0) is not
normally in a viewable region of the screen.

- 94 Sprite Hardware -

 (0,0)

 \ Visible screen area

 _______________________ /

 | | /

 | ____________|____________/

 | | Y |

 | | | |

 | | |______ |

 |-------X--------| /\ | |

 | | |__\/__| |

 | | |

 | | |

 Figure 4-1: (Defining Sprite On-screen Position)

The amount of viewable area is also affected by the size of the playfield display window
(defined by the values in DDFSTRT, DDFSTOP, DIWSTRT, DIWSTOP, etc.). See the
"Playfield Hardware" chapter for more information about overscan and display windows.

HORIZONTAL POSITION
A sprite's horizontal position (X value) can be at any pixel on the screen from 0 to 447. To
be visible, however, an object must be within the boundaries of the playfield display
window. In the examples in this chapter, a window with horizontal positions from pixel 64
to pixel 383 is used (that is, each line is 320 pixels long). Larger or smaller windows can
be defined as required, but it is recommended that you read the "Playfield Hardware"

chapter before attempting to do so. A larger area is actually scanned by the video beam
but is not usually visible on the screen.

If you specify an X value for a sprite that takes it outside the display window, then part or
all of the sprite may not appear on the screen. This is sometimes desirable; such a sprite
is said to be "clipped. "

To make a sprite appear in its correct on-screen horizontal position in the display window,
simply add its left offset to the desired X value. In the example given above, this would
involve adding 64 to the X value. For example, to make the upper leftmost pixel of a
sprite appear at a position 94 pixels from the left edge of the screen, you would perform
this calculation:

Desired X position + horizontal-offset of display window = 94 + 64 = 158

- Sprite Hardware 95 -

Thus, 158 becomes the X value, which will be written into the data structure.

NOTE
The X position represents the location of the very first (leftmost) pixel in the full 16-bit-

wide sprite. This is always the case, even if the leftmost pixels are specified as
transparent and do not appear on the screen.

If the sprite shown in Figure 4-2 were located at an X value of 158, the actual image
would begin on-screen four pixels later at 162. The first four pixels in this sprite are
transparent and allow the background to show through.

Figure 4-2: (Position of Sprites)

VERTICAL POSITION
You can select any position from line 0 to line 262 for the topmost edge of the sprite. In
the examples in this chapter, an NTSC window with vertical positions from line 44 to line
243 is used. This allows the normal display height of 200 lines in non-interlaced mode. If
you specify a vertical position (Y value) of less than 44 (i.e., above the top of the display
window) the top edge of the sprite may not appear on screen.

To make a sprite appear in its correct on-screen vertical position, add the Y value to the
desired position. Using the above numbers, add 44 to the desired Y position. For example,
to make the upper leftmost pixel appear 25 lines below the top edge of the screen,
perform this calculation:

Desired Y position + vertical-offset of the display window = 25 + 44 = 69

Thus, 69 is the Y value you will write into the data structure.

 - 96 Sprite Hardware -

CLIPPED SPRITES
As noted above, sprites will be partially or totally clipped if they pass across or beyond the
boundaries of the display window. The values of 64 (horizontal) and 44 (vertical) are
"normal" for a centred display on a standard NTSC video monitor. See Chapter 3,

"Playfield Hardware", for more information on display offsets. Information on PAL displays
will be found there. If you choose other values to establish your display window, your
sprites will be clipped accordingly.

SIZE OF SPRITES
Sprites are 16 pixels wide and can be almost any height you wish... as short as one line or
taller than the screen. You would probably move a very tall sprite vertically to display a

portion of it at a time.

Sprite size is based on a pixel that is 1/320th of a screen's width, 1/200th of a NTSC
screen's height, or 1/256 of a PAL screen's height. This pixel size corresponds to the low-
resolution and non-interlaced modes of the normal full-size playfield. Sprites, however,
are independent of playfield modes of display, so changing the resolution or interlace
mode of the playfield has no effect on the size or resolution of a sprite.

SHAPE OF SPRITES
A sprite can have any shape that will fit within the 16-pixel width. You define a sprite's
shape by specifying which pixels actually appear in each of the sprite's locations. For
example, Figures 4-3 and 4-4 show a spaceship whose shape is marked by Xs. The first
Figure shows only the spaceship as you might sketch it out on graph paper. The second
Figure shows the spaceship within the 16-pixel width. The 0s around the spaceship mark

the part of the sprite not covered by the spaceship and transparent when displayed.

 x x

 x x x x x

 x x x x x x x x x x

 x x x x x x x x x x

 x x x x x x

 x x

 Figure 4-3: Shape of Spaceship

- Sprite Hardware 97 -

 o o o o x x o o o o o o o o o o

 o o x x x x x x o o o o o o o o

 x x x x x x x x x x o o o o o o

 x x x x x x x x x x o o o o o o

 o o x x x x x x o o o o o o o o

 o o o o x x o o o o o o o o o o

 Figure 4-4: Sprite with Spaceship Shape Defined

In this example, the widest part of the shape is ten pixels and the shape is shifted to the
left of the sprite. Whenever the shape is narrower than the sprite, you can control which
part of the sprite is used to define the shape. This particular shape could also start at any
of the pixels from 2-7 instead of pixel 1.

SPRITE COLOR
When sprites are used individually (that is, not "attached" as described under "Attached
Sprites" later), each pixel can be one of three colors or transparent. Colors are selected in
much the same manner as playfield colors.

Figure 4-5 shows how the color of each pixel in a sprite is determined.

- 98 Sprite Hardware -

Figure 4-5: (Sprite Color Definition)

The 0s and 1s in the two data words that define each line of a sprite in the data structure
form a binary number. This binary number points to one of the four color registers
assigned to that particular sprite DMA channel. The eight sprites use system color
registers 16 - 31. For purposes of color selection, the eight sprites are organized into pairs
and each pair uses four of the color registers as shown in Figure 4-6.

NOTE
The color value of the first register in each group of four registers is ignored by sprites.
When the sprite bits select this register, the "transparent" value is used.

- Sprite Hardware 99 -

Codes 01,10,or 11 select one of three possible registers from the normal color register
from the normal color register group, from which the actual color data is taken.

 COLOR REGISTER SET

 __ | Unused | 16

 | 00 |_________________________| \

 Sprite 0 or 1 | 01 |_________________________| \

 | 10 |_________________________| \

 |__ 11 |_________________________| \

 __ | Unused | 20 \

 | 00 |_________________________| \ \

 Sprite 2 or 3 | 01 |_________________________| \ \

 | 10 |_________________________| \ \

 |__ 11 |_________________________| \ \

 __ | Unused | 24 ---------> Yields

 | 00 |_________________________| / / Trans-

 Sprite 4 or 5 | 01 |_________________________| / / parent

 | 10 |_________________________| / /

 |__ 11 |_________________________| / /

 __ | Unused | 28 /

 | 00 |_________________________| /

 Sprite 6 or 7 | 01 |_________________________| /

 | 10 |_________________________| /

 |__ 11 |_________________________| 31 /

 Figure 4-6: (Color Register Assignments)

If you require certain colors in a sprite, you will want to load the sprite's color registers
with those colors. The "Playfield Hardware" chapter contains instructions on loading color
registers.

The binary number 00 is special in this color scheme. A pixel whose value is 00 becomes

transparent and shows the color of any other sprite or playfield that has lower video
priority. An object with low priority appears "behind" an object with higher priority. Each
sprite has a fixed video priority with respect to all the other sprites. You can vary the
priority between sprites and playfields. (See Chapter 7, "System Control Hardware," for
more information about sprite priority.)

- 100 Sprite Hardware -

DESIGNING A SPRITE
For design purposes, it is convenient to lay out the sprite on paper first. You can show
the desired colors as numbers from 0 to 3. For example, the spaceship shown above
might look like this:

 0000122332210000

 0001223333221000

 0012223333222100

 0001223333221000

 0000122332210000

The next step is to convert the numbers 0-3 into binary numbers, which will be used to

build the color descriptor words of the sprite data structure. The section below shows how
to do this.

BUILDING THE DATA STRUCTURE
After defining the sprite, you need to build its data structure, which is a series of 16-bit
words in a contiguous memory area. Some of the words contain position and control
information and some contain color descriptions. To create a sprite's data structure, you

need to:

o Write the horizontal and vertical position of the sprite into the first control word.

o Write the vertical stopping position into the second control word.

o Translate the decimal color numbers 0 - 3 in your sprite grid picture into binary color

numbers. Use the binary values to build color descriptor (data) words and write these
words into the data structure.

o Write the control words that indicate the end of the sprite data structure.

NOTE
Sprite data, like all other data accessed by the custom chips, must be loaded into Chip

RAM. Be sure all of your sprite data structures are word aligned in Chip Memory.

Table 4-1 shows a sprite data structure with the memory location and function of each
word:

- Sprite Hardware 101 -

 Table 4-1: Sprite Data Structure

 Memory

 Location 16-bit Word Function

 N Sprite control word 1 Vertical and horizontal start

 position

 N+1 Sprite control word 2 Vertical stop position

 N+2 Color descriptor low word Color bits for line 1

 N+3 Color descriptor high word Color bits for line 1

 N+4 Color descriptor low word Color bits for line 2

 N+5 Color descriptor high word Color bits for line 2

 .

 .

 .

 End-of-data words Two words indicating

 the next usage of this sprite

All memory addresses for sprites are word addresses. You will need enough contiguous
memory to provide room for two words for the control information, two words for each
horizontal line in the sprite, and two end-of-data words.

Because this data structure must be accessible by the special-purpose chips, you must
ensure that this data is located within chip memory.

Figure 4-7 shows how the data structure relates to the sprite.

- 102 Sprite Hardware -

Figure 4-7 PART ONE: (Data Structure Layout)

Figure 4-7 PART TWO: (Data Structure Layout)

 /|\ <------------- 16 Bits ----------->

 | _________________________________----\ _ Each group of words

 | | | | / defines one vertical

 | | VSTART, HSTART | | / usage of a sprite.

 | |_________________________________| | / Contains starting

 | | |/ location & physical

 I | VSTOP, control bits | | appearance of this

 N |_________________________________| | sprite image.

 C _________________________________ ___|___

 R | | | |

 E | Low word of data, line 1 | | |

 A |_________________________________| | |

 S | | | |\

 I | High word of data, line 1 | | | \

 N |_________________________________| | | _ Pairs of words

 G _____ | | containing color

 _____ Data describing central | | information for

 A _____ lines of this sprite. | | pixel lines.

 D _________________________________ | |

 D | | | |

 R | low word of data, last line | | |

 E |_________________________________| | |

 S | | | |

 S | High word of data, last line | | |

 E |_________________________________|___|___|

 S ____|

 | | |\

 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \

 | |_________________________________| _ Last word pair contains

 | _________________________________ all zeros if this sprite

 | | | processor is to be used

 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | only once vertically in

 \|/ |_________________________________| the display frame.

 V

- Sprite Hardware 103 -

SPRITE CONTROL WORD 1: SPRxPOS
This word contains the vertical (VSTART) and horizontal (HSTART) starting position for the
sprite. This is where the topmost line of the sprite will be positioned.

 Bits 15-8 contain the low 8 bits of VSTART

 Bits 7-0 contain the high 8 bits of HSTART

SPRITE CONTROL WORD 2: SPRxCTL
This word contains the vertical stopping position of the sprite on the screen (i.e., the line
AFTER the last displayed row of the sprite). It also contains some data having to do with
sprite attachment, which is described later on.

 SPRxCTL

 Bits 15-8 The low eight bits of VSTOP

 Bit 7 (Used in attachment)

 Bits 6-3 Unused (make zero)

 Bit 2 The VSTART high bit

 Bit 1 The VSTOP high bit

 Bit 0 The HSTART low bit

The value (VSTOP - VSTART) defines how many scan lines high the sprite will
be when it is displayed.

SPRITE COLOR DESCRIPTOR WORDS
It takes two color descriptor words to describe each horizontal line of a sprite; the high-

order word and the low-order word. To calculate how many color descriptor words you
need, multiply the height of the sprite in lines by 2. The bits in the high-order color
descriptor word contribute the left most digit of the binary color selector number for each
pixel; the low-order word contributes the rightmost digit.

- 104 Sprite Hardware -

To form the color descriptor words, you first need to form a picture of the sprite, showing
the color of each pixel as a number from 0 - 3. Each number represents one of the colors
in the sprite's color registers. For example, here is the spaceship sprite again:

 0000122332210000

 0001223333221000

 0012223333222100

 0001223333221000

 0000122332210000

Next, you translate each of the numbers in this picture into a binary number. The first line
in binary is shown below. The binary numbers are represented vertically with the low digit

in the top line and the high digit right below it. This is how the two color descriptor words
for each sprite line are written in memory.

 0000100110010000 <---LowSpriteWord

 0000011111100000 <---HighSpriteWord

The first line above becomes the color descriptor low word for line 1 of the sprite. The
second line becomes the color descriptor high word. In this fashion, you translate each
line in the sprite into binary 0s and 1s. See Figure 4-7. Each of the binary numbers
formed by the combination of the two data words for each line refers to a specific color
register in that particular sprite channel's segment of the color Table. Sprite channel 0, for
example, takes its colors from registers 17 - 19. The binary numbers corresponding to the
color registers for sprite DMA channel 0 are shown in Table 4-2.

 Table 4-2: Sprite Color Registers

 BINARY NUMBER COLOR REGISTER NUMBER

 00 Transparent

 01 17

 10 18

 11 19

Recall that binary 00 always means transparent and never refers to a color except
background.

END-OF-DATA WORDS
When the vertical position of the beam counter is equal to the VSTOP value in the sprite
control words, the next two words fetched from the sprite data structure are written into
the sprite control registers instead of being sent to the color registers. These two words
are interpreted by the

- Sprite Hardware 105 -

hardware in the same manner as the original words that were first loaded into the control
registers. If the VSTART value contained in these words is lower than the current beam
position, this sprite will not be reused in this display field. For consistency, the value 0
should be used for both words when ending the usage of a sprite. Sprite reuse is

discussed later.

The following data structure is for the spaceship sprite. It will be located at V = 65 and H
= 128 on the normally visible part of the screen.

SPRITE:

 DC.W $6D60, $7200 ;VSTART, HSTART, VSTOP

 DC.W $0990, $07E0 ;First pair of descriptor words

 DC.W $13C8, $0FF0

 DC.W $23C4, $1FF8

 DC.W $13C8, $0FF0

 DC.W $0990, $07E0

 DC.W $0000, $0000 ;End of sprite data

DISPLAYING A SPRITE

After building the data structure, you need to tell the system to display it. This section
describes the display of sprites in "automatic" mode. In this mode, once the sprite DMA
channel begins to retrieve and display the data, the display continues until the VSTOP
position is reached. Manual mode is described later on in this chapter.

The following steps are used in displaying the sprite:

1. Decide which of the eight sprite DMA channels to use (making certain that the chosen
channel is available).

2. Set the sprite pointers to tell the system where to find the sprite data.

3. Turn on sprite direct memory access if it is not already on.

4. For each subsequent display field, during the vertical blanking interval, rewrite the
sprite pointers.

CAUTION
If sprite DMA is turned off while a sprite is being displayed (that is, after VSTART but
before VSTOP), the system will continue to display the line of sprite data that was most
recently fetched. This causes a vertical bar to appear on the screen. It is recommended
that sprite DMA be turned off only during vertical blanking or during some portion of the
display where you are sure that no sprite is being displayed.

- 106 Sprite hardware -

SELECTING A DMA CHANNEL AND SETTING THE POINTERS
In deciding which DMA channel to use, you should take into consideration the colors
assigned to the sprite and the sprite's video priority.

The sprite DMA channel uses two pointers to read in sprite data and control words. During
the vertical blanking interval before the first display of the sprite, you need to write the
sprite's memory address into these pointers. The pointers for each sprite are called
SPRxPTH and SPRxPTL, where "x" is the number of the sprite DMA channel. SPRxPTH
contains the high three bits of the memory address of the first word in ,the sprite and
SPRxPTL contains the low sixteen bits. The least significant bit of SPRxPTL is ignored, as
sprite data must be word aligned. Thus, only fifteen bits of SPRxPTL are used. As usual,

you can write a long word into SPRxPTH.

In the following example the processor initializes the data pointers for sprite 0. Normally,
this is done by the Copper. The sprite is at address $20000.

 MOVE.L #$20000,SPR0PTH+CUSTOM ;Write S20000 to sprite 0 pointer...

These pointers are dynamic; they are incremented by the sprite DMA channel to point first
to the control words, then to the data words, and finally to the end-of-data words. After
reading in the sprite control information and storing it in other registers, they proceed to
read in the color descriptor words. The color descriptor words are stored in sprite data
registers, which are used by the sprite DMA channel to display the data on screen. For
more information about how the sprite DMA channels handle the display, see the
"Hardware Details" section below.

RESETTING THE ADDRESS POINTERS
For one single display field, the system will automatically read the data structure and
produce the sprite on-screen in the colors that are specified in the sprite's color registers.
If you want the sprite to be displayed in subsequent display fields, you must rewrite the
contents of the sprite pointers during each vertical blanking interval. This is necessary
because during the display field, the pointers are incremented to point to the data which is

being fetched as the screen display progresses.

The rewrite becomes part of the vertical blanking routine, which can be handled by
instructions in the Copper lists.

- Sprite Hardware 107 -

SPRITE DISPLAY EXAMPLE
This example displays the spaceship sprite at location V = 65, H = 128. Remember to
include the file "hw_examples.i", located in Appendix J.

; First, we set up a single bit-plane.

;

 LEA CUSTOM,a0 ; Point a0 at custom chips

 MOVE.W #$1200,BPLCON0(a0) ; 1 bit-plane color is on

 MOVE.W #$0000,BPL1MOD(a0) ; Modulo = 0

 MOVE.W #$0000,BPLCON1(a0) ; Horizontal scroll value = 0

 MOVE.W #$0024,BPLCON2(a0) ; Sprites have priority over playfields

 MOVE.W #$0038,DDFSTRT(a0) ; Set data-fetch alert

 MOVE.W #$00D0,DDFSTOP(a0) ; Set data-fetch stop

; Display window definitions.

 MOVE.W #$2C81,DIWSTRT(a0) ; Set display window start

 ; Vertical start in high byte.

 ; Horizontal start * 2 in low byte.

 MOVE.W #$F4C1,DIWSTOP(a0) ; Set display window stop

 ; Vertical stop in high byte.

 ; Horizontal stop * 2 in low byte.

;

; Set up color registers.

;

 MOVE.W #$0008,COLOR00(a0) ; Background color = dark blue

 MOVE.W #$0000,COLOR01(a0) ; Foreground color = black

 MOVE.W #$0FF0,COLOR17(a0) ; Color 17 = yellow

 MOVE.W #$00FF,COLOR18(a0) ; Color 18 = cyan

 MOVE.W #$0FOF,COLORl9(a0) ; Color 19 = magenta

;

; Move Copper list to $20000.

;

 MOVE.L #$20000,a1 ; Point A1 at Copper list destination

 LEA COPPERL(pc),a2 ; Point A2 at Copper list source

CLOOP:

 MOVE.L (a2),(a1)+ ; Move a long word

 CMP.L #$FFFFFFFE,(a2)+ ; Check for end of list

 BNE CLOOP ; Loop until entire list is moved

;

; Move sprite to $25000.

;

 MOVE.L #$25000,a1 ; Point A1 at sprite destination

 LEA SPRITE(pc),a2 ; Point A2 at sprite source

SPRLOOP:

 MOVE.L (a2),(a1)+ ; Move a long word

 CMP.L #$00000000,(a2)+ ; Check for end of sprite

 BNE SPRLOOP ; Loop until entire sprite is moved

;

; Now we write a dummy sprite to $30000, since all eight sprites are

; activated

; at the same time and we're only going to use one. The remaining sprites

; will point to this dummy sprite data.

;

 MOVE.L #$00000000,$30000 ; Write it

;

; Point Copper at Copper list.

- 108 Sprite Hardware -

;

 MOVE.L #$20000,COP1LC(a0)

;

; Fill bit-plane with $FFFFFFFF.

;

 MOVE.L #$21000,a1 ; Point A1 at bit-plane

 MOVE.W #l999,d0 ; 2000-1(for dbf) long words = 8000 bytes

FLOOP

 MOVE.L #$FFFFFFFF,(al)+ ; Move a long word of $FFFFFFFF

 DBF d0,FLOOP ; Decrement, repeat until false.

;

; Start DMA.

;

 MOVE.W d0,COPJMP1(a0) ; Force load into Copper

 ; program counter

 MOVE.W #$83A0,DMACON(a0) ; Bit-plane, Copper, and sprite DMA

 RTS ; ..return to rest of program

;

; This is a Copper list for one bit-plane, and 8 sprites.

; The bit-plane lives at $21000.

; Sprite 0 lives at $25000; all others live at $30000 (the dummy sprite).

;

COPPERL:

 DC.W BPL1PTH,$0002 ; Bit plane 1 pointer = $21000

 DC.W BPL1PTL,$1000

 DC.W SPR0PTH,$0002 ; Sprite 0 pointer = $25000

 DC.W SPR0PTL,$5000

 DC.W SPR1PTH,$0003 ; Sprite 1 pointer = $30000

 DC.W SPR1PTL,$0000

 DC.W SPR2PTH,$0003 ; Sprite 2 pointer = $30000

 DC.W SPR2PTL,$0000

 DC.W SPR3PTH,$0003 ; Sprite 3 pointer = $30000

 DC.W SPR3PTL,$0000

 DC.W SPR4PTH,$0003 ; Sprite 4 pointerÑ$30000

 DC.W SPR4PTL,$0000

 DC.W SPR5PTH,$0003 ; Sprite 5 pointer = $30000

 DC.W SPR5PTL,$0000

 DC.W SPR6PTH,$0003 ; Sprite 6 pointer - S30000

 DC.W SPR6PTL,$0000

 DC.W SPR7PTH,$0003 ; Sprite 7 pointer = $30000

 DC.W SPR7PTL,$0000

 DC.W $FFFF,$FFFE ; End of Copper list

;

; Sprite data for spaceship sprite. It appears on the screen at V-65 and

; H-128.

;

SPRITE:

 DC.W $6D60,$7200 ; VSTART, HSTART, VSTOP

 DC.W $0990,$07E0 ; First pair of descriptor words

 DC.W $13C8,$0FF0

 DC.W $23C4,$1FF8

 DC.W $13C8,$0FF0

 DC.W $0990,$07E0

 DC.W $0000,$0000 ; End of sprite data

- Sprite Hardware 109 -

MOVING A SPRITE

A sprite generated in automatic mode can be moved by specifying a different position in
the data structure. For each display field, the data is reread and the sprite redrawn.

Therefore, if you change the position data before the sprite is redrawn, it will appear in a
new position and will seem to be moving.

You must take care that you are not moving the sprite (that is, changing control word
data) at the same time that the system is using that data to find out where to display the
object. If you do so, the system might find the start position for one field and the stop
position for the following field as it retrieves data for display. This would cause a "glitch"

and would mess up the screen. Therefore, you should change the content of the control
words only during a time when the system is not trying to read them. Usually, the vertical
blanking period is a safe time, so moving the sprites becomes part of the vertical blanking
tasks and is handled by the Copper as shown in the example below.

As sprites move about on the screen, they can collide with each other or with either of the
two playfields. You can use the hardware to detect these collisions and exploit this
capability for special effects. In addition, you can use collision detection to keep a moving
object within specified on-screen boundaries. Collision Detection is described in Chapter 7,
"System Control Hardware."

In this example of moving a sprite, the spaceship is bounced around on the screen,
changing direction whenever it reaches an edge.

The sprite position data, containing VSTART and HSTART, lives in memory at $25000.
VSTOP is located at $25002. You write to these locations to move the sprite. Once during
each frame, VSTART is incremented (or decremented) by 1 and HSTART by 2. Then a new
VSTOP is calculated, which will be the new VSTART+6.

 MOVE.B #151,d0 ; Initialize horizontal count

 MOVE.B #194,d1 ; Initialize vertical count

 MOVE.B #64,d2 ; Initialize horizontal position

 MOVE.B #44,d3 ; Initialize vertical position

 MOVE.B #1,d4 ; Initialize horizontal increment value

 MOVE.B #1,d5 ; Initialize vertical increment value

;

; Here we wait for the start of the screen updating.

; This ensures a glitch-free display.

;

 LEA CUSTOM,a0 ; Set custom chip base pointer

VLOOP:

 MOVE.B VHPOSR(a0),d6 ; Read Vertical beam position.

; Only insert the following line if you are using a PAL machine.

; CMP.B #$20,d6 ; Compare with end of PAL screen.

 BNE.S VLOOP ; Loop if not end of screen.

; Alternatively you can use the following code:

; VLOOP:

- 110 Sprite Hardware -

; MOVE.W INTREQR(a0),d6 ; Read interrupt request word

; AND.W #$0020,d6 ; Mask off all but vertical blank bit

; BEQ VLOOP ; Loop until bit is a 1

; MOVE.W #$0020,INTREQ(a0) ; Vertical bit is on, so reset it

;Please note that this will only work if you have turned OFF the Vertical

;blanking interrupt enable (not recommended for long periods).

 ADD.B d4,d2 ; Increment horizontal value

 SUBQ.B #1,d0 ; Decrement horizontal counter

 BNE L1

 MOVE.B #151,d0 ; Count exhausted, reset to 151

 EOR.B #$FE,d4 ; Negate the increment value

L1:

 MOVE.B d2,$25001 ; Write new HSTART value to sprite

 ADD.B d5,d3 ; Increment vertical value

 SBQ.B #1,d1 ; Decrement vertical counter

 BNE L2

 MOVE.B #194,d1 ; Count exhausted, reset to 194

 EOR.B #$FE,d5 ; Negate the increment value

L2:

 MOVE.B d3,$25000 ; Write new VSTART value to sprite

 MOVE.B d3,d6 ; Must now calculate new VSTOP

 ADD.B #6,d6 ; VSTOP always VSTART+6 for spaceship

 MOVE.B d6,$25002 ; Write new VSTOP to sprite

 BRA VLOOP ; Loop forever

CREATING ADDITIONAL SPRITES

To use additional sprites, you must create a data structure for each one and arrange the
display as shown in the previous section, naming the pointers SPR1PTH and SPR1PTL for
sprite DMA channel 1, SPR2PTH and SPR2PTL for sprite DMA channel 2, and so on.

NOTE
When you enable sprite DMA for one sprite, you enable DMA for all the sprites and place
them all in automatic mode. Thus, you do not need to repeat this step when using
additional sprite DMA channels.

Once the sprite DMA channels are enabled, all eight sprite pointers must be initialized to
either a real sprite or a safe null sprite. An uninitialized sprite could cause spurious sprite

video to appear.

Remember that some sprites can become unusable when additional DMA cycles are
allocated to displaying the screen, for example when an extra wide display or horizontal
scrolling is enabled (see Figure 6-9: DMA Time Slot Allocation).

Also, recall that each pair of sprites takes its color from different color registers, as shown
in Table 4-3.

- Sprite hardware 111 -

 Table 4-3: Color Registers for Sprite Pairs

 SPRITE NUMBERS COLOUR REGISTERS

 0 and 1 17-19

 2 and 3 21-23

 4 and 5 25-27

 6 and 7 29-31

NOTE
Some sprites become unusable when additional DMA cycles are allocated to displaying the
screen, e.g. when enabling an extra wide display or horizontal scrolling. (See Figure 6
DMA Time Slot Allocation.)ÿ

SPRITE PRIORITY
When you have more Than one sprite on the screen, you may need to take into
consideration their relative video priority, that is, which sprite appears in front of or
behind another. Each sprite has a fixed video priority with respect to all the others. The
lowest numbered sprite has the highest priority and appears in front of all other sprites;
the highest numbered sprite has the lowest priority. This is illustrated in Figure 4-8.

NOTE
See Chapter 7, "System Control Hardware", for more information on sprite priorities.

 __|_ 7|

 __|_ 6|__|

 __|_ 5|__|

 __|_ 4|__|

 __|_ 3|__|

 __|_ 2|__|

 __|_ 1|__|

 | 0|__|

 |____|

 Figure 4-8: (Sprite Priority)

- 112 Sprite Hardware -

REUSING SPRITE DMA CHANNELS

Each of the eight sprite DMA channels can produce more than one independently
controllable image. There may be times when you want more than eight objects, or you

may be left with fewer than eight objects because you have attached some of the sprites
to produce more colors or larger objects or overlapped some to produce more complex
images. You can reuse each sprite DMA channel several times within the same display
field, as shown in Figure 4-9.

Figure 4-9: (Typical Example of Sprite Reuse)

In single-sprite usage, two all-zero words are placed at the end of the data structure to
stop the DMA channel from retrieving any more data for that particular sprite during that
display field. To reuse a DMA channel, you replace this pair of zero words with another
complete sprite data structure, which describes the reuse of the DMA channel at a position
lower on the screen than the first use. You place the two all-zero words at the end, of the

data structure that contains the information for all usages of the DMA channel. For
example, Figure 4-10 shows the data structure that describes the picture above.

- Sprite Hardware 113 -

 SPRITE DISPLAY LIST

 ------\ _ Data describing

 ________________________________ | / the 1st vertical

 Increasing |________________________________| | / usage of this

 RAM |________________________________| |/ sprite.

 memory ________________________________ |

 addresses |________________________________| |

 |________________________________| |

 | _________ |

 | _________ |

 | _________ |

 | ________________________________ |

 | |________________________________| |

 | |________________________________| |

 | -----/

 |

 | -----\ _ Data describing

 | ________________________________ | / the 2nd vertical

 | |________________________________| | / usage of this

 | |________________________________| |/ sprite. Contents

 | ________________________________ | of vertical start

 | |________________________________| | word must be at

 | |________________________________| | least one video

 | _________ | line below actual

 | _________ | end of preceding

 | _________ | usage.

 \|/ ________________________________ |

 V |________________________________| |

 |________________________________| |\

 | \

 -----/ _ End-of-data words

 ending the usage

 of this sprite.

 Figure 4-10: (Typical Data Structure for Sprite Re-use)

The only restrictions on the reuse of sprites during a single display field is that the bottom
line of one usage of a sprite must be separated from the top line of the next usage by at
least one horizontal scan line. This restriction is necessary because only two DMA cycles
per horizontal scan line are allotted to each of the eight channels. The sprite channel
needs the time during the blank line to fetch the control word describing the next usage of
the sprite.

- 114 Sprite Hardware -

The following example displays the spaceship sprite and then redisplays it as a different
object. Only the sprite data list is affected, so only the data list is shown here. However,
the sprite looks best with the color registers set as shown in the
 xample.

 LEA CUSTOM,a0

 MOVE.W #$0F00,COLOR17(a0) ; Color 17 red

 MOVE.W #$0FF0,COLOR18(a0) ; Color 18 yellow

 MOVE.W #$0FFF,COLORl9(a0) ; Color 19 white

SPRITE:

 DC.W $6D60,$7200

 DC.W $0990,$07E0

 DC.W $13C8,$0FF0

 DC.W $23C4,$1FF8

 DC.W $13C8,$0FF0

 DC.W $0990,$07E0

 DC.W $8080,$8D00 ; VSTART, HSTART, VSTOP for new sprite

 DC.W $1818,$0000

 DC.W $7E7E,$0000

 DC.W $7FFE,$0000

 DC.W $FFFF,$2000

 DC.W $FFFF,$2000

 DC.W $FFFF,$3000

 DC.W $FFFF,$3000

 DC.W $7FFE,$1800

 DC.W $7FFE,$0C00

 DC.W $3FFC,$0000

 DC.W $0FF0,$0000

 DC.W $03C0,$0000

 DC.W $0180,$ÿ0000

 DC.W $0000,$0000 ; End of sprite data

OVERLAPPED SPRITES

For more complex or larger moving objects, you can overlap sprites. Overlapping simply
mean that the sprites have the same or relatively close screen positions. A relatively close
screen position can result in an object that is wider than 16 pixels.
The built-in sprite video priority ensures that one sprite appears to be behind the other
when sprites are overlapped. The priority circuitry gives the lowest-numbered sprite the
highest priority and the highest numbered sprite the lowest priority. Therefore, when
designing displays with overlapped sprites, make sure the "foreground" sprite has a lower

number than the "background" sprite. In Figure 4-11, for example, the cage should be
generated by a lower-numbered sprite DMA channel than the monkey.

- Sprite Hardware 115 -

Figure 4-11: overlapping Sprites (Not attached)

You can create a wider sprite display by placing two sprites next to each other. For
instance, Figure 4-12 shows the spaceship sprite and how it can be made twice as large
by using two sprites placed next to each other.

- 116 Sprite Hardware -

 (128,65)

 o_____________________

 | _| |_ |

 | _| |_ |

 | |_ _| |

 | |_ _| |

 |______|________|_____|

 (128,65) (144,65)

 o_____________________o_____________________

 | | | | |

 | __| | |__ |

 | | | | |

 | __| | |__ |

 | | | | |

 | |__ | __| |

 | | | | |

 | |__ | __| |

 | | | | |

 |_________|___________|__________|__________|

 Sprite 0 Sprite 1

 Figure 4-12: Placing Sprites Next to Each Other

ATTACHED SPRITES

You can create sprites that have fifteen possible color choices (plus transparent) instead
of three (plus transparent), by "attaching" two sprites. To create attached sprites, you
must:

o Use two channels per sprite, creating two sprites of the same size and located at the
same position.

o Set a bit called ATTACH in the second sprite control word.

The fifteen colors are selected from the full range of color registers available to sprites -
registers 17 through 31. The extra color choices are possible because each pixel contains
four bits instead of only two as in the normal, unattached sprite. Each sprite in the
attached pair contributes two bits to the binary color selector number. For example, if you
are using sprite DMA channels 0 and 1, the high- and low-order color descriptor words for
line 1 in both data structures are combined into line 1 of the attached object.

- Sprite Hardware 117 -

Sprites can be attached in the following combinations:

 Sprite 1 to sprite 0
 Sprite 3 to sprite 2

 Sprite 5 to sprite 4
 Sprite 7 to sprite 6

Any or all of these attachments can be active during the same displayfield. As an example,
assume that you wish to have more colors in the spaceship sprite and you are using sprite
DMA channels 0 and 1. There are five colors plus transparent in this sprite.

 0000154444510000

 0001564444651000

 0015676446765100

 0001564444651000

 0000154444510000

The first line in this sprite requires the four data words shown in Table 4-4 to form the
correct binary color selector numbers.

Table 4-4: Data Words for First Line of Spaceship Sprite

 PIXEL NUMBER

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

--

Line 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Line 2 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

Line 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Line 4 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0

The highest numbered sprite (number 1, in this example) contributes the highest order
bits (left-most) in the binary number. The high-order data word in each sprite contributes
the leftmost digit. Therefore, the lines above are written to the sprite data structures as
follows:

 Line 1 Sprite 1 high-order word for sprite line 1
 Line 2 Sprite 1 low-order word for sprite line 1
 Line 3 Sprite 0 high-order word for sprite line 1
 Line 4 Sprite 0 low-order word for sprite line 1

See Figure 4-7 for the order these words are stored in memory. Remember that this data
is contained in two sprite structures.

- 118 Sprite Hardware -

The binary numbers 0 through 15 select registers 17 through 31 as shown in Table 4-5.

 Table 4-5: Color Registers in Attached Sprites

 Decimal Binary ColorRegister

 Number Number Number

 0 0000 16 *

 1 0001 17

 2 0010 18

 3 0011 19

 4 0100 20

 5 0101 21

 6 0110 22

 7 0111 23

 8 1000 24

 9 1001 25

 10 1010 26

 11 1011 27

 12 1100 28

 13 1101 29

 14 lll0 30

 15 1111 31

* Unused; yields transparent pixel.

Attachment is in effect only when the ATTACH bit, bit 7 in sprite control

word 2, is set to 1 in the data structure for the odd-numbered sprite. So,

in this example, you set bit 7 in sprite control word 2 in the data

structure for sprite 1.

When the sprites are moved, the Copper list must keep them both at exactly

the same position relative to each other. If they are not kept together on

the screen, their pixels will change color. Each sprite will revert to three

colors plus transparent, but the colors may be different than if they were

ordinary, unattached sprites. The color selection for the lower numbered

sprite will be from color registers 17-19. The color selection for the

higher numbered sprite will be from color registers 20, 24, and 28.

- Sprite Hardware 119 -

The following data structure is for the six-color spaceship made with two attached sprites.

SPRITE0:

 DC.W $6D60,$7200 ;VSTART = 65, HSTART = 128

 DC.W $0C30,$0000 ;First color descriptor word

 DC.W $1818,$0420

 DC.W $342C,$0E70

 DC.W $1818,$0420

 DC.W $0C30,$0000

 DC.W $0000,$0000 ;End of sprite 0

SPRITE1:

 DC.W $6D60,$7280 ;Same as sprite 0 except attach bit on

 DC.W $07E0,$0000 ;First descriptor word for sprite 1

 DC.W $0FF0,$0000

 DC.W $1FF8,$0000

 DC.W $0FF0,$0000

 DC.W $07E0,$0000

 DC.W $0000,$0000 ;End of sprite 1

MANUAL MODE

It is almost always best to load sprites using the automatic DMA channels. Sometimes,
however, it is useful to load these registers directly from one of the microprocessors.
Sprites may be activated "manually" whenever they are not being used by a DMA channel.
The same sprite that is showing a DMA-controlled icon near the top of the screen can also
be reloaded manually to show a vertical colored bar near the bottom of the screen. Sprites

can be activated manually even when the sprite DMA is turned off.

You display sprites manually by writing to the sprite data registers SPRxDATB and
SPRxDATA, in that order. You write to SPRxDATA last because that address "arms'' the
sprite to be output at the next horizontal comparison. The data written will then be
displayed on every line, at the horizontal position given in the "H" portion of the position
registers SPRxPOS and SPRxCTL. If the data is unchanged, the result will be a vertical
bar. If the data is reloaded for every line, a complex sprite can be produced.

The sprite can be terminated ("disarmed") by writing to the SPRxCTL register. If you write
to the SPRxPOS register, you can manually move the sprite horizontally at any time, even
during normal sprite usage.

- 120 Sprite Hardware -

SPRITE HARDWARE DETAILS

Sprites are produced by the circuitry shown in Figure 4-13. This Figure shows in block
form how a pair of data words becomes a set of pixels displayed on the screen.

The circuitry elements for sprite display are explained below.

o Sprite data registers. The registers SPRxDATA and SPRxDATB hold the bit patterns that
describe one horizontal line of a sprite for each of the eight sprites. A line is 16 pixels
wide, and each line is defined by two words to provide election of three colors and
transparent.

o Parallel-to-serial converters. Each of the 16 bits of the sprite data bit pattern is
individually sent to the color select circuitry at the time that the pixel associated with that
bit is being displayed on-screen.

Immediately after the data is transferred from the sprite data registers, each parallel-to-
serial converter begins shifting the bits out of the converter, most significant (leftmost) bit
first. The shift occurs once during each low-resolution pixel time and continues until all 16
bits have been transferred to the display circuitry. The shifting and data output does not
begin again until the next time this converter is loaded from the data registers.

Because the video image is produced by an electron beam that is being swept from left to
right on the screen, the bit-image of the data corresponds exactly to the image that
actually appears on the screen (most significant data on the left).

o Sprite serial video data. Sprite data goes to the priority circuit to establish the priority
between sprites and playfields.

o Sprite position registers. These registers, called SPRxPOS, contain the horizontal
position value (X value) and vertical position value (Y value) for each of the eight sprites.

o Sprite control registers. These registers, called SPRxCTL, contain the stopping position
for each of the eight sprites and whether or not a sprite is attached.

o Beam counter. The beam counter tells the system the current location of the video
beam that is producing the picture.

o Comparator. This device compares the value of the beam counter to the Y value in the

position register SPRxPOS. If the beam has reached the position at which the leftmost
upper pixel of the sprite is to appear, the comparator issues a load signal to the serial-to-
parallel converter and the sprite display begins.

- Sprite Hardware 121 -

 | Beam counter |

 |(Horizontal pos.)| ____________________

 |_________________| |SPRxDATA load decode|

 \ / | (68000 or DMA) |

 ________\/_______ |____________________|

 | | Equal |

 | Compensator |______ ___________________ |

 |_________________| | |SPRxPOS load decode| |

 /\ ________|______| (68000 or DMA) | |

 _______/______|_ | |___________________| |

 | | | |

 | SPRxPOS (Horiz.)| | |

 |_________________| | <-"ARM SPRITE"-> |

 /\ ________|____________________________o

 ____________/ \ | |___ _______ |

| | | |AND |-| | | |

| ___________ | | __/ |--------|Q S|-----|

|| \ / | | | | _____________

|| ________\/_____|_ | ----|Q R|--|SPRxCTL load |

|| | | | |_______| | decode |

|| | SPRxDATA | | |(68000 or DMA|

|| |_________________| ____o |_____________|

|| \ / | |

|| ______\/_______|_ | _____ ______________

|| ____| Parallel to | | | |Sprite serial |

|| __|__ |serial converter |-----------------> | | video data |

|| ___ |_________________| | | | |

|| _ _________________ | | | Output to |

|| | Parallel to | | | |video priority|

|| |serial converter |-----------------> | | logic |

|| |_________________| | _____| |______________|

|| /\ | |

|| _______/________ |____|

|| | |

|| | SPRxDATB |

|| |_________________| ____________________

|| /\ ^ |SPRxDATB load decode|

|| / \ |___________|(68000 or DMA |

||_______| | |____________________|

| __________|

||

||__

|___

 DATA BUS

 Figure 4-13: Sprite Control Circuitry

Figure 4-13 shows the following:

o Writing to the sprite control registers disables the horizontal comparator circuitry. This
prevents the system from sending any output from the data registers to the serial
converter or to the screen.

- 122 Sprite Hardware -

o Writing to the sprite A data register enables the horizontal comparator. This enables
output to the screen when the horizontal position of the video beam equals the horizontal
value in the position register.

o If the comparator is enabled, the sprite data will be sent to the display, with the
leftmost pixel of the sprite data placed at the position defined in the horizontal part of
SPRxPOS.

o As long as the comparator remains enabled, the current contents of the sprite data
register will be output at the selected horizontal position on a video line.

o The data in the sprite data registers does not change. It is either rewritten by the user
or modified under DMA control.

The components described above produce the automatic DMA display as follows: When
the sprites are in DMA mode, the 18-bit sprite pointer register (composed of SPRxPTH and
SPRxPTL) is used to read the first two words from the sprite data structure. These words
contain the starting and stopping position of the sprite. Next, the pointers write these
words into SPRxPOS and SPRxCTL. After this write, the value in the pointers points to the
address of the first data word (low word of data for line 1 of the sprite.)

Writing into the SPRxCTL register disabled the sprite. Now the sprite DMA channel will
wait until the vertical beam counter value is the same as the data in the VSTART (Y value)
part of SPRxPOS. When these values match, the system enables the sprite data access.

The sprite DMA channel examines the contents of VSTOP (from SPRxCTL, which is the
location of the line after the last line of the sprite) and VSTART (from SPRxPOS) to see
how many lines of sprite data are to be fetched. Two words are fetched per line of sprite
height, and these words are written into the sprite data registers. The first word is stored
in SPRxDATA and the second word in SPRxDATB.

The fetch and store for each horizontal scan line occurs during a horizontal blanking
interval, far to the left of the start of the screen display. This arms the sprite horizontal
comparators and allows them to start the output of the sprite data to the screen when the
horizontal beam count value matches the value stored in the HSTART (X value) part of
SPRxPOS.

If the count of VSTOP - VSTART equals zero, no sprite output occurs. The next data word
pair will be fetched, but it will not be stored into the sprite data registers. It will instead

become the next pair of data words for SPRxPOS and SPRxCTL.

When a sprite is used only once within a single display field, the final pair of data words,
which follow the sprite color descriptor words, is loaded automatically as the next contents
of the SPRxPOS and SPRxCTL registers. To stop the sprite after that first data set, the pair
of words should contain all zeros.

Thus, if you have formed a sprite pattern in memory, this same pattern will be produced
as pixels automatically under DMA control one line at a time.

- Sprite Hardware 123 -

SUMMARY OF SPRITE REGISTERS

There are eight complete sets of registers used to describe the sprites. Each set consists
of five registers. Only the registers for sprite O are described here. All of the others are

the same, except for the name of the register, which includes the appropriate number.

POINTERS
Pointers are registers that are used by the system to point to the current data being used.
During screen display, the registers are incremented to point to the data being used as
the screen display progresses. Therefore, pointer registers must be freshly written during
the start of the vertical blanking period.

SPR0PTH and SPR0PTL
This pair of registers contains the 32-bit word address of Sprite 0 DMA data.

Pointer register names for the other sprites are:

 SPR1PTH SPR1PTL
 SPR2PTH SPR2PTL
 SPR3PTH SPR3PTL
 SPR4PTH SPR4PTL
 SPRSPTH SPRSPTL
 SPR6PTH SPR6PTL
 SPR7PTH SPR7PTL

CONTROL REGISTERS

SPR0POS
This is the sprite 0 position register. The word written into this register controls the
position on the screen at which the upper left-hand corner of the sprite is to be placed.
The most significant bit of the first data word will be placed in this position on the screen.

- 124 Sprite Hardware -

NOTE

The sprites have a placement resolution on a full screen of 320 by 200 NTSC (320 by 256
PAL). The sprite resolution is independent of the bit-plane resolution.

BIT POSITIONS:

o Bits 15-8 specify the vertical start position, bits V7 - V0.

o Bits 7-0 specify the horizontal start position, bits H8 - H1.

NOTE
This register is normally only written by the lsprite DMA channel itself. See the details
above regarding the organization of the sprite data. This register is usually updated
directly by DMA.

SPR0CTL
This register is normally used only by the sprite DMA channel. It contains control
information that is used to control the sprite data-fetch process. Bit positions:

o Bits 15-8 specify vertical stop position for a sprite image, bits V7 - V0.

o Bit 7 is the attach bit. This bit is valid only for odd-numbered sprites. It indicates that
sprites 0, 1 (or 2,3 or 4,5 or 6,7) will, for color interpretation, be considered as paired,
and as such will be called four bits deep. The odd-numbered (higher number) sprite

contains bits with the higher binary significance.

During attach mode, the attached sprites are normally moved horizontally and vertically
together under processor control. This allows a greater selection of colors within the
boundaries of the sprite itself. The sprites, although attached, remain capable of
independent motion, however, and they will assume this larger color set only when their
edges overlay one another.

o Bits 6-3 are reserved for future use (make zero).

o Bit 2 is bit V8 of vertical start.

o Bit 1 is bit V8 of vertical stop.

o Bit 0 is bit H0 of horizontal start.

- Sprite Hardware 125 -

Position and control registers for the other sprites are:

 SPR1POS SPR1CTL
 SPR2POS SPR2CTL

 SPR3POS SPR3CTL
 SPR4POS SPR4CTL
 SPR5POS SPRSCTL
 SPR6POS SPR6CTL
 SPR7POS SPR7CTL

DATA REGISTERS

The following registers, although defined in the address space of the main processor, are
normally used only by the display processor. They are the holding registers for the data
obtained by DMA cycles.

 SPR0DATA, SPR0DATB data registers for Sprite 0
 SPR1DATA, SPR1DATB data registers for Sprite 1
 SPR2DATA, SPR2DATB data registers for Sprite 2
 SPR3DATA, SPR3DATB data registers for Sprite 3
 SPR4DATA, SPR4DATB data registers for Sprite 4
 SPR5DATA, SPR5DATB data registers for Sprite 5
 SPR6DATA, SPR6DATB data registers for Sprite 6
 SPR7DATA, SPR7DATB data registers for Sprite 7

SUMMARY OF SPRITE COLOR REGISTERS

Sprite data words are used to select the color of the sprite pixels from the system color
register set as indicated in the following Tables.

If the bit combinations from single sprites are as shown in Table 4-6, then the colors will
be taken from the registers shown.

- 126 Sprite Hardware -

 Table 4-6: Color Registers for Single Sprites

 SINGLE SPRITES COLOR

 Sprite Value Register

 0 or 1 00 Not used *

 01 17

 10 18

 11 19

 2 or 3 00 Not used *

 01 21

 10 22

 11 23

 4 or 5 00 Not used *

 01 25

 10 26

 11 27

 6 or 7 00 Not used *

 01 29

 10 30

 11 31

* Selects transparent mode.

If the bit combinations from attached sprites are as shown in Table 4-7, then the colors
will be taken from the registers shown.

- Sprite Hardware 127 -

 Table 4-7: Color Registers for Attached Sprites

 ATTACHED SPRITES

 Color

 Value Register

 0000 Selects transparent mode

 0001 17

 0010 18

 0011 19

 0100 20

 0101 21

 0110 22

 0111 23

 1000 24

 1001 25

 1010 26

 1011 27

 1100 28

 1101 29

 1110 30

 1111 31

INTERACTIONS AMONG SPRITES AND OTHER OBJECTS
Playfields share the display with sprites. Chapter 7, "System Control Hardware," shows
how playfields can be given different video display priorities relative to the sprites and
how playfields can collide with (overlap) the sprites or each other.

- 128 Sprite Hardware -

CHAPTER 5

AUDIO HARDWARE

INTRODUCTION
This chapter shows you how to directly access the audio hardware to produce sounds. The
major topics in this chapter are:

o A brief overview of how a computer produces sound.

o How to produce simple steady and changing sounds and more complex ones.

- Audio Hardware 129 -

o How to use the audio channels for special effects, wiring them for stereo sound if
desired, or using one channel to modulate another.

o How to produce quality sound within the system limitations.

A section at the end of the chapter gives you values to use for creating musical notes on
the equal-tempered musical scale.

This chapter is not a tutorial on computer sound synthesis; a thorough description of
creating sound on a computer would require a far longer document. The purpose here is
to point the way and show you how to use the Amiga's features. Computer sound

production is fun but complex, and it usually requires a great deal of trial and error on the
part of the user. You use the instructions to create some sound and play it back, readjust
the parameters and play it again, and so on.

The following works are recommended for more information on creating music with
computers:

o Wayne A. Bateman, Introduction to Computer Music (New York: John Wiley and Sons,
1980).

o Hal Chamberlain, Musical Applicators of Microprocessors (Rochelle Park, New Jersey:
Hayden, 1980).

INTRODUCING SOUND GENERATION

Sound travels through air to your ear drums as a repeated cycle of air pressure variations,
or sound waves. Sounds can be represented as graphs that model how the air pressure
varies over time. The attributes of a sound, as you hear it, are related to the shape of the
graph. If the waveform is regular and repetitive, it will sound like a tone with steady
pitch (highness or lowness), such as a single musical note. Each repetition of a waveform
is called a cycle of the sound. If the waveform is irregular, the sound will have little or no
pitch, like a loud clash or rushing water. How often the waveform repeats (its
frequency) has an effect upon its pitch; sounds with higher frequencies are higher in
pitch. Humans can hear sounds that have a frequency of between 20 and 20,000 cycles
per second. The amplitude of the waveform (highest point on the graph), is related to the
perceived loudness of the sound. Finally, the general shape of the waveform determines
its tone quality, or timbre. Figure 5-1 shows a particular kind of waveform, called a sine
wave, that represents one cycle of a simple tone.

- 130 Audio Hardware -

Figure 5-1: Sine waveform

In electronic sound recording and output devices, the attributes of sounds are represented
by the parameters of amplitude and frequency. Frequency is the number of cycles per
second, and the most common unit of frequency is the Hertz (Hz), which is 1 cycle per
second. Large values, or high frequencies, are measured in kilohertz (KHz) or megahertz
(MHz).

Frequency is strongly related to the perceived pitch of a sound. When frequency
increases, pitch rises. This relationship is exponential. An increase from 100 Hz to 200 Hz
results in a large rise in pitch, but an increase from 1,000 Hz to 1,100 Hz is hardly
noticeable. Musical pitch is represented in octaves. A tone that is one octave higher than
another has a frequency twice as high as that of the first tone, and its perceived pitch is
twice as high.

The second parameter that defines a waveform is its amplitude. In an electronic circuit,
amplitude relates to the voltage or current in the circuit. When a signal is going to a
speaker, the amplitude is expressed in watts. Perceived sound intensity is measured in
decibels (db). Human hearing has a range of about 120 db; 1 db is the faintest audible
sound. Roughly every 10 db corresponds to a doubling of sound, and 1 db is the smallest
change in amplitude that is noticeable in a moderately loud sound. Volume, which is the
amplitude of the sound signal which is output, corresponds logarithmically to decibel level.

The frequency and amplitude parameters of a sine wave are completely independent.
When sound is heard, however, there is interaction between loudness and pitch. Lower-
frequency sounds decrease in loudness much faster than high-frequency sounds.

- Audio Hardware 131 -

The third attribute of a sound, timbre, depends on the presence or absence of overtones,
or harmonics. Any complex waveform is actually a mixture of sine waves of different
amplitudes, frequencies, and phases (the starting point of the waveform on the time
axis). These component sine waves are called harmonics. A square waveform, for

example, has an infinite number of harmonics.

In summary, all steady sounds can be described by their frequency, overall amplitude,
and relative harmonic amplitudes. The audible equivalents of these parameters are pitch,
loudness, and timbre, respectively. Changing sound is a steady sound whose parameters
change over time.

In electronic production of sound, an analog device, such as a tape recorder, records
sound waveforms and their cycle frequencies as a continuously variable representation of
air pressure. The tape recorder then plays back the sound by sending the waveforms to
an amplifier where they are changed into analog voltage waveforms. The amplifier sends
the voltage waveforms to a loudspeaker, which translates them into air pressure
vibrations that the listener perceives as sound.

A computer cannot store analog waveform information. In computer production of sound,
a waveform has to be represented as a finite string of numbers. This transformation is
made by dividing the time axis of the graph of a single waveform into equal segments,
each of which represents a short enough time so the waveform does not change a great
deal. Each of the resulting points is called a sample. These samples are stored in memory,
and you can play them back at a frequency that you determine. The computer feeds the
samples to a digital-to-analog converter (DAC), which changes them into an analog

voltage waveform. To produce the sound, the analog waveforms are sent first to an
amplifier, then to a loudspeaker.

Figure 5-2 shows an example of a sine wave, a square wave, and a triangle wave, along
with a Table of samples for each.

NOTE
The illustrations are not to scale and there are fewer dots in the wave forms than there
are samples in the Table. The amplitude axis values 127 and -128 represent the high and
low limits on relative amplitude.

- 132 Audio Hardware -

Figure 5-2: Digitized Amplitude Values

 DIGITISED AMPLITUDE VALUES

 TIME SINE SQUARE TRIANGLE

 0 0 100 0

 1 39 100 20

 2 75 100 40

 3 103 100 60

 4 121 100 80

 5 127 100 100

 6 121 100 80

 7 103 100 60

 8 75 100 40

 9 39 100 20

 10 0 -100 0

 11 -39 -100 -20

 12 -75 -100 -40

 13 -103 -100 -60

 14 -121 -100 -80

 15 -127 -100 -100

 16 -121 -100 -80

 17 -103 -100 -60

 18 -75 -100 -40

 19 -39 -100 -20

THE AMIGA SOUND HARDWARE
The Amiga has four hardware sound channels. You can independently program each of the
channels to produce complex sound effects. You can also attach channels so that one
channel modulates the sound of another or combine two channels for stereo effects.

- Audio Hardware 133 -

Each audio channel includes an eight-bit digital-to-analog converter driven by a direct
memory access (DMA) channel. The audio DMA can retrieve two data samples during each
horizontal video scan line. For simple, steady tones, the DMA can automatically play a
waveform repeatedly; you can also program all kinds of complex sound effects.

There are two methods of basic sound production on the Amiga – automatic (DMA) sound
generation and direct (non-DMA) sound generation. When you use automatic sound
generation, the system retrieves data automatically by direct memory access.

FORMING AND PLAYING A SOUND

This section shows you how to create a simple, steady sound and play it. Many basic
concepts that apply to all sound generation on the Amiga are introduced in this section.

To produce a steady tone, follow these basic steps:

1. Decide which channel to use.

2. Define the waveform and create the sample Table in memory.

3. Set registers telling the system where to find the data and the length of the data.

4. Select the volume at which the tone is to be played.

5. Select the sampling period, or output rate of the data.

6. Select an audio channel and start up the DMA.

DECIDING WHICH CHANNEL TO USE
The Amiga has four audio channels. Channels 0 and 3 are connected to the left-side
stereo output jack. Channels 1 and 2 are connected to the right-side output jack. Select a
channel on the side from which the output is to appear.

CREATING THE WAVEFORM DATA
The waveform used as an example in this section is a simple sine wave, which produces a
pure tone. To conserve memory, you normally define only one full cycle of a waveform in
memory. For a steady, unchanging sound, the values at the waveform’s beginning and
ending points and the trend or slope of the data at the beginning and end should be
closely related. This ensures that a continuous repetition of the waveform sounds like a

continuous stream of sound.

- 134 Audio Hardware -

Sound data is organized as a set of eight-bit data items; each item is a sample from the
waveform. Each data word retrieved for the audio channel consists of two samples.
Sample values can range from -128 to +127.

As an example, the data set shown below produces a close approximation to a sine wave.

NOTE
The data is stored in byte address order with the first digitized amplitude value at the
lowest byte address, the second at the next byte address, and so on. Also, note that the
first byte of data must start at a word-address boundary. This is because the audio DMA
retrieves one word (16 bits) at a time and uses the sample it reads as two bytes of data.

To use audio channel 0, write the address of "audiodata" into AUD0LC, where the audio
data is organized as shown below. For simplicity, "AUDxLC" in the Table below stands for
the combination of the two actual location registers (AUDxLCH and AUDxLCL). For the
audio DMA channels to be able to retrieve the data, the data address to which AUDOLC
points must be somewhere in chip RAM.

 Table 5-1: Sample Audio Data Set for Channel 0

 audiodata ---> AUD0LC * 100 98

 AUD0LC +2 ** 92 83

 AUD0LC +4 71 56

 AUD0LC +6 38 20

 AUD0LC +8 0 -20

 AUD0LC +10 -38 -56

 AUD0LC +12 -71 -83

 AUD0LC +14 -92 -83

 AUD0LC +16 -100 -98

 AUD0LC +18 -92 -83

 AUD0LC +20 -71 -56

 AUD0LC +22 -38 -20

 AUD0LC +24 0 20

 AUD0LC +26 38 56

 AUD0LC +28 71 83

 AUD0LC +30 92 98

NOTES

* Audio data is located on a word-address boundary.

** AUD0LC stands for AUD0LCL and AUD0LCH.

- Audio Hardware 135 -

TELLING THE SYSTEM ABOUT THE DATA
In order to retrieve the sound data for the audio channel, the system needs to know
where the data is located and how long (in words) the data is.

The location registers AUDxLCH and AUDxLCL contain the high three bits and the low
fifteen bits, respectively, of the starting address of the audio data. Since these two
register addresses are contiguous, writing a long word into AUDxLCH moves the audio
data address into both locations. The "x" in the register names stands for the number of
the audio channel where the output will occur. The channels are numbered 0, 1, 2,and 3.

These registers are location registers, as distinguished from pointer registers. You need to

specify the contents of these registers only once; no resetting is necessary when you wish
the audio channel to keep on repeating the same waveform. Each time the system
retrieves the last audio word from the data area, it uses the contents of these location
registers to again find the start of the data. Assuming the first word of data starts at
location "audiodata" and you are using channel 0, here is how to set the location
registers:

WHERE0DATA:

 LEA CUSTOM,a0 ; Base chip address...

 LEA AUDIODATA,a1

 MOVE.L a1,AUDOLCH(a0) ;Put address (32 bits)

 ; into location register.

The length of the data is the number of samples in your waveform divided by 2, or the
number of words in the data set. Using the sample data set above, the length of the data

is 16 words. You write this length into the audio data length register for this channel. The
length register is called AUDxLEN, where "x" refers to the channel number. You set the
length register AUD0LEN to 16 as shown below.

SETAUDOLENGTH:

 LEA CUSTOM,a0 ; Base chip address

 MOVE.W #16,AUD0LEN(a0) ; Store the length...

SELECTING THE VOLUME
The volume you set here is the overall volume of all the sound coming from the audio
channel. The relative loudness of sounds, which will concern you when you combine
notes, is determined by the amplitude of the wave form. There is a six-bit volume register
for each audio channel. To control the volume of sound that will be output through the

selected audio channel, you write the desired value into the register AUDxVOL, where "x"
is replaced by the channel number. You can specify values from 64 to 0. These volume
values correspond to decibel levels. At the end of this chapter is a Table showing the
decibel value for each of the 65 volume levels.

- 136 Audio Hardware -

For a typical output at volume 64, with maximum data values of -128 to 127, the voltage
output is between +.4 volts and -.4 volts. Some volume levels and the corresponding
decibel values are shown in Table 5-2.

 Table 5-2: Volume Values

 VOLUME DECIBEL VALUE

 64 0 (maximum volume)

 48 -2.5

 32 -6.0

 16 -12.0 (12db down from the

 volume at maximum level)

For any volume setting from 64 to 0, you write the value into bits 5-0 of AUD0VOL. For
example:

SETAUDOVOLUME:

 LEA CUSTOM,a0

 MOVE.W #48,AUD0VOL(a0)

The decibels are shown as negative values from a maximum of 0 because this is the way a
recording device, such as a tape recorder, shows the recording level. Usually, the recorder
has a dial showing 0 as the optimum recording level. Anything less than the optimum
value is shown as a minus quantity.

SELECTING THE DATA OUTPUT RATE
The pitch of the sound produced by the waveform depends upon its frequency. To tell the
system what frequency to use, you need to specify the sampling period. The sampling
period specifies the number of system clock ticks, or timing intervals, that should elapse
between each sample (byte of audio data) fed to the digital-to-analog converter in the
audio channel. There is a period register for each audio channel. The value of the period
register is used for count-down purposes; each time the register counts down to 0,
another sample is retrieved from the waveform data set for output. In units, the period
value represents clock ticks per sample. The minimum period value you should use is 124
ticks per sample NTSC (123 PAL) and the maximum is 65535. These limits apply to both
PAL and NTSC machines. For high-quality sound, there are other constraints on the
sampling period (see the section called "Producing High-quality Sound").

NOTE
A low period value corresponds to a higher frequency sound and a high period value
corresponds to a lower frequency sound.

- Audio Hardware 137 -

LIMITATIONS ON SELECTION OF SAMPLING PERIOD
The sampling period is limited by the number of DMA cycles allocated to an audio channel.
Each audio channel is allocated one DMA slot per horizontal scan line of the screen
display. An audio channel can retrieve two data samples during each horizontal scan line.

The following calculation gives the maximum sampling rate in samples per second.

 2 samples/line * 262.5 frames/frame * 59.94 frames/second

 = 31,469 samples/second

The Figure of 31,469 is a theoretical maximum. In order to save buffers, the hardware is
designed to handle 28,867 samples/second. The system timing interval is 279.365

nanoseconds, or .279365 microseconds. The maximum sampling rate of 28,867 samples
per second is 34.642 microseconds per sample (1/28,867 = .000034642). The formula for
calculating the sampling period is:

 sample interval clock constant

Period value = --------------- = --------------

 clock interval samples per second

Thus, the minimum period value is derived by dividing 34.642 microseconds per sample
by the number of microseconds per interval:

 34.642 microseconds/sample

Maximum period = -------------------------- = 124 timing intervals/sample

 0.279365 microseconds/interval

or:
 3,579,545 ticks/second

Minimum period = ---------------------- =124 ticks/sample

 28,867 samples/second

Therefore, a value of at least 124 must be written into the period register to assure that
the audio system DMA will be able to retrieve the next data sample. If the period value is

below 124, by the time the cycle count has reached 0, the audio DMA will not have had
enough time to retrieve the next data sample and the previous sample will be reused.

28,867 samples/second is also the maximum sampling rate for PAL systems. Thus, for
PAL systems, a value of at least 123 ticks/sample must be written into the period register.

 CLOCK VALUES

 NTSC PAL UNITS

Clock Constant 3579545 3546895 ticks per second

Clock Interval 0.279365 0.281937 microseconds per interval

- 138 Audio Hardware -

NOTE
The Clock Interval is derived from the clock constant, where:

 1

clock interval = --------------

 clock constant

then scale the result to microseconds. In all of these calculations "ticks" and "timing
intervals" refer to the same thing.

SPECIFYING THE PERIOD VALUE

After you have selected the desired interval between data samples, you can calculate the
value to place in the period register by using the period formula:

 desired interval clock constant

Period value = ---------------- = ------------------

 clock interval samples per second

As an example, say you wanted to produce a 1 KHz sine wave, using a Table of eight data
samples (four data words) (see Figure 5-3).

Figure 5-3: Example Sine Wave

- Audio Hardware 139 -

Sampled Values: 0

 90

 127

 90

 0

 -90

 -127

 -90

To output the series of eight samples at 1 KHz (1,000 cycles per second), each full cycle is
output in 1/1000th of a second. Therefore, each individual value must be retrieved in
1/8th of that time. This translates to 1,000 microseconds per waveform or 125

microseconds per sample. To correctly produce this waveform, the period value should be:

 125 microseconds/sample

Period value = ---------------------------- = 447 timing Intervals/sample

 0.279365 microseconds/interval

To set the period register, you must write the period value into the register AUDxPER,

where "x" is the number of the channel you are using. For example, the following
instruction shows how to write a period value of 447 into the period register for channel 0.

SETAUDOPERIOD:

 LEA CUSTOM,a0

 MOVE.W #447,AUD0PER(a0)

To produce high-quality sound, avoiding aliasing distortion, you should observe the
limitations on period values that are discussed in the section below called "Producing
Quality Sound."

For the relationship between period and musical pitch, see the section at the end of the
chapter, which contains a listing of the equal-tempered musical scale.

PLAYING THE WAVEFORM
After you have defined the audio data location, length, volume and period, you can play
the waveform by starting the DMA for that audio channel. This starts the output of sound.
Once started, the DMA continues until you specifically stop it. Thus, the waveform is
played over and over again, producing the steady tone. The system uses the value in the
location registers each time it replays the waveform.

For any audio DMA to occur (or any other DMA, for that matter), the DMAEN bit in
DMACON must be set. When both DMAEN and AUDxEN are set, the DMA will start for
channel x. All these bits and their meanings are shown in Table 5-3.

- 140 Audio Hardware -

 Table 5-3: DMA and Audio Channel Enable Bits

 DMACON REGISTER

 Bit Name Function

 15 SET/CLR When this bit is written as a 1, it

 sets any bit in DMACONW for which

 the corresponding bit position is

 also a 1, leaving all other bits alone.

 9 DMAEN Only while this bit is a 1 can

 any direct memory access occur.

 3 AUD3EN Audio channel 3 enable.

 2 AUD2EN Audio channel 2 enable.

 1 AUD1EN Audio channel 1 enable.

 0 AUD0EN Audio channel 0 enable.

For example, if you are using channel 0, then you write a 1 into bit 9 to enable DMA and a
1 into bit 0 to enable the audio channel, as shown below.

BEGINCHAN0:

 LEA CUSTOM,a0

 MOVE.W #(DMAF_SETCLR!DMAF_AUD0!DMAF_MASTER),DMACON(a0)

STOPPING THE AUDIO DMA
You can stop the channel by writing a 0 into the AUDxEN bit at any time. However, you
cannot resume the output at the same point in the waveform by just writing a 1 in the bit
again. Enabling an audio channel almost always starts the data output again from the top
of the list of data pointed to by the location registers for that channel. If the channel is
disabled for a very short time (less than two sampling periods) it may stay on and thus
continue from where it left off.

The following example shows how to stop audio DMA for one channel.

STOPAUDCHAN0:

 LEA CUSTOM,a0

 MOVE.W #(DMAF_AUD0),DMACON(a0)

 -

- Audio Hardware 141 -

SUMMARY
These are the steps necessary to produce a steady tone:

1. Define the waveform.

2. Create the data set containing the pairs of data samples (data words). Normally, a data
set contains the definition of one waveform.

3. Set the location registers:

 AUDxLCH (high three bits)

 AUDxLCL (low fifteen bits)

4. Set the length register, AUDxLEN, to the number of data words to be retrieved before
starting at the address currently in AUDxLC.

5. Set the volume register, AUDxVOL.

6. Set the period register, AUDxPER

7. Start the audio DMA by writing a 1 into bit 9, DMAEN, along with a 1 in the SET/CLR bit
and a 1 in the position of the AUDxEN bit of the channel or channels you want to start.

EXAMPLE
In this example, which gathers together all of the program segments from the preceding

sections, a sine wave is played through channel 0. The example assumes exclusive access
to the Audio hardware, and will not work directly in a multitasking environment.

MAIN:

 LEA CUSTOM,a0 ; Custom chip base address

 LEA SINEDATA(pc),a1 ; Address of data to

 ; audio location register 0

WHEREODATA:

 MOVE.L a1,AUD0LCH(a0) ; The 68000 writes

 ; this as though it were

 ; a 32-bit register at the

 ; low-bits location

 ; (common to all locations

 ; and pointer registers

 ; in the system).

SETAUDOLENGTH:

 MOVE.W #4,AUD0LEN(a0) ;Set length in words

- 142 Audio Hardware -

SETAUDOVOLUME:

 MOVE.W #64,AUD0VOL(a0) ;Use maximum volume

SETAUDOPERIOD:

 MOVE.W #447,AUD0PER(a0)

BEGINCHAN0:

 MOVE.W #(DMAF_SETCLR!DMAF_AUD0!DMAF_MASTER),DMACON(a0)

 RTS ; Return to main code

 DS.W 0 ; Be sure word-aligned

SINEDATA:

 DC.B 0, 90, 127, 90, 0, -90, -127, -90

 END

PRODUCING COMPLEX SOUNDS

In addition to simple tones, you can create more complex sounds, such as different
musical notes joined into a one-voice melody, different notes played at the same time, or
modulated sounds.

JOINING TONES
Tones are joined by writing the location and length registers, starting the audio output,
and rewriting the registers in preparation for the next audio waveform that you wish to
connect to the first one. This is made easy by the timing of the audio interrupts and the
existence of back-up registers. The location and length registers are read by the DMA
channel before audio output begins.
The DMA channel then stores the values in back-up registers. Once the original registers
have been read by the DMA channel, you can change their values without disturbing the
operation you started with the original register contents. Thus, you can write the contents
of these registers, start an audio output, and then rewrite the registers in preparation for

the next waveform you want to connect to this one.

Interrupts occur immediately after the audio DMA channel has read the location and
length registers and stored their values in the back-up registers. Once the interrupt has
occurred, you can rewrite the registers with the location and length for the next waveform
segment. This combination of back-up registers and interrupt timing lets you keep one
step ahead of the audio DMA channel, allowing your sound output to be continuous and

smooth.

If you do not rewrite the registers, the current waveform will be repeated. Each time the
length counter reaches zero, both the location and length registers are reloaded with the
same values to continue the audio output.

- Audio Hardware 143 -

EXAMPLE
This example details the system audio DMA action in a step-by-step fashion.

Suppose you wanted to join together a sine and a triangle waveform, end-to-end, for a

special audio effect, alternating between them. The following sequence shows the action
of your program as well as its interaction with the audio DMA system. The example
assumes that the period, volume, and length of the data set remains the same for the
sine wave and the triangle wave.

INTERRUPT PROGRAM

If (wave = triangle)
 write AUD0LCL with address of sine wave data.

Else if (wave = sine)
 write AUD0LCL with address of triangle wave data.

MAIN PROGRAM

1. Set up volume, period, and length.
2. Write AUD0LCL with address of sine wave data.
3. Start DMA.
4. Continue with something else.

- 144 Audio Hardware -

SYSTEM RESPONSE

As soon as DMA starts,

a. Copy to "back-up" length register from AUDOLEN.

b. Copy to "back-up'' location register from AUDOLCL (will be used as a pointer showing
current data word to fetch).

c. Create an interrupt for the 68000 saying that it has completed retrieving working copies
of length and location registers.

d. Start retrieving audio data each allocated DMA time slot.

PLAYING MULTIPLE TONES AT THE SAME TIME
You can play multiple tones either by using several channels independently or by
summing the samples in several data sets, playing the summed data sets through a single
channel.

Since all four audio channels are independently programmable, each channel has its own
data set; thus a different tone or musical note can be played on each channel.

MODULATING SOUND
To provide more complex audio effects, you can use one audio channel to modulate

another. This increases the range and type of effects that can be produced. You can
modulate a channel's frequency or amplitude, or do both types of modulation on a channel
at the same time.

Amplitude modulation affects the volume of the waveform. It is often used to produce
vibrato or tremolo effects. Frequency modulation affects the period of the waveform.
Although the basic waveform itself remains the same, the pitch is increased or decreased
by frequency modulation.

The system uses one channel to modulate another when you attach two channels. The
attach bits in the ADKCON register control how the data from an audio channel is
interpreted (see the Table below). Normally, each channel produces sound when it is
enabled. If the "attach" bit for an audio channel is set, that channel ceases to produce
sound and its data is used to modulate the sound of the next higher-numbered channel.

When a channel is used as a modulator, the words in its data set are no longer treated as
two individual bytes. Instead, they are used as "modulator" words. The data words from
the modulator channel are written into the corresponding registers of the modulated
channel each time the period register of the modulator channel times out.

- Audio Hardware 145 -

To modulate only the amplitude of the audio output, you must attach a channel as a
volume modulator. Define the modulator channel's data set as a series of words, each
containing volume information in the following format:

 BITS FUNCTION

 15 - 7 Not used

 6 - 0 Volume information, V6-V0

To modulate only the frequency, you must attach a channel as a period modulator. Define
the modulator channel's data set as a series of words, each containing period information
in the following format:

 BITS FUNCTION

 15 - 0 Period information, P15-P0

If you want to modulate both period and volume on the same channel, you need to attach
the channel as both a period and volume modulator. For instance, if channel 0 is used to
modulate both the period and frequency of channel 1, you set two attach bits - bit 0 to
modulate the volume and bit 4 to modulate the period. When period and volume are both
modulated, words in the modulator channel's data set are defined alternately as volume
and period information.

The sample set of data in Table 5-4 shows the differences in interpretation of data when a
channel is used directly for audio, when it is attached as volume modulator, when it is

attached as a period modulator, and when it is attached as a modulator of both volume
and period.

 Table 5-4: Data Interpretation in Attach Mode

 INDEPENDENT MODULATING

DATA (NOT BOTH MODULATING MODULATING

WORDS MODULATING) PERIOD AND VOLUME PERIOD ONLY VOL ONLY

Word 1 |data|data| |vol for other channel| |period| |volume|

Word 2 |data|data| |period for other channel| |period| |volume|

Word 3 |data|data| |volume for other channel| |period| |volume|

Word 4 |data|data| |period for other channel| |period| |volume|

- 146 Audio Hardware -

The lengths of the data sets of the modulator and the modulated channels are completely
independent.

Channels are attached by the system in a predetermined order, as shown in Table 5-5. To

attach a channel as a modulator, you set its attach bit to 1. If you set either the volume
or period attach bits for a channel, that channel's audio output will be disabled; the
channel will be attached to the next higher channel, as shown in Table 5-5. Because an
attached channel always modulates the next higher numbered channel, you cannot attach
channel 3. Writing a 1 into channel 3's modulate bits only disables its audio output.

 Table 5-5: Channel Attachment for Modulation

 ADKCON REGISTER

 Bit Name Function

 7 ATPER3 Use audio channel 3 to modulate nothing

 (disables audio output of channel 3)

 6 ATPER2 Use audio channel 2 to modulate period

 of channel 3

 5 ATPER1 Use audio channel 1 to modulate period

 of channel 2

 4 ATPER0 Use audio channel 0 to modulate period

 of channel 1

 3 ATVOL3 Use audio channel 3 to modulate nothing

 (disables audio output of channel 3)

 2 ATVOL2 Use audio channel 2 to modulate volume

 of channel 3

 1 ATVOL1 Use audio channel 1 to modulate volume

 of channel 2

 0 ATVOL0 Use audio channel 0 to modulate volume

 of channel 1

- Audio Hardware 147 -

PRODUCING HIGH-QUALITY SOUND

When trying to create high-quality sound, you need to consider the following factors:

o Waveform transitions.

o Sampling rate.

o Efficiency.

o Noise reduction.

o Avoidance of aliasing distortion.

o Limitations of the low pass filter.

MAKING WAVEFORM TRANSITIONS
To avoid unpleasant sounds when you change from one waveform to another, you need to
make the transitions smooth. You can avoid "clicks" by making sure the waveforms start
and end at approximately the same value. You can avoid "pops" by starting a waveform
only at a zero-crossing point. You can avoid "thumps" by arranging the average amplitude
of each wave to be about the same value. The average amplitude is the sum of the bytes
in the waveform divided by the number of bytes in the waveform.

SAMPLING RATE

If you need high precision in your frequency output, you may find that the frequency you
wish to produce is somewhere between two available sampling rates, but not close
enough to either rate for your requirements. In those cases, you may have to adjust the
length of the audio data Table in addition to altering the sampling rate.

For higher frequencies, you may also need to use audio data Tables that contain more
than one full cycle of the audio waveform to reproduce the desired frequency more
accurately, as illustrated in Figure 54.

- 148 Audio Hardware -

Figure 5.4: Waveform with Multiple Cycles

EFFICIENCY
A certain amount of overhead is involved in the handling of audio DMA. If you are trying
to produce a smooth continuous audio synthesis, you should try to avoid as much of the
system control overhead as possible. Basically, the larger the audio buffer you provide to
the system, the less often it will need to interrupt to reset the pointers to the top of the
next buffer and, coincidentally, the lower the amount of system interaction that will be

required. If there is only one waveform buffer, the hardware automatically resets the
pointers, so no software overhead is used for resetting them.

The "Joining Tones" section illustrated how you could join "ends" of tones together by
responding to interrupts and changing the values of the location registers to splice tones
together. If your system is heavily loaded, it is possible that the response to the interrupt
might not happen in time to assure a smooth audio transition. Therefore, it is advisable to

utilize the longest possible audio Table where a smooth output is required. This takes
advantage of the audio DMA capability as well as minimizing the number of interrupts to
which the 68000 must respond.

- Audio Hardware 149 -

NOISE REDUCTION
To reduce noise levels and produce an accurate sound, try to use the full range of -128 to
127 when you represent a waveform. This reduces how much noise (quantization error)
will be added to the signal by using more bits of precision. Quantization noise is caused by

the introduction of round-off error. If you are trying to reproduce a signal, such as a sine
wave, you can represent the amplitude of each sample with only so many digits of
accuracy. The difference between the real number and your approximation is round-off
error, or noise.

By doubling the amplitude, you create half as much noise because the size of the steps of
the wave form stays the same and is therefore a smaller fraction of the amplitude.

In other words, if you try to represent a waveform using, for example, a range of only +3
to -3, the size of the error in the output would be considerably larger than if you use a
range of +127 to -128 to represent the same signal. Proportionally, the digital value used
to represent the waveform amplitude will have a lower error. As you increase the number
of possible sample levels, you decrease the relative size of each step and, therefore,
decrease the size of the error.

To produce quiet sounds, continue to define the waveform using the full range, but adjust
the volume. This maintains the same level of accuracy (signal-to-noise ratio) for quiet
sounds as for loud sounds.

ALIASING DISTORTION
When you use sampling to produce a waveform, a side effect is caused when sampling

rate "beats" or combines with the frequency you wish to produce. This produces two
additional frequencies, one at the sampling rate plus the desired frequency and the other
at the sampling rate minus the desired frequency. This phenomenon is called aliasing
distortion.

Aliasing distortion is eliminated when the sampling rate exceeds the output frequency by
at least 7 KHz. This puts the beat frequency outside the range of the low-pass filter,
cutting off the undesirable frequencies. Figure 5-5 shows a frequency domain plot of the
anti-aliasing low-pass filter used in the system.

- 150 Audio Hardware -

 ^

 /|\

 |

 |

 0 db |____

 | \

 | \ Filter response

 | \

 -30 db |__\

 | | | | | | /

 05 10 15 20 25 30

 KHz

 Filter passes all frequencies below about 5KHz

 Figure 5-5: Frequency Domain Plot of Low-Pass Filter

Figure 5-6 shows that it is permissible to use a 12 KHz sampling rate to produce a 4 KHz
waveform. Both of the beat frequencies are outside the range of the filter, as shown in
these calculations:

 12+4= 16KHz
 12-4= 8KHz

 ^ Filter response

 /|\

 | 12 KHz sampling frequency

 | |

 0 db |____ |

 | \ Diff. | Sum

 | \ | | |

 | 4| \ | | |

 -30 db |____|___|___|_____|_____________________\

 / | | | | | | /

 / 05 10 15 20 25 30

 / KHz

 /

 Desired output frequency

 Figure 5-6: Noise-free Output (No Aliasing Distortion)

You can see in Figure 5-7 that is unacceptable to use a 10 KHz sampling rate to produce a
4 KHz waveform. One of the beat frequencies (10 - 4) is within the range of the filter,
allowing some of that undesirable frequency to show up in the audio output.

- Audio Hardware 151 -

 ^ Filter response

 /|\

 | 10 KHz sampling frequency

 | |

 0 db |____ |

 | \Diff. | Sum

 | \ | | |

 | 4| \ | | |

 -30 db |____|__\|__|____|______________________\

 / | | | | | | /

 / 05 10 15 20 25 30

 / KHz

 /

 Desired output frequency

 Figure 5-7: Some Aliasing Distortion

All of this gives rise to the following equation, showing that the sampling frequency must
exceed the output frequency by at least 7 KHz, so that the beat frequency will be above
the cut-off range of the anti-aliasing filter:

 Minimum sampling rate = highest frequency component + 7 KHz

The frequency component of the equation is stated as "highest frequency component"
because you may be producing a complex waveform with multiple frequency elements,

rather than a pure sine wave.

LOW-PASS FILTER
The system includes a low-pass filter that eliminates aliasing distortion as described
above. This filter becomes active around 4 KHz and gradually begins to attenuate (cut off)
the signal. Generally, you cannot clearly hear frequencies higher than 7 KHz. Therefore,
you get the most complete frequency response in the frequency range of 0 - 7 KHz. If you
are making frequencies from 0 to 7 KHz, you should select a sampling rate no less
than 14 KHz, which corresponds to a sampling period in the range 124 to 256.

At a sampling period around 320, you begin to lose the higher frequency values between
0 KHz and 7 KHz, as shown in Table 5-6.

- 152 Audio Hardware -

 Table 5-6: Sampling Rate and Frequency Relationship

 Sampling Sampling Maximum Output

 Period Rate (KHz) Frequency (KHz)

Maximum sampling rate 124 29 7

Minimum sampling rate 256 14 7

 for 7 KHz output

Sampling rate too low 320 11 4

 for 7 KHz output

In A2000s with 2 layer motherboards and later AS00 models there is a control bit that
allows the audio output to bypass the low pass filter. This control bit is the same output
bit of the 8520 CIA that controls the brightness of the red "power" LED. Bypassing the
filter allows for improved sound in some applications, but an external filter with an
appropriate cut-off frequency may be required.

USING DIRECT (NON-DMA) AUDIO OUTPUT

It is possible to create sound by writing audio data one word at a time to the audio output
addresses, instead of setting up a list of audio data in memory. This method of controlling
the output is more processor-intensive and is therefore not recommended.

To use direct audio output, do not enable the DMA for the audio channel you wish to use;

this changes the timing of the interrupts. The normal interrupt occurs after a data address
has been read; in direct audio output, the interrupt occurs after one data word has been
output.

Unlike in the DMA-controlled automatic data output, in direct audio output, if you do not
write a new set of data to the output addresses before two sampling intervals have
elapsed, the audio output will cease changing. The last value remains as an output of the
digital-to-analog converter.

The volume and period registers are set as usual.

- Audio Hardware 153 -

THE EQUAL-TEMPERED MUSICAL SCALE
Table 5-7 gives a close approximation of the equal-tempered scale over one octave when
the sample size is 16 bytes. The "Period" column gives the period count you enter into the
period register. The length register AUDxLEN should be set to 8 (16 bytes = 8 words). The

sample should represent one cycle of the waveform.

 Table 5-7: Equal-tempered Octave for a 16 Byte Sample

 NTSC PAL Ideal Actual NTSC Actual PAL

 Period Period Note Frequency Frequency Frequency

 254 252 A 880.0 880.8 879.7

 240 238 A# 932.3 932.2 931.4

 226 224 B 987.8 989.9 989.6

 214 212 C 1046.5 1045.4 1045.7

 202 200 C# 1108.7 1107.5 1108.4

 190 189 D 1174.7 1177.5 1172.9

 180 178 D# 1244.5 1242.9 1245.4

 170 168 E 1318.5 1316.0 1319.5

 160 159 F 1396.9 1398.3 1394.2

 151 150 F# 1480.0 1481.6 1477.9

 143 141 G 1568.0 1564.5 1572.2

 135 133 G# 1661.2 1657.2 1666.8

The Table above shows the period values to use with a 16 byte sample to make tones in
the second octave above middle C. To generate the tones in the lower octaves, there are
two methods you can use, doubling the period value or doubling the sample size.

When you double the period, the time between each sample is doubled so the sample
takes twice as long to play. This means the frequency of the tone generated is cut in half
which gives you the next lowest octave. Thus, if you play a C with a period value of 214,
then playing the same sample with a period value of 428 will play a C in the next lower
octave.

Likewise, when you double the sample size, it will take twice as long to play back the
whole sample and the frequency of the tone generated will be in the next lowest octave.
Thus, if you have an 8 byte sample and a 16 byte sample of the same waveform played at
the same speed, the 16 byte sample will be an octave lower.

- 154 Audio Hardware -

A sample for an equal-tempered scale typically represents one full cycle of a note. To
avoid aliasing distortion with these samples you should use period values in the range
124-256 only. Periods from 124-256 correspond to playback rates in the range 14-28K
samples per second which makes the most effective use of the Amiga's 7 kHz cut-off filter

to prevent noise. To stay within this range you will need a different sample for each
octave.

If you cannot use a different sample for each octave, then you will have to adjust the
period value over its full range 124-65536. This is easier for the programmer but can
produce undesirable high-frequency noise in the resulting tone. Read the section called
"Aliasing Distortion" for more about this.

The values in Table 5-7 were generated using the formula shown below. To calculate the
tone generated with a given sample size and period use:

 Clock Constant 3579545

 Frequency = -------------- = ------- = 880.8hz

 Sample Bytes*Period 16*Period

The clock constant in an NTSC system is 3579545 ticks per second. In a PAL system, the
clock constant is 3546895 ticks per second. Sample bytes is the number of bytes in one
cycle of the waveform sample. (The clock constant is derived from dividing the system
clock value by 2. The value will vary when using an external system clock, such as a
genlock.)

Using the formula above you can generate the values needed for the even-tempered scale
for any arbitrary sample. Table 5-8 gives a close approximation of a five octave even
tempered-scale using five samples. The values were derived using the formula above.
Notice that in each octave period values are the same but the sample size is halved. The
samples listed represent a simple triangular wave form.

- Audio Hardware 155 –

 Table 5-8: Five Octave Even-tempered Scale

 NTSC PAL Ideal Actual NTSC Actual PAL

 Period Period Note Frequency Frequency Frequency

 254 252 A 55.00 55.05 54.98

 240 238 A# 58.27 58.26 58.21

 226 224 B 61.73 61.87 61.85

 214 212 C 65.40 65.34 65.35

 202 200 C# 69.29 69.22 69.27

 190 189 D 73.41 73.59 73.30

 180 178 D# 77.78 77.68 77.83

 170 168 E 82.40 82.25 82.47

 160 159 F 87.30 87.39 87.13

 151 150 F# 92.49 92.60 92.36

 143 141 G 98.00 97.78 98.26

 135 133 G# 103.82 103.57 104.17

Sample size = 256 bytes, AUDxLEN = 128

 254 252 A 110.00 110.10 109.96

 240 238 A# 116.54 116.52 116.43

 226 224 B 123.47 123.74 123.70

 214 212 C 130.81 130.68 130.71

 202 200 C# 138.59 138.44 138.55

 190 189 D 146.83 147.18 146.61

 180 178 D# 155.56 155.36 155.67

 170 168 E 164.81 164.50 164.94

 160 159 F 174.61 174.78 174.27

 151 150 F# 184.99 185.20 184.73

 143 141 G 196.00 195.56 196.52

 135 133 G# 207.65 207.15 208.35

Sample size = 128 bytes, AUDxLEN = 64

 254 252 A 220.00 220.20 219.92

 240 238 A# 233.08 233.04 232.86

 226 224 B 246.94 247.48 247.41

 214 212 C 261.63 261.36 261.42

 202 200 C# 277.18 276.88 277.10

 190 189 D 293.66 294.37 293.23

 180 178 D# 311.13 310.72 311.35

 170 168 E 329.63 329.00 329.88

 160 159 F 349.23 349.56 348.55

 151 150 F# 369.99 370.40 369.47

 143 141 G 392.00 391.12 393.05

 135 133 G# 415.30 414.30 416.70

Sample size = 64 bytes, AUDxLEN = 32

- 156 Audio Hardware –

 NTSC PAL Ideal Actual NTSC Actual PAL

 Period Period Note Frequency Frequency Frequency

 254 252 A 440.0 440.4 439.8

 240 238 A# 466.16 466.09 465.72

 226 224 B 493.88 494.96 494.82

 214 212 C 523.25 522.71 522.83

 202 200 C# 554.37 553.77 554.20

 190 189 D 587.33 588.74 586.46

 180 178 D# 622.25 621.45 622.70

 170 168 E 659.26 658.00 659.76

 160 159 F 698.46 699.13 697.11

 151 150 F# 739.99 740.80 738.94

 143 141 G 783.99 782.24 786.10

 135 133 G# 830.61 828.60 833.39

Sample size = 32 bytes, AUDxLEN = 16

 254 252 A 880.0 880.8 879.7

 240 238 A# 932.3 932.2 931.4

 226 224 B 987.8 989.9 989.6

 214 212 C 1046.5 1045.4 1045.7

 202 200 C# 1108.7 1107.5 1108.4

 190 189 D 1174.7 1177.5 1172.9

 180 178 D# 1244.5 1242.9 1245.4

 170 168 E 1318.5 1316.0 1319.5

 160 159 F 1396.9 1398.3 1394.2

 151 150 F# 1480.0 1481.6 1477.9

 143 141 G 1568.0 1564.5 1572.2

 135 133 G# 661.2 1657.2 1666.8

Sample size = 16 bytes, AUDxLEN = 8

- Audio Hardware 157 -

 256 BYTE SAMPLE

 0 2 4 6 8 10 12 14 16 18 20 22 24 26

 28 30 32 34 36 38 40 42 44 46 48 50 52 54

 56 58 60 62 64 66 68 70 72 74 76 78 80 82

 84 86 88 90 92 94 96 98 100 102 104 106 108 110

 112 114 116 118 120 122 124 126 128 126 124 122 120 118

 116 114 112 110 108 106 104 102 100 98 96 94 92 90

 88 86 84 82 80 78 76 74 72 70 68 66 64 62

 60 58 56 54 52 50 48 46 44 42 40 38 36 34

 32 30 28 26 24 22 20 18 16 14 12 10 8 6

 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22

 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50

 -52 -54 -56 -58 -60 -62 -64 -66 -68 -70 -72 -74 -76 -78

 -80 -82 -84 -86 -88 -90 -92 -94 -96 -98 -100 -102 -104 -106

-108 -110 -112 -114 -116 -118 -120 -122 -124 -126 -127 -126 -124 -122

-120 -118 -116 -114 -112 -110 -108 -106 -104 -102 -100 -98 -96 -94

 -92 -90 -88 -86 -84 -82 -80 -78 -76 -74 -72 -70 -68 -66

 -64 -62 -60 -58 -56 -54 -52 -50 -48 -46 -44 -42 -40 -38

 -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 -14 -12 -10

 -8 -6 -4 -2

 128 BYTE SAMPLE

 0 4 8 12 16 20 24 28 32 36 40 44 48 52

 56 60 64 68 72 76 80 84 88 92 96 100 104 108

 112 116 120 124 128 124 120 116 112 108 104 100 96 92

 88 84 80 76 72 68 64 60 56 52 48 44 40 36

 32 28 24 20 16 12 8 4 0 4 8 12 16 20

 24 28 32 36 40 44 48 52 56 60 64 68 72 76

 80 84 88 92 96 100 104 108 112 116 120 124 -127 -124

-120 -116 -112 -108 -104 -100 -96 -92 -88 -84 -80 -76 -72 -68

 -64 -60 -56 -52 -48 -44 -40 -36 -32 -28 -24 -20 -16 -12

 -8 -4

 64 BYTE SAMPLE

 0 8 16 24 32 40 48 56 64 72 80 88 96 104

 112 120 128 120 112 104 96 88 80 72 64 56 48 40

 32 24 16 8 0 -8 -16 -24 -32 -40 -48 -56 -64 -72

 -80 -88 -96 -104 -112 -120 -127 -120 -112 -104 -96 -88 -80 -72

 -64 -56 -48 40 -32 -24 -16 -8

 32 BYTE SAMPLE

 0 16 32 48 64 80 96 112 128 112 96 80 64 48

 32 16 0 -16 -32 -48 -64 -80 -96 -112 -127 -112 -96 -80

 -64 4 8 -32 -16

 16 BYTE SAMPLE

 0 32 64 96 128 96 64 32 0 -32 -64 -96 -127 -96

 -64 -32

- 158 Audio Hardware -

DECIBEL VALUES FOR VOLUME RANGES

Table 5-9 provides the corresponding decibel values for the volume ranges of the Amiga
system.

 Table 5-9: Decibel Values and Volume Ranges

 Volume Decibel Value Volume Decibel Value

 64 0.0 32 -6.0

 63 -0.1 31 -6.3

 62 -0.3 30 -6.6

 61 -0.4 129 -6.9

 60 -0.6 28 -7.2

 59 -0.7 27 -7.5

 58 -0.9 26 -7.8

 57 -1.0 25 -8.2

 56 -1.2 24 -8.5

 55 -1.3 23 -8.9

 54 -1.5 22 -9.3

 53 -1.6 21 -9.7

 52 -1.8 20 -10.1

 51 -2.0 19 -10.5

 50 -2.1 18 -11.0

 49 -2.3 17 -11.5

 48 -2.5 16 -12.0

 47 -2.7 15 -12.6

 46 -2.9 14 -13.2

 45 -3.1 13 -13.8

 44 -3.3 12 -14.5

 43 -3.5 11 -15.3

 42 -3.7 10 -16.1

 41 -3.9 9 -17.0

 40 4.1 8 -18.1

 39 4.3 7 -19.2

 38 4.5 6 -20.6

 37 4.8 5 -22.1

 36 -5.0 4 -24.1

 35 -5.2 3 -26.6

 34 -5.5 2 -30.1

 33 -5.8 1 -36.1

 0 Minus infinity

- Audio Hardware 159 -

THE AUDIO STATE MACHINE

For an explanation of the various states, refer to Figure 5-8. There is one audio state
machine for each channel. The machine has eight states and is clocked at the clock

constant rate (3.58 MHz NTSC). Three of the states are basically unused and just transfer
back to the idle (000) state. One of the paths out of the idle state is designed for
interrupt-driven operation (processor provides the data), and the other path is designed
for DMA-driven operation (the "Agnus" special chip provides the data).

In interrupt-driven operation, transfer to the main loop (states 010 and 011) occurs
immediately after data is written by the processor. In the 010 state the upper byte is

output, and in the 011 state the lower byte is output. Transitions such as 010011010
occur whenever the period counter counts down to one. The period counter is reloaded at
these transitions. As long as the interrupt is cleared by the processor in time, the machine
remains in the main loop. Otherwise, it enters the idle state. Interrupts are generated on
every word transition (011010).

In DMA-driven operation, transition to the 001 state occurs and DMA requests are sent to
Agnus as soon as DMA is turned on. Because of pipelining in Agnus, the first data word
must be thrown away. State 101 is entered as soon as this word arrives; a request for the
next data word has already gone out. When the data arrives, state 010 is entered and the
main loop continues until the DMA is turned off. The length counter counts down once
with each word that comes in. When it finishes, a DMA restart request goes to Agnus
along with the regular DMA request. This tells Agnus to reset the pointer to the beginning
of the Table of data. Also, the length counter is reloaded and an interrupt request goes

out soon after the length counter finishes (counts to one). The request goes out just as
the last word of the waveform starts its output.

DMA requests and restart requests are transferred to Agnus once each horizontal line, and
the data comes back about 14 clock cycles later (the duration of a clock cycle is 280 ns).

In attach mode, things run a little differently. In attach volume, requests occur as they do
in normal operation (on the 011010 transition). In attach period, a set of requests occurs
on the O10011 transition. When both attach period and attach volume are high, requests
occur on both transitions.

If the sampling rate is set much higher than the normal maximum sampling rate
(approximately 29 KHz), the two samples in the buffer register will be repeated. If the
filter on the Amiga is bypassed and the volume is set to the maximum ($40), this feature

can be used to make modulated carriers up to 1.79 MHz. The modulation is placed in the
memory map, with plus values in the even bytes and minus values in the odd bytes.

The symbols used in the state diagram are explained in the following list. Upper-case
names indicate external signals; lower-case names indicate local signals.

- 160 Audio Hardware -

AUDxON DMA on "x" indicates channel number (signal from DMACON).

AUDxIP Audio interrupt pending (input to channel from interrupt

 circuitry).

AUDxIR Audio interrupt request (output from channel to interrupt

 circuitry)

intreq1 Interrupt request that combines with intreq2 to form AUDxIR

intreq2 Prepare for interrupt request. Request comes out after the

 next 011-->010 transition in normal operation.

AUDxDAT Audio data load signal. Loads 16 bits of data to audio channel.

AUDxDR Audio DMA request to Agnus for one word of data.

AUDxDSR Audio DMA request to Agnus to reset pointer to start of block.

dmasen Restart request enable.

percntrld Reload period counter from back-up latch typically written by

 processor with AUDxPER (can also be written by attach mode).

percount Count period counter down one latch.

perfin Period counter finished (value = 1).

lencntrld Reload length counter from back-up latch.

lencount Count length counter down one notch.

lenfin Length counter finished (value = 1).

volcntrld Reload volume counter from back-up latch.

pbufld1 Load output buffer from holding latch written to by AUDxDAT.

pbufld2 Like pbufld1, but only during 010-->011 with attach period.

AUDxAV Attach volume. Send data to volume latch of next channel

 instead of to D-->A converter.

AUDxAP Attach period. Send data to period latch of next channel

 instead of to the DA converter.

penhi Enable the high 8 bits of data to go to the D-->A converter.

- Audio Hardware 161 -

napnav /AUDxAV * /AUDxAP + AUDxAV - no attach stuff or else attach

 volume. Condition for normal DMA and interrupt requests.

sq2,1,0 The name of the state flip-flops, MSB to LSB.

Figure 5-8: Audio State Diagram

- 162 Audio Hardware -

Chapter 6

BLITTER HARDWARE

INTRODUCTION

The blitter is one of the two co-processors in the Amiga. Part of the Agnus chip, it is used
to copy rectangular blocks of memory around and to draw lines. When copying memory, it
is approximately twice as fast as the 68000, able to move almost four megabytes per
second. It can draw lines at almost a million pixels per second.

In block move mode, the blitter can perform any logical operation on up to three source
areas, it can shift up to two of the source areas by one to fifteen bits, it can fill outlined
shapes, and it can mask the first and last words of each raster row. In line mode, any
pattern can be imposed on a line, or the line can be drawn such that only one pixel per
horizontal line is set.

- Blitter Hardware 163 -

The blitter can only access CHIP memory - that portion of memory accessible by the
display hardware. Attempting to use the blitter to read or write FAST or other non-CHIP
memory may result in destruction of the contents of CHIP memory.

A "blit" is a single operation of the blitter - perhaps the drawing of a line or movement of
a block of memory. A blit is performed by initializing the blitter registers with appropriate
values and then starting the blitter by writing the BLTSIZE register. As the blitter is an
asynchronous coprocessor, the 68000 continues to run as the blit is executing.

MEMORY LAYOUT

The blitter is a word blitter, not a bit blitter. All data fetched, modified, and written are in
full 16-bit words. Through careful programming, the blitter can do many "bit" type
operations.

The blitter is particularly well suited to graphics operations. As an example, a 320 by 200
screen set up to display 16 colors is organized as four bitplanes of 8,000 bytes each. Each
bitplane consists of 200 rows of 40 bytes or 20 16-bit words. (From here on, a "word" will
mean a 16-bit word.)

DMA CHANNELS

The blitter has four DMA channels - three source channels, labelled A, B, and C, and one
destination channel, called D. Each of these channels has separate address pointer,
modulo and data registers and an enable bit. Two have shift registers, and one has a first

and last word mask register. All four share a single blit size register.

The address pointer registers are each composed of two words, named BLTxPTH and
BLTxPTL. (Here and later, in referring to a register, any "x" in the name should be
replaced by the channel label, A, B, C, or D.) The two words of each register are adjacent
in the 68000 address space, with the high address word first, so they can both be written
with one 32-bit write from the processor. The pointer registers should be written with an
address in bytes. Because the blitter works only on words, the least significant bit of the
address is ignored. Because only CHIP memory is accessible, some of the most significant
bits will be ignored as well. On machines with 512 KB of CHIP memory, the most
significant 13 bits are ignored. Future machines will have more CHIP memory and fewer
bits will be ignored. A valid, even, CHIP memory address should always be written to
these registers.

NOTE
Be sure to write zeros to all unused bits in the custom chip registers. These bits may be
used by later versions of the custom chips. Writing non-zero values to these bits may
cause unexpected results on future machines.

- 164 Blitter Hardware -

Each of the DMA channels can be independently enabled or disabled. The enable bits are
bits SRCA, SRCB, SRCC, and DEST in control register zero (BLTCON0).

When disabled, no memory cycles will be executed for that channel and, for a source

channel, the constant value stored in the data register of that channel will be used for
each blitter cycle. For this purpose, each of the three source channels have preloadable
data registers, called BLTxDAT.

Images in memory are usually stored in a linear fashion; each word of data on a line is
located at an address that is one greater than the word on its left. i.e. Each line is a "plus
one" continuation of the previous line. (See Figure 6-1.)

 20 21 22 23 24 24 26

 27 28 29 30 31 32 33

 34 35 36 37 38 39 40

 41 42 43 44 45 46 47

 48 49 50 51 52 53 54

 55 56 57 58 59 60 61

 Figure 6-1: How Images are Stored in Memory

The map in Figure 6-1 represents a single bit-plane (one bit of color) of an image at word
addresses 20 through 61. Each of these addresses accesses one word (16 pixels) of a
single bitplane. If this image required sixteen colors, four bit-planes like this would be
required in memory, and four copy (move) operations would be required to completely

move the image.

The blitter is very efficient at copying such blocks because it needs to be told only the
starting address (20), the destination address, and the size of the block (height = 6, width
= 7). It will then automatically move the data, one word at a time, whenever the data bus
is available. When the transfer is complete, the blitter will signal the processor with a flag
and an interrupt.

NOTE

This copy (move) operation operates on memory and may or may not change the memory
currently being used for display.

All data copy blits are performed as rectangles of words, with a given width and height. All

four DMA channels use a single blit size register, called BLTSIZE, used for both the width
and height. The width can take a value of from 1 to 64 words (16 to 1024 bits). The
height can run from 1 to 1024 rows. The width is stored in the least significant six bits of
the BLTSIZE register. If a value of zero is stored, a width count of 64 words is used. This
is the only parameter in the blitter

- Blitter Hardware 165 -

that is given in words. The height is stored in the upper ten bits of the BLTSIZE register,
with zero representing a height of 1024 rows. Thus, the largest blit possible with the
current Amiga blitter is 1024 by 1024 pixels. However, shifting and masking operations
may require an extra word be fetched for each raster scan line, making the maximum

practical horizontal width 1008 pixels.

NOTE
To emphasize the above paragraph: Blit width is in words with a zero representing 64
words. Blit height is in lines with a zero representing 1024 lines.

The blitter also has facilities, called modules, for accessing images smaller than the entire

bitplane. Each of the four DMA channels has 16 bit modulo register called BLTxMOD. As
each word is fetched (or written) for an enabled channel, the address pointer register is
incremented by two (bytes, or one word.) After each row of the blit is completed, the
signed 16-bit modulo value for that DMA channel is added to the address pointer. (A row
is defined by the width stored in BLTSIZE.)

NOTE
The modulo values are in bytes, not words. Since the blitter can only operate on words,
the least significant bit is ignored. The value is sign-extended to the full width of the
address pointer registers. Negative modules can be useful in a variety of ways, such as
repeating a row by setting the modulo to the negative of the width of the bitplane.

As an example, suppose we want to operate on a section of a full 320 by 200 pixel bitmap
that started at row 13, byte 12 (where both are numbered from zero) and the section is

10 bytes wide. We would initialize the pointer register to the address of the bitplane plus
40 bytes per row times 13 rows, plus 12 bytes to get to the correct horizontal position.
We would set the width to 5 words (10 bytes). At the end of each row, we would want to
skip over 30 bytes to get to the beginning of the next row, so we would use a modulo
value of 30. In general, the width (in words) times two plus the modulo value (in bytes)
should equal the full width, in bytes, of the bitplane containing the image.

- 166 Blitter Hardware -

Figure 6-2: BLTxPTR and BLTxMOD calculations

NOTE
The blitter can be used to process linear rather than rectangular regions by setting the
horizontal or vertical count in BLTSIZE to 1.

Because each DMA channel has its own modulo register, data can be moved among
bitplanes of different widths. This is most useful when moving small images into larger
screen bitplanes.

- Blitter Hardware 167 -

FUNCTION GENERATOR

The blitter can combine the data from the three source DMA channels in up to 256
different ways to generate the values stored by the destination DMA channel. These

sources might be one bitplane from each of three separate graphics images. While each of
these sources is a rectangular region composed of many points, the same logic operation
will be performed on each point throughout the rectangular region. Thus, for purposes of
defining the blitter logic operation it is only necessary to consider what happens for all of
the possible combinations of one bit from each of the three sources.

There are eight possible combinations of values of the three bits, for each of which we

need to specify the corresponding destination bit as a zero or one. This can be visualized
with a standard truth Table, as shown below. We have listed the three source channels,
and the possible values for a single bit from each one.

A B C D BLTCON0 position MINTERM

0 0 0 ? 0 ABC

 __

0 0 1 ? 1 ABC

 _ _

0 1 0 ? 2 ABC

 _

0 1 1 ? 3 ABC

 __

1 0 0 ? 4 ABC

 _

1 0 1 ? 5 ABC

 _

1 1 0 ? 6 ABC

1 1 1 ? 7 ABC

This information is collected in a standard format, the LF control byte in the BLTCON0
register. This byte programs the blitter to perform one of the 256 possible logic operations
on three sources for a given blit.

To calculate the LF control byte in BLTCON0, fill in the truth Table with desired values for
D, and read the function value from the bottom of the Table up.

For example, if we wanted to set all bits in the destination where the corresponding A
source bit is 1 or the corresponding B source bit is 1, we would fill in the last four entries
of the truth Table with 1 (because the A bit is set) and the third, fourth, seven, and eight
entries with 1 (because the B bit is set), and all others (the first and second) with 0,
because neither A nor B is set. Then, we read the truth Table from the bottom up, reading
11111100, or $FC.

 - "$" indicates hex notation.

- 168 Blitter Hardware -

For another example, an LF control byte of $80 (= 1000 0000 binary) turns on bits only
for those points of the D destination rectangle where the corresponding bits of A, B, and C
sources were all on (ABC = 1, bit 7 of LF on). All other points in the rectangle, which
correspond to other combinations for A, B, and C, will be 0. This is because bits 6 through

0 of the LF control byte, which specify the D output for these situations, are set to 0.

DESIGNING THE LF CONTROL BYTE WITH MINTERMS
One approach to designing the LF control byte uses logic equations. Each of

the rows in the truth Table corresponds to a "minterm", which is a

particular arrangement of values to the A, B, and C bits. For instance, the

first minterm is usually written ABC, or "not A and not B and not C". The

last is written as ABC.

NOTE

Two terms that are adjacent are AND'ed, and two terms that are separated by

"+" are OR'ed. "And" has a higher precedence, so AB + BC is equal to (AB) +

(BC).

Any function can be written as a sum of minterms. If we wanted to calculate

the function where D is one when the A bit is set and the C bit

 _

is clear, or when the B bit is set, we can write that as AC+B, or "A and not

C or B". Since "1 and A" is "A":

 _

 D = AC + B

 _

 D = A(1)C + (1)B(1)

 _ _

Since either A or A is true (1 = A + A), and similarly for B, and C; we

can expand the above equation further:

 _

 D = A(1)C + (1)B(1)

 _ _ _ _ _

 D=A(B+B)C+(A+A)B(C+C)

 _ __ _ _ _

 D=ABC+ABC+AB(C+C)+AB(C+C)

 _ __ _ _ _ _

 D=ABC+ABC+ABC+ABC+ABC+ABC

After eliminating duplicates, we end up with the five minterms:

 _ _ __ _ _ _

 AC+B=ABC+ABC+ABC+ABC+ABC

These correspond to BLTCON0 bit positions of 6, 4, 7, 3, and 2, according to

our truth Table, which we would then set, and clear the rest.

The wide range of logic operations allow some sophisticated graphics

techniques. For instance, you can move the image of a car across some pre-

existing building images with a few blits. Producing this effect requires

predrawn images of the car, the buildings (or background), and a car

- Blitter Hardware 169 -

"mask" that contains bits set wherever the car image is not transparent. This mask can be
visualized as the shadow of the car from a light source at the same position as the viewer.

NOTE

The mask for the car need only be a single bitplane regardless of the depth of the
background bitplane. This mask can be used in turn on each of the background bitplanes.

To animate the car, first save the background image where the car will be placed. Next
copy the car to its first location with another blit. Your image is now ready for display. To
create the next image, restore the old background, save the next portion of the
background where the car will be, and redraw the car, using three separate blits. (This

technique works best with beam-synchronized blits or double buffering.)

To temporarily save the background, copy a rectangle of the background (from the A
channel, for instance) to some backup buffer (using the D channel). In this case, the
function we would use is "A", the standard copy function. From Table 6-1, we note that
the corresponding LF code has a value of $F0.

To draw the car, we might use the A DMA channel to fetch the car mask, the B DMA
channel to fetch the actual car data, the C DMA channel to fetch the background, and the
D DMA channel to write out the new image.

NOTE
We must fetch the destination background before we write it, as only a portion of a
destination word might need to be modified, and there is no way to do a write to only a

portion of a word.

When blitting the car to the background we would want to use a function that, whenever
the car mask (fetched with DMA channel A) had a bit set, we would pass through the car
data from B, and whenever A did not have a bit set, we would pass through the original
background from C. The corresponding function, commonly referred to as the cookie-cut
function,
 _

is AB+AC, which works out to an LF code value of $CA.

To restore the background and prepare for the next frame, we would copy the information
saved in the first step back, with the standard copy function ($F0).

If you shift the data and the mask to a new location and repeat the above three steps
over and over, the car will appear to move across the background (the buildings).

NOTE
This may not be the most effective method of animation, depending on the application,
but the cookie-cut function will appear often.

Table 6-1 lists some of the most common functions and their values, for easy reference.

- 170 Blitter Hardware -

Table 6-1: Table of Common Minterm Values

 Selected BLTCON0 Selected BLTCON0

 Equation LF Code Equation LF Code

 D = A $F0 D = AB $C0

 _ _

 D = A $0F D = AB $30

 _

 D = B $CC D = AB $0C

 _ __

 D = B $33 D = AB $03

 D = C $AA D = BC $88

 _ _

 D = C $55 D = BC $44

 _

 D = AC $A0 D = BC $22

 _ __

 D = AC $50 D = AC $11

 _ _

 D = AC $0A D = A+B $F3

 __ _ _

 D = AC $05 D = A+B $3F

 _

 D = A+B $FC D = A+C $FS

 _ _ _

 D = A+B $CF D = A+C $5F

 _

 D = A+C $FA D = B+C $DD

 _ _ _

 D = A+C $AF D = B+C $77

 _

 D = B+C $EE D = AB+AC $CA

 _

 D = B+C $BB

- Blitter Hardware 171 -

DESIGNING THE LF CONTROL BYTE WITH VENN DIAGRAMS
Another way to arrive at a particular function is through the use of Venn diagrams:

Figure 6-3: Blitter Minterm Venn Diagram

1. To select a function D=A (that is, destination = A source only), select only the
minterms that are totally enclosed by the A-circle in the Figure above. This is the set of
minterms 7, 6, 5, and 4. When written as a set of 1s for the selected minterms and 0s for
those not selected, the value becomes:

 Minterm Number 7 6 5 4 3 2 1 0

 Selected Minterms 1 1 1 1 0 0 0 0

 F 0 equals $F0

2. To select a function that is a combination of two sources, look for the minterms by both

of the circles (their intersection). For example, the combination AB (A "and" B) is
represented by the area common to both the A and B circles, or minterms 7 and 6.

 Minterm Numbers 7 6 5 4 3 2 1 0

 Selected Minterms 1 1 0 0 0 0 0 0

 C 0 equals $C0

- 172 Blitter Hardware -

3. To use a function that is the inverse, or "not", of one of the
 _

sources, such as A, take all of the minterms not enclosed by the circle represented by

A on the above Figure. In this case, we have minterms 0, 1, 2, and 3.

 Minterm Numbers 7 6 5 4 3 2 1 0

 Selected Minterms 0 0 0 0 1 1 1 1

 0 F equals $0F

4. To combine minterms, or "or" them, "or" the values together. For example, the
equation AB+BC becomes

 Minterm Numbers 7 6 5 4 3 2 1 0

 AB 1 1 0 0 0 0 0 0

 BC 1 0 0 0 1 0 0 0

 AB+BC 1 1 0 0 1 0 0 0

 C 8 equals $C8

SHIFTS AND MASKS

Up to now we have dealt with the blitter only in moving words of memory around and
combining them with logic operations. This is sufficient for moving graphic images around,
so long as the images stay in the same position relative to the beginning of a word. If our
car image has its left-most pixel on the second pixel from the left, we can easily draw it
on the screen in any position where the leftmost pixel also starts two pixels from the
beginning of some word. But often we want to draw that car shifted left or right by a few
pixels. To this end, both the A and B DMA channels have a barrel shifter that can shift an
image between 0 and 15 bits.

This shifting operation is completely free; it requires no more time to execute a blit with

shifts than a blit without shifts, as opposed to shifting with the 68000. The shift is
normally towards the right. This shifter allows movement of images on pixel boundaries,
even though the pixels are addressed 16 at a time by each word address of the bit-plane
image.

So if the incoming data is shifted to the right, what is shifted in from the left? For the first
word of the blit, zeros are shifted in; for each subsequent word of the same blit, the data
shifted out from the previous word is shifted in.

The shift value for the A channel is set with bits 15 through 12 of BLTCON0; the B shift
value is set with bits 15 through 12 of BLTCON1. For most operations, the same value will
be used for both shifts. For shifts of greater than fifteen bits, load the address register
pointer of the destination with a higher address; a shift of 100 bits would require the
destination pointer to be advanced 100/16 or 6 words (12 bytes), and a right shift of the

remaining 4 bits to be used.

As an example, let us say we are doing a blit that is three words wide, two words high,
and we are using a shift of 4 bits. For simplicity, let us assume we are doing a straight
copy from A to D. The first word that will be written to D is the first word fetched from A,
shifted right four bits

- Blitter Hardware 173 -

with zeros shifted in from the left. The second word will be the second word fetched from
the A, shifted right, with the least significant (rightmost) four bits of the first word shifted
in. Next, we will write the first word of the second row fetched from A, shifted four bits,
with the least significant four bits of the last word from the first row shifted in. This would

continue until the blit is finished.

On shifted blits, therefore, we only get zeros shifted in for the first word of the first row.
On all other rows the blitter will shift in the bits that it shifted out of the previous row. For
most graphics applications, this is undesirable. For this reason, the blitter has the
ability to mask the first and last word of each row coming through the A DMA channel.
Thus, it is possible to extract rectangular data from a source whose right and left edges

are between word boundaries. These two registers are called BLTAFWM and BLTALWM, for
blitter A channel first and last word masks. When not in use, both should be initialized to
all ones ($FFFF).

NOTE
Text fonts on the Amiga are stored in a packed bit map. Individual characters from the
font are extracted using the blitter, masking out unwanted bits. The character may then
be positioned to any pixel alignment by shifting it the appropriate amount.

These masks are "anded" with the source data, before any shifts are applied. Only when
there is a 1 bit in the first-word mask will that bit of source A actually appear in the logic
operation. The first word of each row is anded with BLTAFWM, and the last word is
"anded" with BLTALWM. If the width of the row is a single word, both masks are applied
simultaneously.

The masks are also useful for extracting a certain range of "columns" from some bitplane.
Let us say we have, for example, a predrawn rectangle containing text and graphics that
is 23 pixels wide. The leftmost edge is the leftmost bit in its bitmap, and the bitmap is two
words wide. We wish to render this rectangle starting at pixel position 5 into our 320 by
200 screen bitmap, without disturbing anything that lies outside of the rectangle.

- 174 Blitter Hardware -

 |______________2 word source bitmap____________|

 | |

 |___Extract a 23-bit image_____| |

 | | |

 |_____16 bit word______| | |

 | | | |

 |______________________|_______|_______________|

 | |

 Source | 00000000 00000000 00000000 00000000 |

 DMA B | 11111111 11111111 11111111 11111111 |

 | 10101010 01010101 10101010 01010101 |

 |__|

 | | | | *

 \|/ \|/ \|/ \|/

 ____V___________V_____ ___V___________V_____

 | | | |

 Mask on | 11111111 11111111 | |11111110 00000000 |

 DMA A | First word mask | | Second word mask |

 |______________________| |_____________________|

 | | | | _|_ _|_

 \|/ \|/ \|/\|/

 ____V____________V__________V__V______________

 Final | |

destination | 00000000 00000000 00000001 11111111 |

 DMA D | 11111111 11111111 11111111 11111111 |

(points to | 10101010 01010101 10101011 11111111 |

 same address|__|

 as DMA C) ^ ^ ^ ^

 ___ ___ ___ /|\ /|\ /|\ /|\

 | | | | | | |

 ____|____________|_________|___|_____|___|___| **

 Destination | |

 before blit | 11111111 11111111 11111111 11111111 |

 DMA C | 11111111 11111111 11111111 11111111 |

 (to be | 11111111 11111111 11111111 11111111 |

overwritten) |__|

* Source is passed through mask when it is a one, otherwise the

destination is copied.

** Destination does not change where mask is 0.

 Figure 6-4: Extracting a Range of Columns

To do this, we point the B DMA channel at the bitmap containing the source image, and
the D DMA channel at the screen bitmap. We use a shift value of 5. We also point the C
DMA channel at the screen bitmap. We use a blit width of 2 words. What we need is a
simple copy operation, except we wish to leave the first five bits of the first word, and the
last four bits (2 times 16, less 23, less 5) of the last word alone. The A DMA channel
comes to the rescue. We preload the A data register with $FFFF (all ones), and use a first
word mask with the most significant five bits set to zero ($07FF) and a last word mask
with the least significant four bits set to zero ($07FF).

We do not enable the A DMA channel, but only the B, C, and D channels, since we want to
use the A channel as a simple row mask. We then wish to pass the B (source) data along
wherever the A channel is 1 (for a minterm of AB) and pass along the original destination
data (from the C channel) wherever A is 0 (for a minterm of AC), yielding our classic

cookie-cut function of AB+AC, or $CA.

- Blitter Hardware 175 -

NOTE
Even though the A channel is disabled, we use it in our logic function and preload the data
register. Disabling a channel simply turns off the memory fetches for that channel; all
other operations are still performed, only from a constant value stored in the channel's

data register

An alternative but more subtle way of accomplishing the same thing is to use an A shift of
five, a first word mask of all ones, and a last word mask with the rightmost nine bits set
to zero. All other registers remain the same.

NOTE

Be sure to load the blitter immediate data registers only after setting the shift count in
BLTCON0/BLTCON1, as loading the data registers first will lead to unpredicTable results.
For instance, if the last person left BSHIFT to be "4", and I load BDATA with "1" and then
change BSH1 to "2", the resulting BDATA that is used is "1<<4", not "1<<2". The act of
loading one of the data registers "draws" the data through the machine and shifts it.

DESCENDING MODE

Our standard memory copy blit works fine if the source does not overlap the destination.
If we want to move an image one row down (towards increasing addresses), however, we
run into a problem - we overwrite the second row before we get a chance to copy it! The
blitter has a special mode of operation - descending mode - that solves this problem
nicely.

Descending mode is turned on by setting bit one of BLTCON1 (defined as BLITREVERSE).
If you use descending mode the address pointers will be decremented by two (bytes)
instead of incremented by two for each word fetched. In addition, the modulo values will
be subtracted rather than added. Shifts are then towards the left, rather than the right,
the first word mask masks the last word in a row (which is still the first word fetched, and
the last word mask masks the first word in a row.

Thus, for a standard memory copy, the only difference in blitter setup (assuming no
shifting or masking) is to initialize the address pointer registers to point to the last word in
a block, rather than the first word. The modulo values, blit size, and all other parameters
should be set the same.

NOTE
This differs from predecrement versus postincrement in the 68000, where an address

register would be initialized to point to the word after the last, rather than the last word.

Descending mode is also necessary for area filling, which will be covered in a later section.

- 176 Blitter Hardware -

COPYING ARBITRARY REGIONS

One of the most common uses of the blitter is to move arbitrary rectangles of data from
one bitplane to another, or to different positions within a bitplane. These rectangles are

usually on arbitrary bit coordinates, so shifting and masking are necessary. There are
further complications. It may take several readings and some experimentation before
everything in this section can be understood.

A source image that spans only two words may, when copied with certain shifts, span
three words. Our 23 pixel wide rectangle above, for instance, when shifted 12 bits, will
span three words. Alternatively, an image spanning three words may fit in two for certain

shifts. Under all such circumstances, the blit size should be set to the larger of the two
values, such that both source and destination will fit within the blit size. Proper masking
should be applied to mask out unwanted data.

Some general guidelines for copying an arbitrary region are as follows.

1. Use the A DMA channel, disabled, preloaded with all ones and the appropriate mask
and shift values, to mask the cookie cut function. Use the B channel to fetch the source
data, the C channel to fetch the destination data, and the D channel to write the
destination data. Use the cookie-cut function $CA.

2. If shifting, always use ascending mode if bit shifting to the right, and use descending
mode if bit shifting to the left.

NOTE
These shifts are the shifts of the bit position of the leftmost edge within a word, rather
than absolute shifts, as explained previously.

3. If the source and destination overlap, use ascending mode if the destination has a
lower memory address (is higher on the display) and descending mode otherwise.

4. If the source spans more words than the destination, use the same shift value for the A
channel as for the source B channel and set the first and last word masks as if they were
masking the B source data.

5. If the destination spans more words than the source, use a shift value of zero for the A
channel and set the first and last word masks as if they were masking the destination D
data.

- Blitter Hardware 177 -

6. If the source and destination span the same number of words, use the A channel to
mask either the source, as in 4, or the destination, as in 5.

NOTE

Conditions 2 and 3 can be contradictory if, for instance, you are trying to move an image
one pixel down and to the right. In this case, we would want to use descending mode so
our destination does not overwrite our source before we use the source, but we would
want to use ascending mode for the right shift. In some situations, it is possible to get
around general guideline 2 above with clever masking. But occasionally just masking the
first or last word may not be sufficient; it may be necessary to mask more than 16 bits on
one or the other end. In such a case, a mask can be built in memory for a single raster

row, and the A DMA channel enabled to explicitly fetch this mask. By setting the A modulo
value to the negative of the width of the mask, the mask will be repeatedly fetched for
each row.

AREA FILL MODE

In addition to copying data, the blitter can simultaneously perform a fill operation during
the copy. The fill operation has only one restriction - the area to fill must be defined first
by drawing untextured lines with only one bit set per horizontal row. A special line draw
mode is available for this operation. Use a standard copy blit (or any other blit, as area
fills take place after all shifts, masks and logical combination of sources). Descending
mode must be used. Set either the inclusive-fill-enable bit (FILL OR, or bit 3) or the
exclusive-fill-enable bit (FILL XOR, or bit 4) in BLTCON1. The inclusive fill mode fills
between lines, leaving the lines intact. The exclusive fill mode fills between lines, leaving

the lines bordering the right edge of filled regions but deleting the lines bordering the left
edge. Exclusive fill yields filled shapes one pixel narrower than the same pattern filled with
inclusive fill.

For instance, the pattern:

 00100100-00011000

filled with inclusive fill, yields:

 00111100-00011000

with exclusive fill, the result would be

 00011100-00001000

(Of course, fills are always done on full 16-bit words.)

- 178 Blitter Hardware -

There is another bit (FILL_CARRYIN or bit 3 in BLTCON1) that forces the area "outside"
the lines be filled; for the above example, with inclusive fill, the output would be;

 11100111-11111111

with exclusive fill, the output would be;

 11100011-11110111

 BEFORE AFTER

 ____________________ ___________________

 | | | |

 | 1 1 1 1 | | 11111 11111 |

 | 1 1 1 1 | | 11111 11111 |

 | 1 1 1 1 | | 1111 1111 |

 | 1 1 1 1 | | 111 111 |

 | 11 11 | | 11 11 |

 | 1 1 1 1 | | 111 111 |

 | 1 1 1 1 | | 1111 1111 |

 | 1 1 1 1 | | 11111 11111 |

 |____________________| |___________________|

 Figure 6-5: Use of the FCI Bit - Bit Is a 0

If the FCI bit is a 1 instead of a 0, the area outside the lines is filled with ls and the area
inside the lines is left with 0s in between.

 BEFORE AFTER

 ____________________ ___________________

 | | | |

 | 1 1 1 1 | |111 1111111 11|

 | 1 1 1 1 | |111 11111111 11|

 | 1 1 1 1 | |1111 111111111 11|

 | 1 1 1 1 | |11111 1111111111 11|

 | 11 11 | |1111111111111111111|

 | 1 1 1 1 | |11111 1111111111 11|

 | 1 1 1 1 | |1111 111111111 11|

 | 1 1 1 1 | |111 11111111 11|

 |____________________| |___________________|

 Figure 6-6: Use of the FCI Bit - Bit Is a 1

If you wish to produce very sharp, single-point vertices, exclusive-fill enable must be
used. Figure 6-7 shows how a single-point vertex is produced using exclusive-fill enable.

- Blitter Hardware 179 -

 BEFORE AFTER EXCLUSIVE FILL

 ____________________ ___________________

 | | | |

 | 1 1 1 1 | | 1111 1111 |

 | 1 1 1 1 | | 111 111 |

 | 1 1 1 1 | | 11 11 |

 | 11 11 | | 1 1 |

 | 1 1 1 1 | | 11 11 |

 | 1 1 1 1 | | 111 111 |

 | 1 1 1 1 | | 1111 1111 |

 |____________________| |___________________|

 Figure 6-7: Single-Point Vertex Example

The blitter uses the fill carry-in bit as the starting fin state beginning at the right most
edge of each line. For each "1" bit in the source area, the blitter flips the fill state, either
filling or not filling the space with ones. This continues for each line until the left edge of
the blit is reached, at which point the filling stops.

BLITTER DONE FLAG

When the BLTSIZE register is written the blit is started. The processor does not stop while
the blitter is working, though; they can both work concurrently, and this provides much of
the speed evident in the Amiga. This does require some amount of care when using the
blitter.

A blitter done flag, also called the blitter busy flag, is provided as DMAF BLTDONE in
DMACONR. This flag is set when a blit is in progress.

NOTE
If a blit has just been started but has been locked out of memory access because of, for
instance, display fetches, this bit may not yet be set. The processor, on the other hand,

may be running completely uninhibited out of FAST memory or its internal cache, so it will
continue to have memory cycles.

- 180 Blitter Hardware -

The solution is to read a chip memory or hardware register address with the processor
before testing the bit. This can easily be done with the sequence:

 btst.b #DMAB_BLTDONE-8,DMACONR(a1)

 btst.b #DMAB_BLTDONE-8,DMACONR(a1)

where a1 has been preloaded with the address of the hardware registers. The first "test"
of the blitter done bit may not return the correct result, but the second blit.

NOTE
Starting with the Fat Agnus the blitter busy bit has been "fixed" to be set as soon as you
write to BLTSIZE to start the blit, rather than when the blitter gets its first DMA cycle.
However, not all machines will use the newer chips, so it is best to rely on the above
method of testing.

MULTITASKING AND THE BLITTER
When a blit is in progress, none of the blitter registers should be written. For details on
arbitration of blitter access in the system, please refer to the ROM Kernel Manual. In

particular, read the discussion about the OwnBlitter() and DisownBlitter() functions. Even
after the blitter has been "owned", a blit may still be finishing up, so the blitter done flag
should be checked before using it even the first time. Use of the ROM kernel function
WaitBlit() is recommended.

You should also check the blitter done flag before using results of a blit. The blit may not
be finished, so the data may not be ready yet. This can lead to difficult to find bugs,
because a 68000 may be slow enough for a blit to finish without checking the done flag,
while a 68020, perhaps running out of its cache, may be able to get at the data before the
blitter has finished writing it.

Let us say that we have a subroutine that displays a text box on top of other imagery
temporarily. This subroutine might allocate a chunk of memory to hold the original screen
image while we are displaying our text box, then draw the text box. On exit, the

subroutine might blit the original imagery back and then free the allocated memory. If the
memory is freed before the blitter done flag is checked, some other process might allocate
that memory and store new data into it before the blit is finished, trashing the blitter
source and, thus, the screen imagery being restored.

INTERRUPT FLAG

The blitter also has an interrupt flag that is set whenever a blit finishes. This flag, INTF
BLIT, can generate a 68000 interrupt if enabled. For more information on interrupts, see
Chapter 7 "System Control Hardware."

- Blitter Hardware 181 -

ZERO FLAG

A blitter zero flag is provided that can be tested to determine if the logic operation
selected has resulted in zero bits for all destination bits, even if those destination bits are

not written due to the D DMA channel being disabled. This feature is often useful for
collision detection, by performing a logical "and" on two source images to test for overlap.
If the images do not overlap, the zero flag will stay true.

The Zero flag is only valid after the blitter has completed its operation and can be read
from bit DMAF_BLTNZERO of the DMACONR register.

PIPELINE REGISTER
The blitter performs many operations in each cycle - shifting and masking source words,
logical combination of sources, and area fill and zero detect on the output. To enable so
many things to take place so quickly, the blitter is pipelined. This means that rather than
performing all of the above operations in one blitter cycle, the operations are spread over
two blitter cycles. (Here "cycle" is used very loosely for simplicity.) To clarify this, the
blitter can be imagined as two chips connected in series. Every cycle, a new set of source
operations come in, and the first chip performs its operations on the data. It then passes
the half-processed data to the second chip to be finished during the next cycle, when the
first chip will be busy at work on the next set of data. Each set of data takes two "cycles"
to get through the two chips, overlapped so a set of data can be pumped through each
cycle.

What all this means is that the first two sets of sources are fetched before the first

destination is written. This allows you to shift a bitmap up to one word to the right using
ascending mode, for instance, even though normally parts of the destination would be
overwritten before they were fetched.

- 182 Blitter Hardware -

Table 6-2: Typical Blitter Cycle Sequence

USE Code

 in Active

BLTCON0 Channels Cycle Sequence

 F A B C D A0 B0 C0 - A1 B1 C1 D0 A2 B2 C2 D1 D2

 E A B C A0 B0 C0 A1 B1 C1 A2 B2 C2

 D A B D A0 B0 - A1 B1 D0 A2 B2 D1 - D2

 C A B A0 B0 - A1 B1 - A2 B2

 B A C D A0 C0 - A1 C1 D0 A2 C2 D1 - D2

 A A C A0 C0 A1 C1 A2 C2

 9 A D A0 - A1 D0 A2 D1 - D2

 8 A A0 - A1 - A2

 7 B C D B0 C0 - - B1 C1 D0 - B2 C2 D1 - D2

 6 B C B0 C0 - B1 C1 - B2 C2

 5 B D B0 - - B1 D0 - B2 D1 - D2

 4 B B0 - - B1 - - B2

 3 C D C0 - - C1 D0 - C2 D1 - D2

 2 C C0 - C1 - C2

 1 D D0 - D1 - D2

 0 none

Notes for the above Table:

o No fill.

o No competing bus activity.

o Three-word blit.

o Typical operation involves fetching all sources twice before the first destination becomes
available. This is due to internal pipelining. Care must be taken with overlapping source
and destination regions.

NOTE
This Table is only meant to be an illustration of the typical order of blitter cycles on the
bus. Bus cycles are dynamically allocated based on blitter operating mode; competing bus
activity from processor, bitplanes, and other DMA channels; and other factors.
Commodore Amiga does not guarantee the accuracy of or future adherence to this chart.
We reserve the right to make product improvements or design changes in this area

without notice.

- Blitter Hardware 183 -

LINE MODE

In addition to all of the functions described above, the blitter can draw patterned lines.
The line draw mode is selected by setting bit 0 (LINEMODE) of BLTCON1, which changes

the meaning of some other bits in BLTCON0 and BLTCON1. In line draw mode, the blitter
can draw lines up to 1024 pixels long, it can draw them in a variety of modes, with a
variety of textures, and can even draw them in a special way for simple area fill.

Many of the blitter registers serve other purposes in line-drawing mode. Consult Appendix
A for more detailed descriptions of the use of these registers and control bits in line-
drawing mode.

In line mode, the blitter draws a line from one point to another, which can be viewed as a
vector. The direction of the vector can lie in any of the following eight octants. (In the
following diagram, the standard Amiga convention is used, with x increasing towards the
right and y increasing down.) The number in parenthesis is the octant numbering; the
other number represents the value that should be placed in bits 4 through 2 of BLTCON1.

Figure 6-8: Octants for Line Drawing

Line drawing based on octants is a simplification that takes advantage of symmetries
between x and -x, y and -y. The following Table lists the octant number and
corresponding values:

- 184 Blitter Hardware -

Table 6-3: BLTCON1 Code Bits for Octant Line Drawing

BLTCON1 Code Bits Octant #

 0 1 1 2

 1 1 1 3

 1 0 1 4

 0 1 0 5

 0 0 0 6

 1 0 0 7

We initialize BLTCON1 bits 4 through 2 according to the above Table. Now, we introduce

the variables dx and dy, and set them to the absolute values of the difference between
the x coordinates and the y coordinates of the endpoints of the line, respectively.

 dx = abs (x2 - x1)

 dy = abs (y2 - y1)

Now, we rearrange them if necessary so dx is greater than dy.

 if (dx < dy)

 {

 temp = dx;

 dx = dy;

 dy = temp;

 }

Alternately, set dx and dy as follows:

 dx = max(abs(x2 - x1), abs(y2 - y1)) ;

 dy = min(abs(x2 - x1), abs(y2 - y1)) ;

These calculations have the effect of "normalizing" our line into octant 0; since we have
already informed the blitter of the real octant to use, it has no difficulty drawing the line.

We initialize the A pointer register to 4 * dy - 2 * dx. If this value is negative, we set the
sign bit (SIGNFLAG in BLTCONl), otherwise we clear it.
We set the A modulo register to 4 * (dy - dx) and the B modulo register to 4 * dy.

The A data register should be preloaded with $8000. Both word masks should be set to $
The A shift value should be set to the x coordinate of the first point (x1) modulo 15.

The B data register should be initialized with the line texture pattern, if any, or $FFFF for a
solid line. The B shift value should be set to the bit number at which to start the line
texture (zero means the last significant bit.)

- Blitter Hardware 185 -

The C and D pointer registers should be initialized to the word containing the first pixel of
the line; the C and D modulo registers should be set to the width of the bitplane in bytes.

The SRCA, SRCC, and DEST bits of BLTCON0 should be set to one, and the SRCB flag

should be set to zero. The OVFLAG should be cleared. If only a single bit per horizontal
row is desired, the ONEDOT bit of BLTCON1 should be set; otherwise it should be cleared.

The logic function remains. The C DMA channel represents the original source, the A
channel the bit to set in the line, and the B channel the pattern to draw. Thus, to draw a
line, the function AB+AC is the most common. To draw the line using exclusive-or mode,
so it can be easily erased by drawing it again, the function ABC+AC can be used.

We set the blit height to the length of the line, which is dx + 1. The width must be set to
two for all line drawing. (Of course, the BLTSIZE register should not be written until the
very end, when all other registers have been filled.)

REGISTER SUMMARY FOR LINE MODE

Preliminary setup:

 The line goes from (x1 ,y1) to (x2,y2).

 dx = max (abs (x2 - x1), abs (y2 - y1))

 dy = min (abs (x2 - x1), abs (y2 - y1))

Register setup:

 BLTADAT = $8000

 BLTBDAT = line texture pattern ($FFFF for a solid line)

 BLTAFWM = $FFFF

 BLTALWM = $FFFF

 BLTAMOD = 4 * (dy-dx)

 BLTBMOD = 4 * dy

 BLTCMOD = width of the bitplane in bytes

 BLTDMOD = width of the bitplane in bytes

 BLTAPT = (4 * dy) - (2 * dx)

 BLTBPT = unused

 BLTCPT = word containing the first pixel of the line

 BLTDPT = word containing the first pixel of the line

- 186 Blitter Hardware -

 BLTCON0 bits 15-12 = x1 modulo 15

 BLTCON0 bits SRCA, SRCC, and SRCD = 1

 BLTCON0 bit SRCB = 0

 if exclusive-or line mode: _ _

 then BLTCON0 LF control byte = ABC + AC

 _

 else BLTCON0 LF control byte = AB + AC

 BLTCON1 bit LINEMODE = 1

 BLTCON1 bit OVFLAG = 0

 BLTCON1 bits 4-2 = octant number from Table

 BLTCON1 bits 15-12 = start bit for line texture (0 = last significant

 bit)

 if (((4 * dy) - (2 * dx)) < 0):

 then BLTCON1 bit SIGNFLAG = 1

 else BLTCON1 bit SIGNFLAG = 0

 if one pixel/row:

 then BLTCON1 bit ONEDOT = 1

 else BLTCON1 bit ONEDOT = 0

 BLTSIZE bits 15-6 = dx + 1

 BLTSIZE bits 5-0 = 2

NOTE
You must set the BLTSIZE register last as it starts the blit.

- Blitter Hardware 187 -

BLITTER SPEED

The speed of the blitter depends entirely on which DMA channels are enabled. You might
be using a DMA channel as a constant, but unless it is enabled, it does not count against

you. The minimum blitter cycle is four ticks; the maximum is eight ticks. Use of the A
register is always free. Use of the B register always adds two ticks to the blitter cycle. Use
of either C or D is free, but use of both adds another two ticks. Thus, a copy cycle, using A
and D, takes four clock ticks per cycle; a copy cycle using B and D takes six ticks per
cycle, and a generalized bit copy using B, C, and D takes eight ticks per cycle. When in
line mode, each pixel takes eight ticks.

The system clock speed for NTSC Amiga’s is 7.16 megahertz (PAL Amiga’s 7.09
megahertz). The clock for the blitter is the system clock. To calculate the total time for the
blit in microseconds, excluding setup and DMA contention, you use the equation (for
NTSC):

 n * H * W

 t = ---------

 7.16

For PAL:

 n * H * W

 t = ---------

 7.09

where t is the time in microseconds, n is the number of clocks per cycle, and H and W are
the height and width (in words) of the blit, respectively.

For instance, to copy one bitplane of a 320 by 200 screen to another bitplane, we might
choose to use the A and D channels. This would require four ticks per blitter cycle, for a
total of

 4 * 200 * 20

 ------------ = 2235 microseconds.

 7.16

These timings do not take into account blitter setup time, which is the time required to
calculate and load the blitter registers and start the blit. They also ignore DMA contention.

- 188 Blitter Hardware -

BLITTER OPERATIONS AND SYSTEM DMA

The operations of the blitter affect the performance of the rest of the system. the
following sections explain how system performance is affected by blitter direct memory

access priority, DMA time slot allocation, bus sharing between the 68000 and the display
hardware, the operations of the blitter and Copper, and different playfield display sizes.

The blitter performs its various data-fetch, modify, and store operations through DMA
sequences, and it shares memory access with other devices in the, system. Each device
that accesses memory has a priority level assigned to it, which indicates its importance
relative to other devices.

Disk DMA, audio DMA, display DMA, and sprite DMA all have the highest priority level.
Display DMA has priority over sprite DMA under certain circumstances. Each of these four
devices is allocated a group of time slots during each horizontal scan of the video beam. If
a device does not request one of its allocated time slots, the slot is open for other uses.
These devices are given first priority because missed DMA cycles can cause lost data,
noise in the sound output, or on-screen interruptions.

The Copper has the next priority because it has to perform its operations at the same time
during each display frame to remain synchronized with the display beam sweeping across
the screen.

The lowest priorities are assigned to the blitter and the 68000, in that order. The blitter is
given the higher priority because it performs data copying, modifying, and line drawing

operations operations much faster than the 68000.

During a horizontal scan line (about 63 microseconds), there are 227.5 "color clocks", or
memory access cycles. A memory cycle is approximately 280ns in duration. The total of
227.5 cycles per horizontal line includes both display time and non-display time. Of this
total time, 226 cycles are available to be allocated to the various devices that need
memory access.

The time-slot allocation per horizontal line is

 4 cycles for memory refresh
 3 cycles for disk DMA
 4 cycles for audio DMA (2 bytes per channel)
16 cycles for sprite DMA (2 words per channel)

80 cycles for bit-plane DMA (even or odd numbered slots according to the display size
used)

Figure 6-9 shows one complete horizontal scan line and how the clock cycles are
allocated.

- Blitter Hardware 189 -

Figure 6-9: DMA time slot allocation.

- 190 Blitter hardware -

The 68000 uses only the even-numbered memory access cycles. The 68000 spends about
half of a complete processor instruction time doing internal operations and the other half
accessing memory. Therefore, the allocation of alternate memory cycles to the 68000
makes it appear to the 68000 that it has the memory all of the time, and it will run at full

speed.

Some 68000 instructions do not match perfectly with the allocation of even cycles and
cause cycles to be missed. If cycles are missed, the 68000 must wait until its next
available memory slot before continuing. However, most instructions do not cause cycles
to be missed, so the 68000 runs at full speed most of the time if there is no blitter DMA
interference.

Figure 6-10 illustrates the normal cycle of the 68000.

NOTE
The 68000 test-and-set instruction (TAS) should never be used in the Amiga; the
indivisible read-modify-write cycle that is used only in this instruction will not fit into a
DMA memory access slot.

 | <---- Average 68000 cycle ----> |

 | |

 | <--- internal ---> | <--- memory ---> |

 | operation | access |

 | portion | portion |

 | | |

 | odd cycle, | even cycle |

 | assigned to | available to |

 | other devices | the 68000 |

 Figure 6-10: Normal 68000 Cycle

If the display contains four or fewer low-resolution bit-planes, the 68000 can be granted
alternate memory cycles (if it is ready to ask for the cycle and is the highest priority item
at the time). However, if there are more than four bit-planes, bit-plane DMA will begin to
steal cycles from the 68000 during the display.

During the display time for a six-bit-plane display (low resolution, 320 pixels wide), 160

time slots will be taken by bit-plane DMA for each horizontal line. As you can see from
Figure 6-11, bit-plane DMA steals 50 percent of the open slots that the processor might
have used if there were only four bit-planes displayed.

- Blitter Hardware 191 -

 T -TIMING CYCLE- T+7

 + * + *

 | | 4 | 6 | 2 | | 3 | 5 | 1 |

 Figure 6-11: Time Slots Used by a Six Bit Plane Display

If you specify four high-resolution bit-planes (640 pixels wide), bit-plane DMA needs all of
the available memory time slots during the display time just to fetch the 40 data words
for each line of the four bit-planes (40 4 = 160 time slots). This effectively locks out the

68000 (as well as the blitter or Copper) from any memory access during the display,
except during horizontal and vertical blanking.

 T -TIMING CYCLE- T+7

 | 4 | 2 | 3 | 1 | 4 | 2 | 3 | 1 |

 Figure 6-12: Time Slots Used by a High Resolution Display

Each horizontal line in a normal, full-sized display contains 320 pixels in low-resolution

mode or 640 pixels in high-resolution mode. Thus, either 20 or 40 words will be fetched
during the horizontal line display time. If you want to scroll a playfield, one extra data
word per line must be fetched from the memory.

Display size is adjustable (see Chapter 3, "Playfield Hardware"), and bit-plane DMA takes
precedence over sprite DMA. As shown in Figure 6-9, larger displays may block out one or
more of the highest-numbered sprites, especially with scrolling.

- 192 Blitter Hardware -

As mentioned above, the blitter normally has a higher priority than the processor for DMA
cycles. There are certain cases, however, when the blitter and the 68000 can share
memory cycles. If given the chance, the blitter would steal every available memory cycle.
Display, disk, and audio DMA take precedence over the blitter, so it cannot block them

from bus access. Depending on the setting of the blitter DMA mode bit, commonly
referred to as the "blitter-nasty" bit, the processor may be blocked from bus access. This
bit is called DMAF BLITHOG and is in register DMACON.

If DMAF_BLITHOG is a 1, the blitter will keep the bus for every available memory cycle.
This could potentially be every cycle.

If DMAF_BLITHOG is a 0, the DMA manager will monitor the 68000 cycle requests. If the
68000 is unsatisfied for three consecutive memory cycles, the blitter will release the bus
for one cycle.

BLITTER BLOCK DIAGRAM

Figure 6-13 shows the basic building blocks for a single bit of a 16-bit wide operation of
the blitter. It does not cover the line-drawing hardware.

o The upper left comer shows how the first - and last - word masks are applied to the
incoming A-source data. When the blit shrinks to one word wide, both masks are applied.

o The shifter (upper right and centre left) drawing illustrates how 16 bits of data is taken
from a specified position within a 32-bit register, based on the A shift or B shift values

shown in BLTCON0 and BLTCON1.

o The minterm generator (centre right) illustrates how the minterm select bits either allow
or inhibit the use of a specific minterm.

o The drawing shows how the fill operation works on the data generated by the minterm
combinations. Fill operations can be performed simultaneously with other complex logic
operations.

o At the bottom, the drawing shows that data generated for the destination can be
prevented from being written to a destination by using one of the blitter control bits.

o Not shown on this diagram is the logic for zero detection, which looks at every bit
generated for the destination. If there are any 1-bits generated, this logic indicates that

the area of the blit contained at least one 1-bit (zero detect is false.)

- Blitter Hardware 193 -

Figure 6-13: Blitter Block Diagram

- 194 Blitter Hardware -

BLITTER KEY POINTS

This is a list of some key points that should be remembered when programming the
blitter.

o Write BLTSIZE last; writing this register starts the blit.

o Modulos and pointers are in bytes; width is in words and height is in pixels. The least
significant bit of all pointers and modules is ignored.

o The order of operations in the blitter is masking, shifting, logical combination of sources,

area fill, and zero nag setting.

o In ascending mode, the blitter increments the pointers, adds the modules, and shifts to
the right.

o In descending mode, the blitter decrements the pointers, subtracts the modules, and
shifts to the left.

o Area fill only works correctly in descending mode.

o Check BLTDONE before writing blitter registers or using the results of a blit.

o Shifts are done on immediate data as soon as it is loaded.

EXAMPLE: ClearMem

;

; Blitter example - memory clear

;

 include 'exec/types.i'

 include 'hardware/custom.i'

 include 'hardware/dmabits.i'

 include 'hardware/blit.i'

 include 'hardware/hw examples.i"

 xref _custom

;

; Wait for previous blit to complete.

;

waitblit:

 btst.b #DMAB_BLTDONE-8,DMACONR(a1)

waitblit2:

 btst.b #DMAB_BLTDONE-8,DMACONR(a1)

 bne waitblit2

 rts

;

; This routine uses a side effect in the blitter. When each

- Blitter Hardware 195 -

; of the blits is finished, the pointer in the blitter is pointing

; to the next word to be blitted.

;

; When this routine returns, the last blit is started and might

; not be finished, so be sure to call waitblit above before

; assuming the data is clear.

;

; a0 pointer to first word to clear

; d0 - number of bytes to clear (must be even)

;

 xdef clearmem

clearmem:

 lea custom,a1 ; Get pointer to chip registers

 bsr waitblit ; Make sure previous blit is done

 move.l a0,BLTDPT(a1) ; Set up the D pointer to the region to

 ; clear

 clr.w BLTDMOD(a1) ; Clear the D modulo (don't skip no bytes)

 asr.l #1,d0 ; Get number of words from number of bytes

 clr.w BLTCON1(a1) ; No special modes

 move.w #DEST,BLTCON0(a1); only enable destination

;

; First we deal with the smaller blits

;

 moveq #$3f,d1 ; Mask out mod 64 words

 and.w d0,d1

 beq dorest ; none? good, do one blit

 sub.l d1,d0 ; otherwise remove remainder

 or.l #$40,d1 ; set the height to 1, width to n

 move.w d1,BLTSIZE(a1) ; trigger the blit

;

; Here we do the rest of the words, as chunks of 128k

;

dorest:

 move.w #$ffc0,d1 ; look at some more upper bits

 and.w d0,d1 ; extract 10 more bits

 beq dorest2 ; any to do?

 sub.l d1,d0 ; pull of the ones we're doing here

 bsr waitblit ; wait for prev blit to complete

 move.w d0,BLTSIZE(a1) ; do another blit

dorest2:

 swap d0 ; more?

 beq done ; nope.

 clr.w d1 ; do a 1024x64 word blit (128K)

keepon:

 bsr waitblit ; finish up this blit

 move.w d1,BLTSIZE(a1) ; and again, blit

 subq.w #1,d0 ; still more?

 bne keepon ; keep on going.

done:

 rts ; finished. Blit still in progress.

 end

- 196 Blitter Hardware -

EXAMPLE: SimpleLine

;

; This example uses the line draw mode of the blitter

; to draw a line. The line is drawn with no pattern

; and a simple 'or' blit into a single bitplane.

;

; Input: d0=x1 dl=y1 d2=x2 d3=y2 d4=width a0=aptr

;

 include 'exec/types.i'

 include 'hardware/custom.i'

 include 'hardware/blit.i'

 include 'hardware/dmabits.i'

 include 'hardware/hw_examples.i'

;

 xref _custom

;

 xdef simpleline

;

; Our entry point.

;

simpleline:

 lea custom,a1 ; snarf up the custom address register

 sub.w d0,d2 ; calculate dx

 bmi xneg ; if negative, octant is one of [3,4,5,6]

 sub.w d1,d3 ; calculate dy octant is one of [1,2,7,8]

 bmi yneg ; if negative, octant is one of [7,8]

 cmp.w d3,d2 ; cmp |dx|,|dy|octant is one of [1,2]

 bmi ygtx ; if y>x, octant is 2

 moveq.l #OCTANT1+LINEMODE,d5 ; otherwise octant is 1

 bra lineagain ; go to the common section

ygtx:

 exg d2,d3 ; X must be greater than Y

 moveq.l #OCTANT2+LINEMODE,d5 ; we are in octant 2

 bra lineagain ; and common again.

yneg:

 neg.w d3 ; calculate abs(dy)

 cmp.w d3,d2 ; cmp |dx|,|dy|, octant is [7,8]

 bmi ynygtx ; if y>x, octant is 7

 moveq.l #OCTANT8+LINEMODE,d5 ; otherwise octant is 8

 bra lineagain

ynygtx:

 exg d2,d3 ; X must be greater than Y

 moveq.l #OCTANT7+LINEMODE,d5 ; we are in octant 7

 bra lineagain

xneg:

 neg.w d2 ; dx was negative! octant is [3,4,5,6]

 sub.w d1,d3 ; we calculate dy

 bmi xyneg ; if negative, octant is one of [5,6]

 cmp.w d3,d2 ; otherwise it's one of [3,4]

 bmi xnygtx ; if y>x, octant is 3

 moveq.l #OCTANT4+LINEMODE,d5 ; otherwise it's 4

 bra lineagain

xnygtx:

 exg d2,d3 ; X must be greater than Y

 moveq.l #OCTANT3+LINEMODE,d5 ; we are in octant 3

 bra lineagain

- Blitter Hardware 197 -

xyneg:

 neg.w d3 ; y was negative, in one of [5,6]

 cmp.w d3,d2 ; is y>x?

 bmi xynygtx ; if so, octant is 6

 moveq.l #OCTANT5+LINEMODE,d5 ; otherwise, octant is 5

 bra lineagain

xynygtx:

 exg d2,d3 ; X must be greater than Y

 moveq.l #OCTANT6+LINEMODE,d5 ; we are in octant 6

lineagain:

 mulu.w d9,d1 ; Calculate y1 * width

 ror.l #4,d0 ; move upper four bits into hi word

 add.w d0,d0 ; multiply by 2

 add.l d1,a0 ; ptr += (xl >> 3)

 add.w d0,a0 ; ptr += yl * width

 swap d0 ; get the four bits of xl

 or.w #$BFA,d0 ; or with VSEA, USEC, USED, F=A+C

 lsl.w #2,d3 ; y = 4 * y

 add.w d2,d2 ; X = 2 * X

 move.w d2,d1 ; set up size word

 lsl.w #5,d1 ; shift five left

 add.w #$42,d1 ; and add 1 to height, 2 to width

 btst #DMAB_BLTDONE-8,DMACONR(al) ; safety check

waitblit:

 btst #DMAB_BLTDONE-8,DMACONR(a1) ; wait for blitter

 bne waitblit

 move.w d3,BLTBMOD(a1) ; B mod = 4 * Y

 sub.w d2,d3

 ext.l d3

 move.l d3,BLTAPT(a1) ; A ptr = 4 * Y - 2 * X

 bpl lineover ; if negative

 or.w #SIGNFLAG,d5 ; set sign bit in conl

lineover:

 move.w d0,BLTCON0(a1) ; write control registers

 move.w d5,BLTCON1(a1)

 move.w d4,BLTCMOD(a1) ; C mod = bitplane width

 move.w d4,BLTDMOD(a1) ; D mod = bitplane width

 sub.w d2,d3

 move.w d3,BLTAMOD(a1) ; A mod = 4 * Y - 4 * X

 move.w #$8000,BLTADAT(a1) ; A data = 0x8000

 moveq.l #-1,d5 ; Set masks to all ones

 move.l d5,BLTAFWM(a1) ; we can hit both masks at once

 move.l a0,BLTCPT(a1) ; Pointer to first pixel to set

 move.l a0,BLTDPT(a1)

 move.w d1,BLTSIZE(a1) ; Start blit

 rts ; and return, blit still in progress.

- 198 Blitter Hardware -

EXAMPLE: RotateBits

;

; here we rotate bits. This code takes a single raster row of a

; bitplane, and 'rotates' it into an array of 16-bit words, setting

; the specified bit of each word in the array according to the

; corresponding bit in the raster row. We use the line mode in

; conjunction with patterns to do this magic.

;

; Input: d0 contains the number of words in the raster row. d1

; contains the number of the bit to set (0..15). a0 contains a

; pointer to the raster data, and al contains a pointer to the

; array we are filling; the array must be at least (d0)*16 words

; (or (d0)*32 bytes) long.

;

 include 'exec/types.i'

 include 'hardware/custom.i'

 include 'hardware/blit.i'

 include 'hardware/dmabits.i'

 include 'hardware/hw_examples.i'

 xref _custom

;

 xdef rotatebits

;

; Our entry point.

;

rotatebits:

 lea custom,a2 ; We need to access the custom registers

 tst d0 ; if no words, just return

 beq gone

 lea DMACONR(a2),a3 ; get the address of dmaconr

 moveq.l #DMAB BLTDONE-8,d2 ; get the bit number BLTDONE

 btst d2,(a3) ; check to see if we're done

waitl:

 tst d2,(a3) ; check again.

 bne wait1 ; not done? Keep waiting

 moveq.l #-30,d3 ; Line mode: aptr = 4Y-2X, Y=0; X15

 move.l d3,BLTAPT(a2)

 move.w #-60,BLTAMOD(a2) ; amod = 4Y-4X

 clr.w BLTBMOD(a2) ; bmod = 4Y

 move.w #2,BLTCMOD(a2) ; cmod = width of bitmap (2)

 move.w #2,BLTDMOD(a2) ; ditto

 ror.w #4,d1 ; grab the four bits of the bit number

 and.w #$f000,d1 ; mask them out

 or.w #$bca,d1 ; USEA, USEC, USED, F=AB+-AC

 move.w d1,BLTCON0(a2) ; stuff it

 move.w #$f049,BLTCONl(a2) ; BSH=15, SGN, LINE

 move.w #$8000,BLTADAT(a2) ; Initialize A dat for line

 move.w #$ffffBLTAFWM(a2) ; Initialize masks

 move.w #$ffff,BLTALWM(a2)

 move.l a1,BLTCPT(a2) ; Initialize pointer

 move.l a1,BLTDPT(a2)

 lea BLTBDAT(a2),a4 ; For quick access, we grab these two

 lea BLTSIZE(a2),a5 ; addresses

 move.w #$402,d1 ; Stuff bltsize; width-2, height 16

 move.w (a0)+,d3 ; Get next word

- Blitter Hardware 199 -

 bra inloop ; Go into the loop

again:

 move.w (a0)+,d3 ; Grab another word

 btst d2,(a3) ; Check blit done

wait2:

 btst d2,(a3) ; Check again

 bne wait2 ; oops, not ready, loop around

inloop:

 move.w d3,(a4) ; stuff new word to make vertical

 move.w d1,(a5) ; start the blit

 subq.w #1,d0 ; is that the last word?

 bne again ; keep going if not

gone:

 rts

 end

- 200 Blitter Hardware -

CHAPTER 7

SYSTEM CONTROL HARDWARE

INTRODUCTION

This chapter covers the control hardware of the Amiga system, including the following
topics:

o How playfield priorities may be specified relative to the sprites

o How collisions between objects are sensed

- System Control Hardware 201 -

o How system direct memory access (DMA) is controlled

o How interrupts are controlled and sensed

o How reset and early powerup are controlled

VIDEO PRIORITIES

You can control the priorities of various objects on the screen to give the illusion of three
dimensions. The section below shows how playfield priority may be changed relative to
sprites.

FIXED SPRITE PRIORITIES
You cannot change the relative priorities of the sprites. They will always appear on the
screen with the lower-numbered sprites appearing in front of (having higher screen
priority than) the higher-numbered sprites. This is shown in Figure 7-1. Each box
represents the image of the sprite number shown in that box.

 __| 7|

 __| 6|__|

 __| 5|__|

 __| 4|__|

 __| 3|__|

 __| 2|__|

 __| 1|__|

 | 0|__|

 |___|

 Figure 7-1: Inter-Sprite Fixed Priorities

- 202 System Control Hardware -

HOW SPRITES ARE GROUPED
For playfield priority and collision purposes only, sprites are treated as four groups of two
sprites each. The groups of sprites are:

 Sprites 0 and 1
 Sprites 2 and 3
 Sprites 4 and 5
 Sprites 6 and 7

UNDERSTANDING VIDEO PRIORITIES
The concept of video priorities is easy to understand if you imagine that four fingers of

one of your hands represent the four pairs of sprites and two fingers of your other hand
represent the two playfields. Just as you cannot change the sequence of the four fingers
on the one hand, neither can you change the relative priority of the sprites. However, just
as you can intertwine the two fingers of one hand in many different ways relative to the
four fingers of the other hand, so can you position the playfields in front of or behind the
sprites. This is illustrated in Figure 7-2.

Figure 7-2: Analogy for Video Priority

- System Control Hardware 203 -

Five possible positions can be chosen for each of the two "playfield fingers." For example,
you can place playfield 1 on top of sprites 0 and 1 (0), between sprites O and 1 and
sprites 2 and 3 (1), between sprites 2 and 3 and sprites 4 and 5 (2), between sprites 4
and 5 and sprites 6 and 7 (3), or beneath sprites 6 and 7 (4). You have the same

possibilities for playfield 2.

The numbers 0 through 4 shown in parentheses in the preceding paragraph are the actual
values you use to select the playfield priority positions. See "Setting the Priority Control
Register" below.

You can also control the priority of playfield 2 relative to playfield 1. This gives you

additional choices for the way you can design the screen priorities.

SETTING THE PRIORITY CONTROL REGISTER
This register lets you define how objects will pass in front of each other or hide behind
each other. Normally, playfield 1 appears in front of playfield 2. The PF2PRI bit reverses
this relationship, making playfield 2 more important. You control the video priorities by
using the bits in BPLCON2 (for "bit-plane control register number 2") as shown in Table 7-
1.

 Table 7-1: Bits in BPLCON2

 Bit

 Number Name Function

 15-7 Not used (keep at 0)

 6 PF2PRI Playfield 2 priority

 5-3 PF2P2 - PF2P0 Playfield 2 placement with

 respect to the sprites

 2-0 PF1P2 - PFlP0 Playfield 1 placement with

 respect to the sprites

The binary values that you give to bits PF1P2-PF1P0 determine where playfield 1 occurs in
the priority chain as shown in Table 7-2. This matches the description given in the
previous section.

NOTE

PF2P2 - PF2P0, bits 5-3, are the priority bits for normal (non-dual) playfields.

- 204 System Control Hardware -

Table 7-2: Priority of Playfields Based on Values of Bits PF1P2-PF1P0

 Value Placement

 (from most important to least important)

 000 PF1 SP01 SP23 SP45 SP67

 001 SP01 PF1 SP23 SP45 SP67

 010 SP01 SP23 PF1 SP45 SP67

 011 SP01 SP23 SP45 PFl SP67

 100 SP01 SP23 SP45 SP67 PFl

In this Table, PF1 stands for playfield 1, and SP01 stands for the group of sprites
numbered 0 and 1. SP23 stands for sprites 2 and 3 as a group; SP45 stands for sprites 4
and 5 as a group; and SP67 stands for sprites 6 and 7 as a group.

Bits PF2P2-PF2P0 let you position playfield 2 among the sprite priorities in exactly the
same way. However, it is the PF2PRI bit that determines which of the two playfields
appears in front of the other on the screen. Here is a sample of possible BPLCON2 register
contents that would create something a little unusual:

 BITS 15-7 PF2PRI PF2P2-0 PF1P2-0

 VALUE 0s 1 010 000

This will result in a sprite/playfield priority placement of:

 PF1 SP01 SP23 PF2 SP45 SP67

In other words, where objects pass across each other, playfield 1 is in front of sprite 0 or

1; and sprites 0 through 3 are in front of playfield 2. However, playfield 2 is in front of
playfield 1 in any area where they overlap and where playfield 2 is not blocked by sprites
0 through 3.

Figure 7-3 shows one use of sprite/playfield priority. The single sprite object shown on the
diagram is sprite 0. The sprite can "fly" across playfield 2, but when it crosses playfield 1
the sprite disappears behind that playfield. The result is an unusual video effect that
causes the object to disappear when it crosses an invisible boundary on the screen.

- System Control Hardware 205 -

Figure 7-3: Sprite/Playfield Priority

When everything is displayed together, sprite 0 is more important than playfield 2 but less
important 3883 than playfield 1. So even though you can't see the boundary, the sprite
disappears "behind" the invisible PF1 boundary.

- 206 System Control Hardware -

COLLISION DETECTION

You can use the hardware to detect collisions between one sprite group and another sprite
group, any sprite group and either of the playfields, the two playfields, or any combination

of these items.

The first kind of collision is typically used in a game operation to determine if a missile has
collided with a moving player. The second kind of collision is typically used to keep a
moving object within specified on-screen boundaries. The third kind of collision detection
allows you to define sections of playfield as individual objects, which you may move
using the blitter. This is called playfield animation. If one playfield is defined as the

backdrop or playing area and the other playfield is used to define objects (in addition to
the sprites), you can sense collisions between the playfield-objects and the sprites or
between the playfield-objects and the other playfield.

HOW COLLISIONS ARE DETERMINED
The video output is formed when the input data from all of the bit-planes and the sprites
is combined into a common data stream for the display. For each of the pixel positions on
the screen, the color of the highest priority object is displayed. Collisions are detected
when two or more objects attempt to overlap in the same pixel position. This will set a bit
in the collision data register.

- System Control Hardware 207 -

HOW TO INTERPRET THE COLLISION DATA
The collision data register, CLXDAT, is read-only, and its contents are automatically
cleared to 0 after it is read. Its bits are as shown in Table 7-3.

 Table 7-3: CLXDAT Bits

 Bit

 Number Collisions Registered

 15 not used

 14 Sprite 4 (or 5) to sprite 6 (or 7)

 13 Sprite 2 (or 3) to sprite 6 (or 7)

 12 Sprite 2 (or 3) to sprite 4 (or 5)

 11 Sprite 0 (or 1) to sprite 6 (or 7)

 10 Sprite 0 (or 1) to sprite 4 (or 5)

 9 Sprite 0 (or 1) to sprite 2 (or 3)

 8 Even bit-planes to sprite 6 (or 7)

 7 Even bit-planes to sprite 4 (or 5)

 6 Even bit-planes to sprite 2 (or 3)

 5 Even bit-planes to sprite 0 (or l)

 4 Odd bit-planes to sprite 6 (or 7)

 3 Odd bit-planes to sprite 4 (or 5)

 2 Odd bit-planes to sprite 2 (or 3)

 1 Odd bit-planes to sprite 0 (or 1)

 0 Even bit-planes to odd bit-planes

NOTE
The numbers in parentheses in Table 7-3 refer to collisions that will register only if you
want them to show up. The collision control register described below lets you either ignore
or include the odd-numbered sprites in the collision detection.

Notice that in this Table, collision detection does not change when you select either single
or dual playfield mode. Collision detection depends only on the actual bits present in the
odd-numbered or even-numbered bitplanes. The collision control register specifies how to

handle the bitplanes during collision detect.

- 208 System Control Hardware -

HOW COLLISION DETECTION IS CONTROLLED
The collision control register, CLXCON, contains the bits that define certain characteristics
of collision detection. Its bits are shown in Table 7-4.

 Table 7-4: CLXCON Bits

 Bit

 Number Name Function

 15 ENSP7 Enable sprite 7 (OR with sprite 6)

 14 ENSPS Enable sprite 5 (OR with sprite 4)

 13 ENSP3 Enable sprite 3 (OR with sprite 2)

 12 ENSP1 Enable sprite 1 (OR with sprite 0)

 11 ENBP6 Enable bit-plane 6 (match required for collision)

 10 ENBPS Enable bit-plane 5 (match required for collision)

 9 ENBP4 Enable bit-plane 4 (match required for collision)

 8 ENBP3 Enable bit-plane 3 (match required for collision)

 7 ENBP2 Enable bit-plane 2 (match required for collision)

 6 ENBP1 Enable bit-plane 1 (match required for collision)

 5 MVBP6 Match value for bit-plane 6 collision

 4 MVBPS Match value for bit-plane 5 collision

 3 MVBP4 Match value for bit-plane 4 collision

 2 MVBP3 Match value for bit-plane 3 collision

 1 MVBP2 Match value for bit-plane 2 collision

 0 MVBP1 Match value for bit-plane 1 collision

Bits 15-12 let you specify that collisions with a sprite pair are to include the odd-
numbered sprite of a pair of sprites. The even-numbered sprites always are included in
the collision detection. Bits 11-6 let you specify whether to include or exclude specific bit-
planes from the collision detection. Bits 5-0 let you specify the polarity (true-false
condition) of bits that will cause a collision. For example, you may wish to register
collisions only when the object collides with "something green2 or "something blue." This
feature, along with the collision enable bits, allows you to specify the exact bits, and their
polarity, for the collision to be registered.

NOTE
This register is write-only. If all bit-planes are excluded (disabled), then a bit-plane
collision will always be detected.

- System Control Hardware 209 -

BEAM POSITION DETECTION

Sometimes you might want to synchronize the 68000 processor to the video beam that is
creating the screen display. In some cases, you may also wish to update a part of the

display memory after the system has already accessed the data from the memory for the
display area.

The address for accessing the beam counter is provided so that you can determine the
value of the video beam counter and perform certain operations based on the beam
position.

NOTE
The Copper is already capable of watching the display position for you and doing certain
register-based operations automatically. Refer to "Copper Interrupts" below and Chapter
2, "Coprocessor Hardware," for further information.

In addition, when you are using a light pen with this system, this same address is used to
read the light pen position rather than the beam position. This is described fully in Chapter
8, "Interface Hardware."

USING THE BEAM POSITION COUNTER

There are four addresses that access the beam position counter. Their usage is described
in Table 7-5.

- 210 System Control Hardware -

 Table 7-5: Contents of the Beam Position Counter

 VPOSR Read-only Read the high bit of the vertical

 position (V8) and the frame-type bit.

 Bit 15 LOF (Long-framebit). Used to

 initialize interlaced displays.

 Bits 14-1 Unused

 Bit 0 High bit of the vertical position

 (V8). Allows PAL line counts (313) to

 appear in PAL versions of the Amiga.

 VHPOSR Read-only Read vertical and horizontal

 position of the counter that is

 producing the beam on the screen

 (also reads the light pen).

 Bits 15-8 Low bits of the vertical

 position, bits V7-V0

 Bits 7-0 The horizontal position, bits H8-H1.

 Horizontal resolution is 1/160th

 of the screen width.

 VPOSW Write only Bits same as VPOSR above.

 VHPOSW Write only Bits same as VHPOSR above.

 Used for counter synchronization

 with chip test patterns.

As usual, the address pairs VPOSR,VHPOSR and VPOSW,VHPOSW can be read from and
written to as long words, with the most significant addresses being VPOSR and VPOSW.

INTERRUPTS

This system supports the full range of 68000 processor interrupts. The various kinds of
interrupts generated by the hardware are brought into the peripherals chip and are
translated into six of the seven available interrupts of the 68000.

- System Control Hardware 211 -

NONMASKABLE INTERRUPT
Interrupt level 7 is the non-maskable interrupt and is not generated anywhere in the
current system. The raw interrupt lines of the 68000, IPL2 through IPL0, are brought out
to the expansion connector and can be used to generate this level 7 interrupt for

debugging purposes.

MASKABLE INTERRUPTS
Interrupt levels 1 through 6 are generated. Control registers within the peripherals chip
allow you to mask certain of these sources and prevent them from generating a 68000
interrupt.

USER INTERFACE TO THE INTERRUPT SYSTEM
The system software has been designed to correctly handle all system hardware interrupts
at levels 1 through 6. A separate set of input lines, designated INT2* and INT6* 1 have
been routed to the expansion connector for use by external hardware for interrupts. These
are known as the external low- and external high-level interrupts.

These interrupt lines are connected to the peripherals chip and create interrupt levels 2
and 6, respectively. It is recommended that you take advantage of the interrupt handlers
built into the operating system by using these external interrupt lines rather than
generating interrupts directly on the processor interrupt lines.

INTERRUPT CONTROL REGISTERS
There are two interrupt registers, interrupt enable (mask) and interrupt request (status).
Each register has both a read and a write address.

The names of the interrupt addresses are;

INTENA
 Interrupt enable (mask) - write only. Sets or clears specific bits of INTENA.

INTENAR
 Interrupt enable (mask) read - read only. Reads contents of INTENA.

1 A * indicates an active low signal.

- 212 System Control Hardware -

INTREQ
Interrupt request (status) - write only. Used by the processor to force a certain kind of
interrupt to be processed (software interrupt). Also used to clear interrupt request flags
once the interrupt process is completed.

INIEQR
Interrupt request (status) read - read only. Contains the bits that define which items are
requesting interrupt service.

The bit positions in the interrupt request register correspond directly to those same
positions in the interrupt enable register. The only difference between the read-only and

the write-only addresses shown above is bit 15 has no meaning in the read-only
addresses.

SETTING AND CLEARING BITS
Below are the meanings of the bits in the interrupt control registers and how you use
them.

SET AND CLEAR
The interrupt registers, as well as the DMA control register, use a special way of selecting
which of the bits are to be set or cleared. Bit 15 of these registers is called the SET/CLR
bit.

When you wish to set a bit (make it a 1), you must place a 1 in the position you want to
set and a 1 into position 15.

When you wish to clear a bit (make it a 0), you must place a 1 in the position you wish to
clear and a 0 into position 15.

Positions 14-0 are bit-selectors. You write a 1 to any one or more bits to select that bit. At
the same time you write a 1 or 0 to bit 15 to either set or clear the bits you have selected.
Positions 14-0 that have 0 value will not be affected when you do the write. If you want to
set some bits and clear others, you will have to write this register twice (once for setting
some bits, once for clearing others).

- System Control Hardware 213 -

MASTER INTERRUPT ENABLE
Bit 14 of the interrupt registers (INTEN) is for interrupt enable. This is the master
interrupt enable bit. If this bit is a 0, it disables all other interrupts. You may wish to clear
this bit to temporarily disable all interrupts to do some critical processing task.

NOTE
This bit is used for enable/disable only. It creates no interrupt request.

EXTERNAL INTERRUPTS
Bits 13 and 3 of the interrupt registers are reserved for external interrupts.

Bit 13, EXTER, becomes a 1 when the system line called INT6* becomes a logic 0. Bit 13
generates a level 6 interrupt.

Bit 3, PORTS, becomes a 1 when the system line called INT2* becomes a logic 0. Bit 3
causes a level 2 interrupt.

VERTICAL BLANKING INTERRUPT
Bit 5, VERTB, causes an interrupt at line 0 (start of vertical blank) of the video display
frame. The system is often required to perform many different tasks during the vertical
blanking interval. Among these tasks are the updating of various pointer registers,
rewriting lists of Copper tasks when necessary, and other system-control operations.

The minimum time of vertical blanking is 20 horizontal scan lines for an NTSC system and
25 horizontal scan lines for a PAL system. The range starts at line 0 and ends at line 20

for NTSC or line 25 for PAL. After the minimum vertical blanking range, you can control
where the display actually starts by using the DIWSTRT (display window start) register to
extend the effective vertical blanking time. See Chapter 3, "Playfield Hardware," for more
information on DIWSTRT.

If you find that you still require additional time during vertical blanking, you can use the
Copper to create a level 3 interrupt. This Copper interrupt would be timed to occur just
after the last line of display on the screen (after the display window stop which you have
defined by using the DIWSTOP register).

- 214 System Control Hardware -

COPPER INTERRUPT
Bit 4, COPER, is used by the Copper to issue a level 3 interrupt. The Copper can change
the content of any of the bits of this register, as it can write any value into most of the
machine registers. However, this bit has been reserved for specifically identifying the

Copper as the interrupt source.

Generally, you use this bit when you want to sense that the display beam has reached a
specific position on the screen, and you wish to change
something in memory based on this occurrence.

AUDIO INTERRUPTS

Bits 10 - 7, AUD3 - 0, are assigned to the audio channels. They are called AUD3, AUD2,
AUDl, and AUD0 and are assigned to channels 3, 2,1, and 0, respectively.

This level 4 interrupt signals "audio block done". When the audio DMA is operating in
automatic mode, this interrupt occurs when the last word in an audio data stream has
been accessed. In manual mode, it occurs when the audio data register is ready to accept
another word of data.

See Chapter 5, "Audio Hardware," for more information about interrupt generation and
timing.

BLITTER INTERRUPT
Bit 6, BLIT, signals "blitter finished." If this bit is a 1, it indicates that the blitter has
completed the requested data transfer. The blitter is now ready to accept another task.

This bit generates a level 3 interrupt.

DISK INTERRUPT
Bits 12 and 1 of the interrupt registers are assigned to disk interrupts.

Bit 12, DSKSYN, indicates that the sync register matches disk data. This bit generates a
level 5 interrupt.

- System Control Hardware 215 -

Bit 1, DSKBLK, indicates "disk block finished." It is used to indicate that the specified disk
DMA task that you have requested has been completed. This bit generates a level 1
interrupt.

More information about disk data transfer and interrupts may be found in Chapter 8,
"Interface Hardware."

SERIAL PORT INTERRUPTS
The following serial interrupts are associated with the specified bits of the interrupt
registers.

Bit 11, RBF (for receive buffer full), specifies that the input buffer of the UART has data
that is ready to read. This bit generates a level 5 interrupt.

Bit 0, TBE (for "transmit buffer empty"), specifies that the output buffer of the UART
needs more data and data can now be written into this buffer. This bit generates a level 1
interrupt.

 Hardware Exec Software priority Label

 priority Description

 1 1 Software interrupt SOFTINT

 2 Disk block complete DSKBLK

 3 transmitter buffer empty TBE

 2 4 external INT2 & CIAA PORTS

 3 5 graphics coprocessor COPER

 6 vertical blank interval VERTB

 7 blitter finished BLIT

 4 8 audio channel 2 AUD2

 9 audio channel 0 AUD0

 10 audio channel 3 AUD3

 11 audio channel 1 AUD1

 5 12 receiver buffer full RBF

 13 disk sync pattern found DSKSYNC

 6 14 external INT6 & CIAB EXTER

 15 special (master enable) INTEN

 7 -- non-maskable interrupt NMI

 Figure 7-4: Interrupt Priorities

- 216 System Control Hardware -

DMA CONTROL

Many different direct memory access (DMA) functions occur during system operation.
There is a read address as well as a write address to the DMA register so you can tell

which DMA channels are enabled.

The address names for the DMA register are as follows:

 DMACONR - Direct Memory Access Control - read-only.

 DMACON - Direct Memory Access Control - write-only.

The contents of this register are shown in Table 7-5 (bit on if enabled).

PROCESSOR ACCESS TO CHIP MEMORY

The Amiga chips access chip memory directly, rather than utilizing traditional bus
arbitration mechanisms. Therefore, processor supplied features for multiprocessor
support, such as the 68000 TAS (test and set) instruction, cannot serve their intended
purpose and are not supported by the Amiga architecture.

- System Control Hardware 217 -

 Table 7-6: Contents of DMA Register

 Bit

 Number Name Function

 15 SET/CLR The set/reset control bit. See description of bit

 15 under "Interrupts" above.

 14 BBUSY Blitter busy status - read-only

 13 BZERO Blitter zero status-read-only. Remains 1

 if, during a blitter operation, the blitter output

 was always zero.

 12, 11 Unassigned

 10 BLTPRI Blitter priority. Also known as "blitter-nasty."

 When this is a 1, the blitter has full (instead of

 partial) priority over the 68000.

 9 DMAEN DMA enable. This is a master DMA enable bit. It

 enables the DMA for all of the channels at bits 8-0

 8 BPLEN Bit-plane DMA enable

 7 COPEN Coprocessor DMA enable

 6 BLTEN Blitter DMA enable

 5 SPREN Sprite DMA enable

 4 DSKEN Disk DMA enable

 3-0 AUDxEN Audio DMA enable for channels 3-0 (x = 3 - 0).

For more information on using the DMA, see the following chapters:

 Copper Chapter 2 "Coprocessor Hardware"

 Bit-planes Chapter 3 "Playfield Hardware"

 Sprites Chapter 4 "Sprite Hardware"

 Audio Chapter 5 "Audio Hardware"

 Blitter Chapter 6 "Blitter Hardware"

 Disk Chapter 8 "Interface Hardware"

- 218 System Control Hardware -

RESET AND EARLY STARTUP OPERATION

When the Amiga is turned on or externally reset, the memory map is in a special state. An
additional copy of the system ROM responds starting at memory location $00000000. The

system RAM that would normally be located at this address is not available. On some
Amiga models, portions of the RAM still respond. On other models, no RAM responds.
Software must assume that memory is not available. The OVL bit in one of the 8520 Chips
disables the overlay (See Appendix F for the bit location).

The Amiga System ROM contains an ID code as the first word. The value of the ID code
may change in the future. The second word of the ROM contains a JMP instruction ($4ef9).

The next two words are used as the initial program counter by the 68000 processor.

The 68000 "RESET" instruction works much like external reset or power on. All memory
and AUTOCONFIGTM cards disappear, and the ROM image appears at location $00000000.
The difference is that the CPU continues execution with the next instruction. Since RAM
may not be available, special care is needed to write reboot code that will reliably reboot
all Amiga models.

Here is a source code listing of the only supported reboot code:

; ---- The *only* supported reboot code

 CNOP 0,4 ;IMPORTANT: Must be longword aligned

MagicResetCode:

 lea.l 2,a0 ;Point to JMP instruction at start of ROM

 RESET ;all RAM goes away now!

 jmp (a0) ;Rely on prefetch to execute this instruction

The RESET instruction must be executed when the CPU is at the Supervisor privilege level.
If running under Exec, the following code must be used:

_ColdReboot:

 move.l 4,a6 ;Get a pointer to ExecBase

 lea.l MagicResetCode(pc),a5 ;Location of code to trap to

 jsr _LVOSupervisor(a6) ;start code (must use JSR)

- System Control Hardware 219 -

- 220 System Control Hardware -

CHAPTER 8

INTERFACE HARDWARE

INTRODUCTION
This chapter covers the interface hardware through which the Amiga talks to the outside
world, including the following features:

o Two multiple purpose mouse/joystick/light pen control ports

o Disk controller (for floppy disk drives & other MFM and GCR devices)

- Interface Hardware 221 -

o Keyboard

o Centronics compatible parallel I/O interface (for printers)

o RS232-C compatible serial interface (for external modems or other serial devices)

o Video output connectors (RGB, monochrome, Nl SC, RF modulator, video slot)

CONTROLLER PORT INTERFACE

Each Amiga has two nine-pin connectors that can be used for input or output with many

different kinds of controllers. The Figure shows one of the two connectors and the
corresponding face-on view of the typical controller plug.

Figure 8-1: Controller Plug and Computer Connector

- 222 Interface Hardware -

Table 8-1: Typical Controller Connections

 Mouse,

 Trackball, Proportional X-Y

 Driving Controller Proportional

Pin Joystick Controller (Pair) Joystick LightPen

1 Forward V-pulse --- Button 3** ---

2 Back H-pulse --- --- ---

3 Left VQ-pulse Leftbutton Button 1 ---

4 Right HQ-pulse Right button Button 2 ---

5 * --- Middle button** Right POT POT X Pen pressed

 to screen

6 * Button 1 Left button --- --- Beam

 trigger

7 --- +5V +5V +5V +5V

8 GND GND GND GND GND

9 * Button2** Right button Left POT POT Y Button2**

 * These pins may also be conFigured as outputs

** These buttons are optional

 REGISTERS USED WITH THE CONTROLLER PORT

JOY0DAT ($DFF00A) Counter for digital (mouse) input (port 1)

JOY1DAT ($DFF00C) Counter for digital (mouse) input (port 2)

CIAAPRA ($BFE001) Input and output for pin 6 (port 1 and 2 fire buttons)

POT0DAT ($DFF012) Counter for proportional input (port 1)

POT1DAT ($DFF014) Counter for proportional input (port 2)

POTGO ($DFF034) Write proportional pin values and start counters

POTGOR ($DFF016) Read proportional pin values

BPLCON0 ($DFF100) Bit 3 enables the light pen latch

VPOSR ($DFF004) Read light pen position (high order bits)

VHPOSR ($DFF006) Read light pen position (low order bits)

- Interface Hardware 223 -

READING MOUSE/TRACKBALL CONTROLLERS
Pulses entering the mouse inputs are converted to separate horizontal and vertical counts.
The 8 bit wide horizontal and vertical counter registers can track mouse movement
without processor intervention.

The mouse uses quadrature inputs. For each direction, a mechanical wheel inside the
mouse will produce two pulse trains, one 90 degrees out of phase with the other (see
Figure 8-2 for details). The phase relationship determines direction.

The counters increment when the mouse is moved to the right or "down" (toward you).
The counters decrement when the mouse is moved to the left or "up" (away from you).

 MOUSE QUADRATURE

 V VQ : D1 D0

 0 0 : 1 0

 0 1 : 0 1

 1 0 : 1 1

 1 1 : 0 0

 Case 1: Count up

 ________ ________ ________ ____

 / \ / \ / \ /

V ____/ ________/ ________/ ________/

 ________ ________ ________

 / \ / \ / \

VQ ________/ ________/ ________/ __________

 ____ ____ ____ ____ ____ ____

 / \ / \ / 1 \ 0 / \ / \ /

D0 ____/ ____/ ____/ ____/ ____/ ____/

D1 ________ ________ ________ _________

 \ / 1 \ 0 / \ /

 ________/ ________/ ________/

 Case 2: Count down

 ________ ________ ________ ____

 / \ / \ / \ /

V ____/ ________/ ________/ ________/

VQ ________ ________ ________ ________

 \ / \ / \ /

 ________/ ________/ ________/

D0 ____ ____ ____ ____ ____ ____

 \ / \ / \ / \ / \ / \

 ____/ ____/ ____/ ____/ ____/ ____

 ________ ________ ________

 / \ / \ / \

D1 ________/ ________/ ________/ ________

D2 ____

 \

 ____ etc.

 Figure 8-2: Mouse Quadrature

 - 224 Interface Hardware -

READING THE COUNTERS
The mouse/trackball counter contents can be accessed by reading register addresses
named JOY0DAT and JOY1DAT. These contains counts for ports 1 and 2 respectively.

The contents of each of these 16-bit registers are as follows:

Bits 15-8 Mouse/trackball vertical count
Bits 7-0 Mouse/trackball horizontal count

COUNTER LIMITATIONS
These counters will "wrap around" in either the positive or negative direction. If you wish

to use the mouse to control something that is happening on the screen, you must read the
counters at least once each vertical blanking period and save the previous contents of the
registers. Then you can subtract from the previous readings to determine direction of
movement and speed.

The mouse produces about 200 count pulses per inch of movement in either a horizontal
or vertical direction. Vertical blanking happens once each 1/60th of a second. If you read
the mouse once each vertical blanking period, you will most likely find a count difference
(from the previous count) of less than 127. Only if a user moves the mouse at a speed of
more than 38 inches per second will the counter values wrap. Fast-action games may
need to read the mouse register twice per frame to prevent counter overrun.

If you subtract the current count from the previous count, the absolute value of the
difference will represent the speed. The sign of the difference (positive or negative) lets

you determine which direction the mouse is travelling.

The easiest way to calculate mouse velocity is with 8-bit signed arithmetic. The new value
of a counter minus the previous value will represent the number of mouse counts since
the last check. The example shown in Table 8-2 presents an alternate method. It treats
both counts as unsigned values, ranging from 0 to 255. A count of 100 pulses is measured
in each case.

- Interface Hardware 225 -

 Table 8-2: Determining the Direction of the Mouse

 Previous Current Direction

 Count Count

 200 100 Up (Left)

 100 200 Down (Right)

 200 45 Down *

 45 200 Up **

NOTES FOR Table 8-1:

* Because 200-45 = 155, which is more than 127, the true count must be 255 - (200-45)
= 100; the direction is down.

** 45-200 = -155. Because the absolute value of -155 exceeds 127, the true count must
be 255 + (-155) = 100; the direction is up.

MOUSE BUTTONS

There are two buttons on the standard Amiga mouse. However, the control circuitry and
software support up to three buttons.

o The left button on the Amiga mouse is connected to, CIAAPRA ($BFE001). The button
for port 1 is connected to bit 6, port 2 is connected to bit 7. See the 8520 Appendix for
more information. A logic state of 1 means "switch open." A logic state of 0 means "switch
closed."

o Button 2 (right button on Amiga mouse) is connected to pin 9 of the controller ports,
one of the proportional pins. See "DIGITAL INPUT/OUTPUT ON THE CONTROLLER PORT"
for details.

o Button 3, when used, is connected to pin 5, the other proportional controller input.

READING DIGITAL JOYSTICK CONTROLLERS
Digital joysticks contain four directional switches. Each switch can be individually activated
by the control stick. When the stick is pressed diagonally, two adjacent switches are
activated. The total number of possible directions from a digital joystick is 8. All digital
joysticks have at least one fire button.

- 226 Interface Hardware -

Digital joystick switches are of the normally open type. When the switches are pressed,
the input line is shorted to ground. An open switch reads as "1", a closed switch as "0".

Reading the joystick input data logic states is not so simple, however, because the data

registers for the joysticks are the same as the counters that are used for the mouse or
trackball controllers.

The joystick registers are named JOY0DAT and JOY1DAT.

Table 8-2 shows how to interpret the data once you have read it from these registers. The
true logic state of the switch data in these registers is "1 = switch closed."

 This is the \ 1 2 3 4 5 /

 way the pins \ 6 7 8 9 /

 are numbered! ___________/

 _________________ _________________

PORT 1 \ o o o o o / PORT 2 \ o o o o o /

(mouse) \| o| o| o| o / \ o o o o /

 |__|__|__|__/ ___________/

 | | | |

 | | | | JOY1DAT

 | | | | DFF00C

 | | | | is wired similary

 | | | |

 | | | |________________

 | |__|_________________ |

 |__ | | |

 | | _______|_|

 _________|__| | | |

 | | | | | |

 | \-----/ | \-----/

 __|__ |

 \ / \-----/ __|__ \-----/

 \ / | | \ / | |

 V | | \ / | |

 | ___/ V ___/

 |____ | | |

 | | | __|

 | | | |

 _______|______|__________|______|______________

| | |

| MOUSE 0 | MOUSE 0 |

| Y Counter | X Counter |

| | |

|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|

 Figure 8-2-1: Mouse Counters.

- Interface Hardware 227 -

 Table 8-3: Interpreting Data from JOY0DAT and JOY1DAT

 Data Bit Interpretation

 1 True logic state of "right" switch.

 9 True logic state of "left" switch.

 1 (XOR) 0 You must calculate the exclusive-or of bits 1 and 0

 to obtain the logic state of the "back" switch.

 9 (XOR) 8 You must calculate the exclusive-or of bits 9 and 8

 to obtain the logic state of the "forward" switch.

The fire buttons for ports 0 and 1 are connected to bits 6 and 7 of CIAAPRA ($BFE001). A
0 here indicates the switch is closed.

Some, but not all, joysticks have a second button. We encourage the use of this button if
the function the button controls is duplicated via the keyboard or another mechanism.

This button may be read in the same manner as the right mouse button.

READING PROPORTIONAL CONTROLLERS
Each of the game controller ports can handle two variable-resistance input devices, also
known as proportional input devices. This section describes how the positions of the
proportional input devices can be determined. There are two common types of
proportional controllers: the "paddle" controller pair and the X-Y proportional joystick. A
paddle controller pair consists of two individual enclosures, each containing a single
resistor and fire-button and each connected to a common controller port input connector.
Typical connections are shown in Figure 8-3.

- 228 Interface Hardware -

 LEFT PADDLE RIGHT PADDLE

 resistive element resistive element

 ________ _______ ________ _______

 | \/\/\/\/ | \/\/\/\/

 | ^ | ^

 | /|\ | /|\

 | +5 | | +5 |

 | |__________ | |__________

 | | | |

 | | | |

 Pin 7 Pin 9 Pin 7 Pin 5

 | | | |

 |<-----Fire Button----->| |<-----Fire Button----->|

 | | | |

 Pin 8 Pin 3 Pin 8 Pin 4

 Figure 8-4: Typical Paddle Wiring Diagram

In an X-Y proportional joystick, the resistive elements are connected individually to the X
and Y axes of a single controller stick.

READING PROPORTIONAL CONTROLLER BUTTONS
For the paddle controllers, the left and right joystick direction lines serve as the fire
buttons for the left and right paddles.

INTERPRETING PROPORTIONAL CONTROLLER POSITION
Interpreting the position of the proportional controller normally requires some preliminary
work during the vertical blanking interval.

During vertical blanking, you write a value into an address called POTGO. For a standard

X-Y joystick, this value is hex 0001. Writing to this register starts the operation of some
special hardware that reads the potentiometer values and sets the values contained in the
POT registers (described below) to zero.

The read circuitry stays in a reset state for the first seven or eight horizontal video scan
lines. Following the reset interval, the circuit allows a charge to begin building up on a
timing capacitor whose charge rate will be controlled by the position of the external
controller resistance. For each horizontal scan line thereafter, the circuit compares the
charge on the timing capacitor to a preset value. If the charge is below the preset, the
POT counter is incremented. If the charge is above the preset, the counter value will be
held until the next POTGO is issued.

- Interface Hardware 229 -

 Figure 8-5: Effects of Resistance on Charging Rate

You normally issue POTGO at the beginning of a video screen, then read the values in the
POT registers during the next vertical blanking period, just before issuing POTGO again.

Nothing in the system prevents the counters from overflowing (wrapping past a count of
255). However, the system is designed to insure that the counter cannot overflow within
the span of a single screen. This allows you to know for certain whether an overflow is
indicated by the controller.

PROPORTIONAL CONTROLLER REGISTERS
The following registers are used for the proportional controllers:

 POT0DAT - port 1 data (vertical/horizontal3
 POT1DAT - port 2 data (vertical/horizontal)

 Bit positions:

 Bits 15-8 POT0Y value or POT1Y value
 Bits 7-0 POT0X value or POT1X value

All counts are reset to zero when POTGO is written with bit zero high. Counts are normally
read one frame after the scan circuitry is enabled.

- 230 Interface Hardware -

POTENTIOMETER SPECIFICATIONS
The resistance of the potentiometers should be a linear taper. Based on the design of the
integrating analog-to-digital converter used, the maximum resistance should be no more
than 528K (470K +/- 10 percent is suggested) for either the X or Y pots. This is based on

a charge capacitor of 0.047uf, +/- 10 percent, and a maximum time of 16.6 milliseconds
for charge to full value, i.e. one video frame time.

All potentiometers exhibit a certain amount of "jitter". For acceptable results on a wide
base of configurations, several input readings will need to be averaged.

 Port 1 connector

 ___________________ ________________________

 \ o o o o o / | POT1Y | POT1X | POT1DAT

 \ o o o o / | COUNTER | COUNTER | DFF014

 __________/_/ |____________|___________| Read only

 / \ |

 +5 / \ |\ |

 | / ______________| ____|

 / / | | | /

 Max=470k \ / | | |/

 +/-10% /__/ __|__ |

 \ 47nf_____ |__________o______

 / | _____|_ |

 \ \|/ | | | __|__

 | V ^ | |__\ /

 OPEN /_\ | \ /

 | ^ V

 o____/ \ |

 | /___\ |

 KEY: | | |

 a= OUTRY | | | POTGO

 b= DATRY | o------| DFF034

 c= OUTRX | | Write only

 d= DATRX __|_____|____________________________

 e= OUTLY | | | | | | | | | | |

 f= DATLY | a | b |c |d |e |f |g |h |xxxxxx|i |

 g= OUTLX |____|____|__|__|__|__|__|__||||||||__|

 h= DATLX BIT 15 BIT 0

 i= START

 _______._____._____._____.___________

 | | | | | | | | | |

 | 0 | RY |0 |RX|0 |LY|0 |LX| 0 |

 |____|____|__|__|__|__|__|__|_________|

 14 POTINP

 POT COUNTER DFF016

 Read only

 Figure 8-6: Potentiometer Charging Circuit

- Interface Hardware 231 -

READING A LIGHT PEN
A light pen can be connected to one of the controller ports. On the A1000, the light pen
must be connected to port 1. Changing ports requires a minor internal modification. On
the A500 and A2000 the default is port 2. An internal jumper can select port 1. Regardless

of the port used, the light pen design is the same.

The signal called "pen-pressed-to-screen" is typically actuated by a switch in the nose of
the light pen. Note that this switch is connected to one of the potentiometer inputs and
must be read as same as the right or middle button on a mouse.

The principles of light pen operation are as follows:

1. Just as the system exits vertical blank, the capture circuitry for the light pen is
automatically enabled.

2. The video beam starts to create the picture, sweeping from left to right for each
horizontal line as it paints the picture from the top of the screen to the bottom.

3. The sensors in the light pen see a pulse of light as the video beam passes by. The pen
converts this light pulse into an electrical pulse on the "Beam Trigger" line (pin 6).

4. This trigger signal tells the internal circuitry to capture and save the current contents of
the beam register, VPOSR. This allows you to determine where the pen was placed by
reading the exact horizontal and vertical value of the counter beam at the instant the
beam passed the light pen.

- 232 Interface Hardware -

READING THE LIGHT PEN REGISTERS
The light pen register is at the same address as the beam counters. The bits are as
follows:

 VPOSR: Bit 15 Long frame/short frame. 0=short frame

 Bits 14-1 Chip ID code. Do not depend on value!

 Bit 0 V8 (most significant bit of vertical position)

 VHPOSR: Bits 15-8 V7-V0 (vertical position)

 Bits 7-0 H8-H1 (horizontal position)

The software can refer to this register set as a long word whose address is VPOSR.

The positional resolution of these registers is as follows:

Vertical
1 scan line in non-interlaced mode
2 scan lines in interlaced mode (However, if you know which interlaced frame is under
display, you can determine the correct position)

Horizontal
2 low-resolution pixels in either high- or low-resolution

The quality of the light pen will determine the amount of short-term jitter. For most
applications, you should average several readings together.

To enable the light pen input, write a 1 into bit 3 of BPLCON0. Once the light pen input is
enabled and the light pen issues a trigger signal, the value in VPOSR is frozen. If no
trigger is seen, the counters latch at the end of the display field. It is impossible to read
the current beam location while the VPOSR register is latched. This freeze is released at
the end of internal vertical blanking (vertical position 20). There is no single bit in the
system that indicates a light pen trigger. To determine if a trigger has occurred, use one
of these methods:

1. Read (long) VPOSR twice.

2. If both values are not the same, the light pen has not triggered since the last top-of-
screen (V = 20).

3. If both values are the same, mask off the upper 15 bits of the 32-bit word and compare

it with the hex value of $10500 (V=261).

4. If the VPOSR value is greater than $10500, the light pen has not triggered since the
last top-of-screen. If the value is less, the light pen has triggered and the value read is
the screen position of the light pen.

- Interface Hardware 233 -

A somewhat simplified method of determining the truth of the light pen value involves
instructing the system software to read the register only during the internal vertical
blanking period of 0<V20:

1. Read (long) VPOSR once, during the period of 0<V20.

2. Mask off the upper 15 bits of the 32-bit word and compare it with the hex value of
$10500 (V=261).

3. If the VPOSR value is greater than $10500, the light pen has not triggered since the
last top-of-screen. If the value is less, the light pen has triggered and the value read is

the screen position of the light pen.

Note that when the light pen latch is enabled, the VPOSR register may be latched at any
time, and cannot be relied on as a counter. This behavior may cause problems with
software that attempts to derive timing based on VPOSR ticks.

DIGITAL INPUT/OUTPUT ON THE CONTROLLER PORT
The Amiga can read and interpret many different and nonstandard controllers. The control
lines built into the POTGO register (address $DFF034) can redefine the functions of some
of the controller port pins.

Table 8-4 is the POTGO register bit description. POTGO ($DFF034) is the write-only
address for the pot control register. POTINP ($DFF016) is the read-only address for the
pot control register. The pot-control register controls a four-bit bidirectional VO port that

shares the same four pins as the four pot inputs.

Table 8-4: POTGO ($DFF034) and POTINP ($DFF016) Registers

 Bit

 Number Name Function

 15 OUTRY Output enable for bit 14 (l=output)

 14 DATRY data for port 2, pin 9

 13 OUTRX Output enable for bit 12

 12 DATRX data for port 2, pin 5

 11 OUTLY Output enable for bit 10

 10 DATLY data for port 1, pin 9 (right mouse button)

 09 OUTLX Output enable for bit 8

 08 DATLX data for port 1, pin 5 (middle mouse button)

 07-01 X chip revision identification number

 00 START Start pots (dump capacitors, start counters)

- 234 Interface Hardware -

Instead of using the pot pins as variable-resistive inputs, you can use these pins as a
four-bit input/output port. This provides you with two additional pins on each of the two
controller ports for general purpose I/O.

If you set the output enable for any pin to a 1, the Amiga disconnects the potentiometer
control circuitry from the port, and configures the pin for output. The state of the data bit
controls the logic level on the output pin. This register must be written to at the POTGO
address, and read from the POTINP address. There are large capacitors on these lines,
and it can take up to 300 microseconds for the line to change state.

To use the entire register as an input, sensing the current state of the pot pins, write all

0s to POTGO. Thereafter you can read the current state by using read-only address
POTINP. Note that bits set as inputs will be connected to the proportional counters (See
the description of the START bit in POTGO).

These lines can also be used for button inputs. A button is a normally open switch that
shorts to ground. The Amiga must provide a pull-up resistance on the sense pin. To do
this, set the proper pin to output, and drive the line high (set both OUT... and DAT... to
1). Reading POTINP will produce a 0 if the button is pressed, a 1 if it is not.

The joystick fire buttons can also be configured as outputs. CIAADDRA ($BFE201) contains
a mask that corresponds one-to-one with the data read register, CIAAPRA ($BFE001).
Setting a 1 in the direction position makes the corresponding bit an output. See the 8520
appendix for more details.

FLOPPY DISK CONTROLLER

The built-in disk controller in the system can handle up to four MFM-type devices.
Typically these are double-sided, double-density, 3.5" (9Omm) or 5.25" disk drives. One
3.5" drive is installed in the basic unit.

The controller is extremely flexible. It can DMA an entire track of raw MFM data into
memory in a single disk revolution. Special registers allow the CPU to synchronize with
specific data, or read input a byte at a time. The controller can read and write virtually
any double-density MFM encoded disk, including the Amiga V1.0 format, IBM PC (MS-
DOS) 5.25", IBM PC (MS-DOS) 3.5" and most CP/:/ITM formatted disks. The controller
has provisions for reading and writing most disk using the Group Coded Recording (GCR)
method, including Apple II disks. With motor speed tricks, the controller can read and
write Commodore 1541/1571 format diskettes.

- Interface Hardware 235 -

REGISTERS USED BY THE DISK SUBSYSTEM
The disk subsystem uses two ports on the system's 8520 CIA chips, and several registers
in the Paula chip:

 CIAAPRA ($BFE001) four input bits for disk sensing

 CIABPRB ($BFD100) eight output bits for disk selection,

 control and stepping

 ADKCON ($DFF09E) control bits (write only register)

 ADKCONR ($DFF010) control bits (read only register)

 DSKPTH ($DFF020) DMA pointer (32 bits)

 DSKLEN ($DFF024) length of DMA

 DSKBYTR ($DFFOlA) Disk data byte and status read

 DSKSYNC ($DFF07E) Disk sync finder; holds a match word

Figure 8-7: Chinon Timing diagram

- 236 Interface hardware -

Figure 8-8: Chinon Timing diagram cont.

- Interface Hardware 237 -

CIAAPRA/CIABPRB - DISK SELECTION, CONTROL AND SENSING
The following Table lists how 8520 chip bits used by the disk subsystem. Bits labelled "PA"
are input bits in CIAAPRA ($BFE001). Bits labelled "PB" are output bits located in CIAAPRB
($BFD100). More information on how the 8520 chips operate can be found in Appendix F.

Table 8-5: Disk Subsystem

Bit Name Function

PA5 DSKRDY* Disk ready (active low). The drive will pull this line

 low when the motor is known to be rotating at full

 speed. This signal is only valid when the motor is ON,

 at other times configuration information may obscure

 the meaning of this input.

PA4 DSKTRACK0* Track zero detect. The drive will pull this line low

 when the disk heads are positioned over track zero.

 Software must not attempt to step outwards when this

 signal is active. Some drives will refuse to step,

 others will attempt the step, possibly causing

 alignment damage.

 All new drives must refuse to step outward in this

 condition.

PA3 DSKPROT* Disk is write protected (active low).

PA2 DSKCHANGE* Disk has been removed from the drive. The signal goes

 low whenever a disk is removed. It remains low until a

 disk is inserted AND a step pulse is received.

PB7 DSKMOTOR* Disk motor control (active low). This signal is

 nonstandard on the Amiga system. Each drive will latch

 the motor signal at the time its select signal turns

 on. The disk drive motor will stay in this state until

 the next time select turns on. DSKMOTOR* also controls

 the activity light on the front of the disk drive.

 All software that selects drives must set up the motor

 signal before selecting any drives. The drive will

 "remember" the state of its motor when it is not

 selected. All drive motors turn off after system reset.

- 238 Interface Hardware -

 After turning on the motor, software must further wait

 for one half second (500ms), or for the DSKRDY* line to

 go low.

PB6 DSKSEL3* Select drive 3 (active low).

PB5 DSKSEL2* Select drive (active low).

PB4 DSKSEL1* Select drive 1 (active low).

PB3 DSKSEL0* Select drive 0 (internal drive) (active low).

PB2 DSKSIDE Specify which disk head to use. Zero indicates the

 upper head. DSKSIDE must be sTable for 100

 microseconds before writing. After writing, at least

 1.3 milliseconds must pass before switching DSKSIDE.

PB1 DSKDIREC Specify the direction to seek the heads. Zero implies

 seek towards the centre spindle. Track zero is at the

 outside of the disk. This line must be set up before

 the actual step pulse, with a separate write to the

 register.

PB0 DSKSTEP* Step the heads of the disk. This signal must always be

 used as a quick pulse (high, momentarily low, then high).

 The drives used for the Amiga are guaranteed to get to

 the next track within 3 milliseconds. Some drives will

 support a much faster rate, others will fail. Loops

 that decrement a counter to provide delay are not

 accepTable. See Appendix F for a better solution.

 When reversing directions, a minimum of 18 milliseconds

 delay is required from the last step pulse. Settle time

 for Amiga drives is specified at 15 milliseconds.

FLAG DSKINDEX* Disk index pulse ($BFDD00, bit 4). Can be used to

 create a level 6 interrupt. See Appendix F for details.

- Interface Hardware 239 -

DISK DMA CHANNEL CONTROL
Data is normally transferred to the disk by direct memory access (DMA). The disk DMA is
controlled by four items:

o Pointer to the area into which or from which the data is to be moved

o Length of data to be moved by DMA

o Direction of data transfer (read/write)

o DMA enable

DSKPTH - POINTER TO DATA
You specify the 32-bit-wide address from which or to which the data is to be transferred.
The lowest bit of the address must be zero, and the buffer must be in CHIP memory. The
value must be written as a single long word to the DSKPTH register ($DFF020).

DSKLEN - LENGTH, DIRECTION, DMA ENABLE
All of the control bits relating to this topic are contained in a write-only register, called
DSKLEN:

 Table 8-6: DSKLEN Register ($DFF024)

 Bit

 Number Name Usage

 15 DMAEN Secondary disk DMA enable

 14 WRITE Disk write (RAM disk if 1)

 13-0 LENGTH Number of words to transfer

- 240 Interface Hardware -

The hardware requires a special sequence in order to start DMA to the disk. This sequence
prevents accidental writes to the disk. In short, the DMAEN bit in the DSKLEN register
must be tuned on twice in order to actually enable the disk DMA hardware. Here is the
sequence you should follow:

1. Enable disk DMA in the DMACON register (See Chapter 7 for more information)

2. Set DSKLEN to $4000, thereby forcing the DMA for the disk to be turned off.

3. Put the value you want into the DSKLEN register.

4. Write this value again into the DSKLEN register. This actually starts the DMA.

5. After the DMA is complete, set the DSKLEN register back to $4000, to prevent
accidental writes to the disk.

As each data word is transferred, the length value is decremented. After each transfer
occurs, the value of the pointer is incremented. The pointer points to the the next word of
data to written or read. When the length value counts down to 0, the transfer stops.

The recommended method of reading from the disk is to read an entire track into a buffer
and then search for the sector(s) that you want. Using the DSKSYNC register (described
below) will guarantee word alignment of the data. With this process you need to read from
the disk only once for the entire track. In a high speed loader, the step to the next head
can occur while the previous track is processed and check summed. With this method

there are no time-critical sections in reading data, other high-priority subsystems (such as
graphics or audio) are be allowed to run.

If you have too little memory for track buffering (or for some other reason decide not to
read a whole track at once), the disk hardware supports a limited set of sector-searching
facilities. There is a register that may be polled to examine the disk input stream.

There is a hardware bug that causes the last three bits of data sent to the disk to be lost.
Also, the last word in a disk-read DMA operation may not come in (that is, one less word
may be read than you asked for).

- Interface Hardware 241 -

DSKBYTR - DISK DATA BYTE AND STATUS READ (READ-ONLY)
This register is the disk-microprocessor data buffer. In read mode, data from the disk is
placed into this register one byte at a time. As each byte is received into the register, the
DSKBYT bit is set true. DSKBYT is cleared when the DSKBYTR register is read.

DSKBYTR may be used to synchronize the processor to the disk rotation before issuing a
read or write under DMA control.

Table 8-7: DSKBYTR Register

 Bit

Number Name Function

15 DSKBYT When set, indicates that this register contains

 a valid byte of data (reset by reading this

register).

14 DMAON Indicates when DMA is actually enabled. All the

 various DMA bits must be true. This means the

 DMAEN bit in DKSLEN, and the DSKEN & DMAEN bits in

 DMACON.

13 DISKWRITE The disk write bit (in DSKLEN) is enabled.

12 WORDEQUAL Indicates the DISKSYNC register equals the disk

 input stream. This bit is true only while the

 input stream matches the sync register (as little

 as two microseconds).

11-8 Currently unused; don't depend on read value.

7-0 DATA Disk byte data.

ADKCON AND ADKCONR - AUDIO AND DISK CONTROL REGISTER
ADKCON is the write-only address and ADKCONR is the read-only address for this register.
Not all of the bits are dedicated to the disk. Bit 15 of this register allows independent
setting or clearing of any bit or bits. If bit 15 is a one on a write, any ones in positions 0-
14 will set the corresponding bit. If bit 15 is a zero, any ones will clear the corresponding
bit.

- 242 Interface Hardware -

Table 8-8: ADKCON and ADKCONR Register

 Bit

Number Name Function

15 SET/CLR Control bit that allows setting or clearing of individual

 bits without affecting the rest of the register.

 If bit 15 is a 1, the specified bits are set.

 If bit 15 is a 0, the specified bits are cleared.

14 PRECOMP1 MSB of Precompensation specifier

13 PRECOMP0 LSB of Precompensation specifier

 Value of 00 selects none.

 Value of 01 selects 140 ns.

 Value of 10 selects 280 ns.

 Value of 11 selects 560 ns.

12 MFMPREC Value of 0 selects GCR Precompensation.

 Value of 1 selects MFM Precompensation.

10 WORDSYNC Value of 1 enables synchronizing and starting

 of DMA on disk read of a word. The word on which

 to synchronize must be written into the DSKSYNC

 address ($DFF07E). This capability is highly

 useful.

9 MSBSYNC Value of 1 enables sync on most significant bit of the

 input (usually used for GCR).

8 FAST Value of 1 selects two microseconds per bit cell

 (usually MFM). Data must be valid raw MFM.

 0 selects four microseconds per bit (usually GCR).

- Interface Hardware 243 -

The raw MFM data that must be presented to the disk controller will be twice as large as
the unencoded data. The following Table shows the relationship:

 1 ---> 01

 0 ---> 10 ;if following a 0

 0 ---> 00 ;if following a 1

With clever manipulation, the blitter can be used to encode and decode the MFM.

In one common form of GCR recording, each data byte always has the most significant bit
set to a 1. MSBSYNC, when a 1, tells the disk controller to look for this sync bit on every

disk byte. When reading a GCR formatted disk, the software must use a translate Table
called a nybbleizer to assure that data written to the disk does not have too many
consecutive 1's or 0's.

DSKSYNC - DISK INPUT SYNCHRONIZER
The DSKSYNC register is used to synchronize the input stream. This is highly useful when
reading disks. If the WORDSYNC bit is enabled in ADKCON, no data is transferred until a
word is found in the input stream that matches the word in the DSKSYNC register. On
read, DMA will start with the following word from the disk. During disk read DMA, the
controller will resync every time the word match is found. Typically the DSKSYNC will be
set to the magic MFM sync mark value, $4489.

In addition, the DSKSYNC bit in INTREQ is set when the input stream matches the
DSKSYNC register. The DSKSYNC bit in INTREQ is independent of the WORDSYNC enable.

DISK INTERRUPTS
The disk controller can issue three kinds of interrupts:

o DSKSYNC (level 5, INTREQ bit 12) - input stream matches the DSKSYNC register.

o DSKBLK (level 1, INTREQ bit l) - disk DMA has completed.

o INDEX (level 6, 8520 Flag pin) - index sensor triggered.

Interrupts are explained further in the section "Length, Direction, DMA Enable". See
Chapter 7, "System Control Hardware," for more information about interrupts. See
Appendix F for more information on the 8520.

- 244 Interface Hardware -

THE KEYBOARD

The keyboard is interfaced to the system via the serial shift register on one of the 8520
CIA chips. The keyboard data line is connected to the SP pin, the keyboard clock is

connected to the CNT pin. Appendix H contains a full description of the interface.

HOW THE KEYBOARD DATA IS RECEIVED
The CNT line is used as a clock for the keyboard. On each transition of this line, one bit of
data is clocked in from the keyboard. The keyboard sends this clock when each data bit is
stable on the SP line. The clock is an active low pulse. The rising edge of this pulse clocks
in the data.

After a data byte has been received from the keyboard, an interrupt from the 8520 is
issued to the processor. The keyboard waits for a handshake signal from the system
before transmitting any more keystrokes. This handshake is issued by the processor
pulsing the SP line low then high. While some keyboards can detect a 1 microsecond
handshake pulse, the pulse must be at least 85 microseconds for operation with all
models of Amiga keyboards.

If another keystroke is received before the previous one has been accepted by the
processor, the keyboard microprocessor holds keys in a 10 keycode type-ahead buffer.

TYPE OF DATA RECEIVED
The keyboard data is not received in the form of ASCII characters. Instead, for maximum
versatility, it is received in the form of keycodes. These codes include both the down and

up transitions of the keys. This allows your software to use both sets of information to
determine exactly what is happening on the keyboard.

Here is a list of the hexadecimal values that are assigned to the keyboard. A downstroke
of the key transmits the value shown here. An upstroke of the key transmits this value
plus $80. The picture of the keyboard at the end of this section shows the positions that
correspond to the description in the paragraphs below.

Note that raw keycodes provide positional information only, the legend which is printed on
top of the keys changes from country to country.

- Interface Hardware 245 -

RAW KEYCODES 00-3F HEX

These are key codes assigned to specific positions on the main body of the keyboard. The
letters on the tops of these keys are different for each country; not all countries use the
QWERTY key layout. These keycodes are best described positionally as shown in Figure 8-

9 and Figure 8-10 at the end of the keyboard section. The international keyboards have
two more keys that are "cut out" of larger keys on the USA version. These are $30, cut
out from the left shift, and $2B, cut out from the return key.

RAW KEYCODES --> 40-5F HEX (CODES COMMON TO ALL KEYBOARDS)

 40 Space

 41 Backspace

 42 Tab

 43 Numeric Pad "ENTER"

 44 Retum

 45 Escape

 46 Delete

 4C Cursor up

 4D Cursor down

 4E Cursor right

 4F Cursor left

 50-59 Function keys F1-F10

 SF Help

RAW KEYCODES --> 60-67 HEX (KEY CODES FOR QUALIFIER KEYS:)

 60 Left shift

 61 Right shift

 62 Caps lock

 63 Control

 64 Left ALT

 65 Right ALT

 66 Left Amiga (or Commodore key)

 67 Right Amiga

- 246 Interface Hardware -

F0-FF HEX

These key codes are used for keyboard to 68000 communication, and are not associated
with a keystroke. They have no key transition flag, and are therefore described completely
by 8-bit codes:

78 Reset warning. CTRL-AMIGA-AMIGA has been pressed. The keyboard will

 wait a maximum of 10 seconds before resetting the machine. (Not

 available on all keyboard models)

F9 Last key code bad, next key is same code retransmitted

FA Keyboard key buffer overflow

FC Keyboard self-test fail. Also, the caps-lock LED will blink to

 indicate the source of the error. Once for ROM failure, twice for

 RAM failure and three times if the watchdog timer fails to

 function.

FD Initiate power-up key stream (for keys held or stuck at power on)

FE Terminate power-up key stream.

These key codes will usually be filtered out by keyboard drivers.

LIMITATIONS OF THE KEYBOARD
The Amiga keyboard is a matrix of rows and columns with a key switch at each
intersection (see Appendix H for a diagram of the matrix). Because of this, the keyboard is
subject to a phenomenon called "phantom keystrokes." While this is generally not a
problem for typing, games may require several keys be independently held down at once.
By examining the matrix, you can determine which keys may interfere with each other,
and which ones are always safe.

Phantom keystrokes occur when certain combinations of keys pressed are pressed

simultaneously. For example, hold the "A" and "S" keys down simultaneously. Notice that
"A" and "S" are transmitted. While still holding them down, press "Z". On the original
Amiga 1000 keyboard, both the "Z" and a ghost ''X" would be generated. Starting with the
Amiga 500, the controller was upgraded to notice simple phantom situations like the one
above; instead of generating a ghost, the controller will hold off sending any character
until the matrix has cleared (releasing "A" or "S" would clear the matrix). Some high-end
Amiga keyboards may implement true "N-key rollover," where any combination of keys
can be detected simultaneously.

- Interface Hardware 247 -

All of the keyboards are designed so that phantoms will not happen during normal typing,
only when unusual key combinations like the one just described are pressed. Normally,
the keyboard will appear to have "N-key rollover," which means that you will run out of
fingers before generating a ghost character.

NOTE
Seven keys are not part of the matrix, and will never contribute to generating phantoms.
These keys are: CIRL, the two SHIFT keys, the two Amiga keys, and the two ALT keys.

- 248 Interface Hardware -

Figure 8-9: The Amiga 1000 Keyboard, Showing Keycodes in hex

Figure 8-10: the Amiga 500/2000 Keyboard, showing Keycodes in hex.

- Interface Hardware 249 -

PARALLEL INPUT/OUTPUT INTERFACE

The general-purpose bi-directional parallel interface is a 25-pin connector on the back
panel of the computer. This connector is generally used for a parallel printer.

For each data byte written to the parallel port register, the hardware automatically
generates a pulse on the data ready pin. The acknowledge pulse from the parallel device
is hooked up to an interrupt. For pin connections and timing, see Appendix E and F.

SERIAL INTERFACE

A 25-pin connector on the back panel of the computer serves as the general purpose
serial interface. This connector can drive a wide range of different peripherals, including
an external modem or a serial printer.

For pin connections, see Appendix E.

INTRODUCTION TO SERIAL CIRCUITRY
The Paula custom chip contains a Universal Asynchronous Receiver/Transmitter, or UART.
This UART is programmable for any rate from 110 to over 1,000,000 bits per second. It
can receive or send data with a programmable length of eight or nine bits.

The UART implementation provides a high degree of software control. The UART is capable
of detecting overrun errors, which occur when some other system sends in data faster
than you remove it from the data-receive register. There are also status bits and

interrupts for the conditions of receive buffer full and transmit buffer empty. An additional
status bit is provided that indicates "all bits have been shifted out". All of these topics are
discussed below.

SETTING THE BAUD RATE
The rate of transmission (the baud rate) is controlled by the contents of the register
named SERPER. Bits 14-0 of SERPER are the baud-rate divider bits.

- 250 Interface Hardware -

All timing is done on the basis of a "color clock," which is 279.36ns long on NTSC
machines and 281.94ns on PAL machines. If the SERPER divisor is set to the number N,
then N+1 color clocks occur between samples of the state of the input pin (for receive) or
between transmissions of output bits (for transmit). Thus SERPER=(3,579,545/baud)-1.

On a PAL machine, SERPER=(3,546,895/baud)-1. For example, the proper SERPER value
for 9600 baud on an NTSC machine is (3,579,545/9600)-1=371.

With a cable of a reasonable length, the maximum reliable rate is on the order of
150,000-250,000 bits per second. Maximum rates will vary between machines. At these
high rate it is not possible to handle the overhead of interrupts. The receiving end will
need to be in a tight read loop. Through the use of low speed control information and

high-speed bursts, a very inexpensive communication network can be built.

SETTING THE RECEIVE MODE
The number of bits that are to be received before the system tells you that the receive
register is full may be defined either as eight or nine (this allows for 8 bit transmission
with parity). In either case, the receive circuitry expects to see one start bit, eight or nine
data bits, and at least one stop bit.

Receive mode is set by bit 15 of the write-only SERPER register. Bit 15 is a 1 if you chose
nine data bits for the receive-register full signal, and a 0 if you chose eight data bits. The
normal state of this bit for most receive applications is a 0.

CONTENTS OF THE RECEIVE DATA REGISTER
The serial input data-receive register is 16 bits wide. It contains the 8 or 9 bit input data

and status bits.

The data is received, one bit at a time, into an internal serial-to-parallel shift register.
When the proper number of bit times have elapsed, the contents of this register are
transferred to the serial data read register (SERDATR) shown in Table 8-10, and you are
signalled that there is data ready for you.

Immediately after the transfer of data takes place, the receive shift register again
becomes ready to accept new data. After receiving the receiver-full interrupt, you will
have up to one full character-receive time (8 to 10 bit times) to accept the data and clear
the interrupt. If the interrupt is not cleared in time, the OVERRUN bit is set.

- Interface Hardware 251 -

Table 8-9 shows the definitions of the various bit positions within SERDATR.

Table 8-9: SERDATR / ADKCON Registers

 SERDATR

 Bit

Number Name Function

 15 OVRUN OVERRUN bit

 (Mirror - also appears in the interrupt request

 register.) Indicates that another byte of data was

 received before the previous byte was picked up by the

 processor. To prevent this condition, it is necessary

 to reset INTF_RBF (bit 11, receive-buffer-full) in

 INTREQ.

 14 RBF READ BUFFER FULL

 (Mirror - also appears in the interrupt request

 register.) When this bit is 1, there is data ready to

 be picked up by the processor. After reading the

 contents of this data register, you must reset the

 INTF_RBF bit in INTREQ to prevent an overrun.

 13 TBE TRANSMIT BUFFER EMPTY

 (Not a mirror-interrupt occurs when the buffer becomes

 empty.) When bit 14 is a 1, the data in the output data

 register (SERDAT) has been transferred to the serial

 output shift register, so SERDAT is ready to accept

 another output word. This is also true when the buffer

 is empty.

 This bit is normally used for full-duplex operation.

 12 TSRE TRANSMIT SHIFT REGISTER EMPTY

 When this bit is a 1, the output shift register has

 completed its task, all data has been transmitted, and

 the register is now idle. If you stop writing data into

 the output register (SERDAT), then this bit will become

 a 1 after both the word currently in the shift register

 and the word placed into SERDAT have been transmitted.

 This bit is normally used for half-duplex operation.

 11 RXD Direct read of RXD pin on Paula chip.

 10 Not used at this time.

 9 STP Stop bit if 9 data bits are specified for receive.

- 252 Interface Hardware -

 8 STP Stop bit if 8 data bits are specified for receive.

 OR

 DB 8 9th data bit if 9 bits are specified for receive.

7-0 DB7-DB0 Low 8 data bits of received data. Data is TRUE (data

 you read is the same polarity as the data expected).

ADKCON

 15 SET/CLR Allows setting or clearing individual bits.

 If bit 15 is a 1 specified bits are set.

 If bit 15 is a 0 specified bits are cleared.

 11 UARTBRK Force the transmit pin to zero.

HOW OUTPUT DATA IS TRANSMITTED
You send data out on the transmit lines by writing into the serial data output register

(SERDAT).This register is write-only.

Data will be sent out at the same rate as you have established for the read. Immediately
after you write the data into this register, the system will begin the transmission at the
baud rate you selected.

At the start of the operation, this data is transferred from SERDAT into an internal serial
shift register. When the transfer to the serial shift register has been completed, SERDAT
can accept new data; the TBE interrupt signals this fact.

Data will be moved out of the shift register, one bit during each time interval, starting
with the least significant bit. The shifting continues until all 1 bits have been shifted out.
Any number or combination of data and stop bits may be specified this way.

SERDAT is a 16-bit register that allows you to control the format (appearance) of the
transmitted data. To form a typical data sequence, such as one start bit, eight data bits,
and one stop bit, you write into SERDAT the contents shown in Figures 8-11 and 8-12.

- Interface Hardware 253 -

 15 9 8 7 0

 0 0 0 0 0 0 0 1 |<-----8 bits data----->|

 -------------------------->

 Data gets shifted out this way

 Figure 8-12: Starting Appearance of SERDAT and Shift Register

 15 9 8 7 0

 0 -------->| 1 |

 --- 1 bit

 All zeros from the last shift -

 Figure 8-12: Ending Appearance of Shift Register

The register stops shifting and signals "shift register empty" (TSRE) when there is a 1 bit
present in the bit-shifted-out position and the rest of the contents of the shift register are
0s. When new nonzero contents are loaded into this register, shifting begins again.

SPECIFYING THE REGISTER CONTENTS
The data to be transmitted is placed in the output register (SERDAT). Above the data bits,
1 bits must be added as stop bits. Normally, either one or two stop bits are sent.

- 254 Interface Hardware -

The transmission of the start bit is independent of the contents of this register. One start
bit is automatically generated before the first data bit (bit 0) is sent.

Writing this register starts the data transmission. If this register is written with all zeros,

no data transmission is initiated.

DISPLAY OUTPUT CONNECTIONS
All Amiga’s provide a 23-pin connector on the back. This jack contains video outputs and
inputs for external genlock devices. Two separate type of RGB video are available on the
connector

o RGB Monitors ("analog RGB"). Provides four outputs; Red (R), Green (G), Blue (B), and
Sync (S). They can generate up to 4,096 different colors on-screen simultaneously using
the circuitry presently available on the Amiga.

o Digital RGB Monitors. Provides four outputs, distinct from those shown above, named
Red (R), Green (G), Blue (B), Half-Intensity (I), and Sync (S). All output levels are logic
levels (0 or 1). On some monitors these outputs allow up to 15 possible color
combinations, where the values 0000 and 0001 map to the same output value (Half
intensity with no color present is the same as full intensity, no color). Some monitors
arbitrarily map the 16 combinations to 16 arbitrary colors.

Note that the sync signals from the Amiga are unbuffered. For use with any device that
presents a heavy load on the sync outputs, external buffers will be required.

The Amiga 500 and 2000 provide a full-band width monochrome video jack for use with
inexpensive monochrome monitors. The Amiga colors are combined into intensities based
on the following Table:

 Red Green Blue
 30% 60% 10%

The Amiga 1000 provides an RF modulator jack. An adapter is available that allows the
Amiga to use a television set for display. Stereo sound is available on the jack, but will
generally be combined into non-aural sound for the TV set.

The Amiga 1000 provides a color composite video jack. This is suitable for recording
directly with a VCR, but the output is not broadcast quality. For use on a monochrome
monitor, the color information often has undesired effects; careful color selection or a

modification to the internal circuitry can improve the results. High quality composite
adaptors for the A500, A1000, and A2000 plug into the 23 pin RGB port.

The Amiga 2000 provides a special "video slot" that contains many more signals than are
available elsewhere: all the 23-pin RGB port signals, the unencoded digital video, light
pen, power, audio, colorburst, pixel switch, sync, clock signals, etc.

- Interface Hardware 255 –

- 256 Interface Hardware –

APPENDIX A

REGISTER SUMMARY - ALPHABETICAL ORDER

This appendix contains the definitive summary, in alphabetical order, of the register set
and the uses of the individual bits.

- Appendix A 257 -

The addresses shown here are used by the special chips (called "Agnus", "Denise", and
"Paula") for transferring data among themselves. Also, the Copper uses these addresses
for writing to the special chip registers. To write to these registers with the 68000,
calculate the 68000 address using this formula:

68000 address = (chip address) + $DFF000

For example, for the 68000 to write to ADKCON (address = $09E), the address would be
$DFF09E. No other access address is valid. Unused registers must not be accessed

All bits marked as "unused" must be written as zeros. The value of any unused read bit

must not be trusted. Registers are either read-only or write-only. Reading a write-only
register will trash the register. Writing a read-only register will cause unexpected results.

All of the "pointer" type registers are organized as 32 bits on a long word boundary. These
registers may be written with one MOVE.L instruction. The lowest bit of all pointers must
be written as zero. The custom chips can only access CHIP memory; using a non-CHIP
address will fail (See the AllocMem() documentation or your compiler manual for more
information on CHIP memory). Disk data, sprite data, bitplane data, audio data, copper
lists and anything that will be blitted or accessed by custom chip DMA must be located in
chip memory.

When strobing any register which responds to either a read or a write, (for example
copjmp2) be sure to use a MOVE.W, not CLR.W. The CLR instruction causes a read and a
clear (two accesses) on a 68000, but only a single access on 68020 processors. This will

give different results on different processors.

- 258 Appendix A -

 Agnus/

 Read/ Denise/

Register Addresses Write Paula Function

--

ADKCON 09E W P Audio, disk, control write

ADKCONR 010 R P Audio, disk, control read

BIT# USE

--

15 SET/CLR Set/clear control bit. Determines if bits written with a 1

 get set or cleared. Bits written with a zero are always

 unchanged.

14-13 PRECOMP 1-0

 CODE PRECOMP VALUE

 00 none

 01 140 ns

 10 280 ns

 11 560 ns

12 MFMPREC (1=MFM precomp 0-GCR precomp)

11 UARTBRK Forces a UART break (clear TXD) if true.

10 WORDSYNC Enable disk read synchronizing on a word equal to DISK

 SYNC CODE, located in address (3F)*2.

09 MSBSYNC Enables disk read synchronizing on the MSB (most

 significant bit). Apply type GCR.

08 FAST Disk data clock rate control 1-fast(2us) 0=slow(4us). (fast

 for MFM, slow for MFM or GCR)

07 USE3PN Use audio channel 3 to modulate nothing.

06 USE2P3 Use audio channel 2 to modulate period of channel 3.

05 USE1P2 Use audio channel 1 to modulate period of channel 2.

04 USE0P1 Use audio channel 0 to modulate period of channel 1.

03 USE3VN Use audio channel 3 to modulate nothing.

02 USE2V3 Use audio channel 2 to modulate volume of channel 3.

01 USE1V2 Use audio channel 1 to modulate volume of channel 2.

00 USE0V1 Use audio channel 0 to modulate volume of channel 1.

NOTE: If both period and volume are modulated on the same channel, the

period and volume will be alternated. First word xxxxxxxx V6-V0 , Second

word P15-P0 (etc)

AUDxDAT 0AA W P Audio channel x data

This register is the audio channel x (x=0,1,2,3) DMA data buffer. It

contains 2 bytes of data that are each 2'8 complement and are outputted

sequentially (with digital-to-analog conversion) to the audio output pins.

(LSB = 3 MV) The DMA controller automatically transfers data to this

register from RAM. The processor can also write directly to this

register. When the DMA data is finished (words outputted=length) and the

data in this register has been used, an audio channel interrupt request

is set.

- Appendix A 259 -

AUDxLCH 0A0 W A Audio channel x location (high 3 bits)

AUDxLCL 0A2 W A Audio channel x location (low 15 bits)

This pair of registers contains the 18 bit starting address (location) of

audio channel x (x=0,1,2,3) DMA data. This is not a pointer register and

therefore needs to be reloaded only if a different memory location is to

be outputted.

AUDxLEN 0A4 W P Audio channel x length

This register contains the length (number of words) of audio channel x DMA

data.

AUDxPER 0A6 W P Audio channel x Period

This register contains the period (rate) of audio channel x DMA data

transfer. The minimum period is 12 color clocks. This means that the

smallest number that should be placed in this register is 124 decimal.

This corresponds to a maximum sample frequency of 28.86 kHz.

AUDxVOL 0A8 W P Audio channel x volume

This register contains the volume setting for audio channel x. Bits

6,5,4,3,2,1,0 specify 65 linear volume levels as shown below.

Bit# Use

--

15-07 Not used

06 Forces volume to max (64 ones, no zeros)

05-00 Sets one of 64 levels (000000-no output (111111-63 19, one 0)

BLTAFWM 044 W A Blitter first-word mask for source A

BLTALWM 046 W A Blitter last-word mask for source A

The patterns in these two registers are ANDed with the first and last

words of each line of data from source A into the blitter. A zero in any

bit override data from source A. These registers should be set to all 1's

for fill mode or for line-drawing mode.

- 260 Appendix A -

BLTCON0 040 W A Blitter control register 0

BLTCON1 042 W A Blitter control register 1

These two control registers are used together to control blitter

operations. There are two basic mode, area and line, which are selected

by bit 0 of BLTCON1, as shown below.

AREA MODE ("normal")

BIT BLTCON0 BLTCON1

15 ASH3 BSH3

14 ASH2 BSH2

13 ASH1 BSH1

12 ASA0 BSH0

11 USEA X

10 USEB X

09 USEC X

08 USED X

07 LF7 X

06 LF6 X

05 LF5 X

04 LF4 EFE

03 LF3 IFE

02 LF2 FCI

01 LF1 DESC

00 LF0 LINE(0)

ASH 3-0 Shift value of A source

BSH 3-0 Shift value of B source

USEA Mode control bit to use source A

USEB Mode control bit to use source B

USEC Mode control bit to use source C

USED Mode control bit to use destination D

LF 7-0 Logic function minterm select lines

EFE Exclusive fill enable

IFE Inclusive fill enable

FCI Fill carry input

DESC Descending (decreasing address) control bit

LINE Line mode control bit (set to 0)

- Appendix A 261 -

BLTCON0 (cont.) LINE DRAW LINE MODE (line draw)

BLTCON1 (cont.) LINE DRAW

 LINE DRAW BIT# BLTCON0 BLTCON1

 LINE DRAW

 LINE DRAW 15 START3 TEXTURE3

 LINE DRAW 14 START2 TEXTURE2

 LINE DRAW 13 STARTl TEXTURE1

 LINE DRAW 12 START0 TEXTURE0

 LINE DRAW 11 1 0

 LINE DRAW 10 0 0

 LINE DRAW 09 1 0

 LINE DRAW 08 1 0

 LINE DRAW 07 LF7 0

 LINE DRAW 06 LF6 SIGN

 LINE DRAW 05 LF5 0 (Reserved)

 LINE DRAW 04 LF4 SUD

 LINE DRAW 03 LF3 SUL

 LINE DRAW 02 LF2 AUL

 LINE DRAW 01 LF1 SING

 LINE DRAW 00 LF0 LINE(=1)

 LINE DRAW

 LINE DRAW START 3-0 Starting point of line

 LINE DRAW (0 thru 15 hex)

 LINE DRAW LF7-0 Logic function minterm

 LINE DRAW select lines should be preloaded

 LINE DRAW with 4A to select the equation

 LINE DRAW D=(AC+ABC). Since A contains a

 LINE DRAW single bit true (8000), most bits

 LINE DRAW will pass the C field unchanged

 LINE DRAW (not A and C), hut one bit will

 LINE DRAW invert the C field and combine it

 LINE DRAW with texture (A and B and not C).

 LINE DRAW The A bit is automatically moved

 LINE DRAW across the word by the hardware.

 LINE DRAW

 LINE DRAW LINE Line mode control bit (set to 1)

 LINE DRAW SIGN Sign flag

 LINE DRAW 0 Reserved for new mode

 LINE DRAW SING Single bit per horizontal line for

 LINE DRAW use with subsequent area fill

 LINE DRAW SUD Sometimes up or down (=AUD*)

 LINE DRAW SUL Sometimes up or left

 LINE DRAW AUL Always up or left

 LINE DRAW The 3 bits above select the octant

 LINE DRAW for line drawing:

 LINE DRAW OCT SUD SUL AUL

 LINE DRAW

 LINE DRAW 0 1 1 0

 LINE DRAW 1 0 0 1

 LINE DRAW 2 0 1 1

 LINE DRAW 3 1 1 1

 LINE DRAW 4 1 0 1

 LINE DRAW 5 0 1 0

 LINE DRAW 6 0 0 0

 LINE DRAW 7 1 0 0

LINE DRAW The "B" source is used for

LINE DRAW texturing the drawn lines.

BLTDDAT Blitter destination data register

This register holds the data resulting from each

word of blitter operation until it is sent to a

RAM destination. This is a dummy address and

cannot be read by the micro. The transfer is

automatic during blitter operation.

BLTSIZE 058 W A Blitter start and size (window width, height)

This register contains the width and height of

the blitter operation (in line mode, width must

= 2, height = line length). Writing to this

register will start the blitter, and should be

done last, after all pointers and control

registers have been initialized.

BIT 15,19,13,12,11,10,09,08,07,06,05,04,03,02,01,00

 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0,w5 w4 w3 w2 w1 w0

h=height=vertical lines (10 bits=1024 lines max)

w=width=horizontal pixels (6 bits=64 words=1024 pixels max)

LINE DRAW BLTSIZE controls the line length and starts

LINE DRAW the line draw when written to. The h field

LINE DRAW controls the line length (10 bits gives

LINE DRAW lines up to 1024 dots long). The w field

LINE DRAW must be set to 02 for all line drawing.

BLTxDAT 074 W A Blitter source x data register

This register holds source x (x=A,B,C) data for

use by the blitter. It is normally loaded by the

blitter DMA channel; however, it may also be

preloaded by the microprocessor.

LINE DRAW BLTADAT is used as an index register

LINE DRAW and must be preloaded with 8000.

LINE DRAW BLTBDAT is used for texture; it must

LINE DRAW be preloaded with FF if no texture

LINE DRAW (solid line) is desired.

- Appendix A 263 -

BLTxMOD 064 W A Blitter modulo x

This register contains the modulo for blitter

source (xA,B,C) or destination (x=D). A modulo

is a number that is automatically added to the

address at the end of each line, to make the

address point to the start of the next line. Each

source or destination has its own modulo, allowing

each to be a different size, while an identical

area of each is used in the blitter operation.

LINE DRAW BLTAMOD and BLTBMOD are used as slope

LINE DRAW storage registers and must be preloaded

LINE DRAW with the values (4Y-4X) and (4Y)

LINE DRAW respectively. Y/X= line slope.

LINE DRAW BLTCMOD and BLTDMOD must both be

LINE DRAW preloaded with the width (in bytes)

LINE DRAW of the image into which the line is

LINE DRAW being drawn (normally two times the

LINE DRAW screen width in words).

BLTxPTH 050 W A Blitter pointer to x (high 3 bits)

BLTxPTL 052 W A Blitter pointer to x (low 15 bits)

This pair of registers contains the 18-bit address

of blitter source (x=A,B,C) or destination (x=D)

DMA data. This pointer must be preloaded with the

starting address of the data to be processed by

the blitter. After the blitter is finished, it

will contain the last data address (plus increment

and modulo).

LINE DRAW BLTAPTL is used as an accumulator

LINE DRAW register and must be preloaded with

LINE DRAW the starting value of (2Y-X) where

LINE DRAW Y/X is the line slope. BLTCPT and

LINE DRAW BLTDPT (both H and L) must be

LINE DRAW preloaded with the starting address

LINE DRAW of the line.

BPLlMOD 108 W A Bit plane modulo (odd planes)

BPL2MOD 10A W A Bit Plane modulo (even planes)

These registers contain the modules for the odd

and even bit planes. A modulo is a number that is

automatically added to the address at the end of

each line, so that the address then points to the

start of the next line.

Since they have separate modules, the odd and even

bit planes may have sizes that are different from

each other, as well as different from the display

window size.

- 264 Appendix A -

BPLCON0 100 W A D Bit plane control register (misc.

 control bits)

BPLCON1 102 W D Bit plane control register

 (horizontal scroll control)

BPLCON2 104 W D Bit Plane control register

 (video priority control)

These registers control the operation of the

bit planes and various aspects of the display.

BIT# BPLCON0 BPLCON1 BPLCON2

15 HIRES X X

14 BPU2 X X

13 BPU1 X X

12 BPU0 X X

11 HOMOD X X

10 DBLPF X X

09 COLOR X X

08 GAUD X X

07 X PF2H3 X

06 X PF2H2 PF2PRI

05 X PF2H1 PF2P2

04 X PF2H0 PF2P1

03 LPEN PF1H3 PF2P0

02 LACE PF1H2 PF1P2

01 ERSY PF1H1 PF1P1

00 X PF1H0 PF1lP0

HIRES =High-resolution (640) mode

BPU =Bit plane use code 000-110 (NONE through 6 inclusive)

HOMOD =Hold-and-modify mode

DBLPF =Double playfield (PF1=odd PF2=even bit planes)

COLOR =Composite video COLOR enable

GAUD =Genlock audio enable (muxed on BKGND pin during vertical blanking

LPEN =Lightpen enable (reset on power up)

LACE =Interlace enable (reset on power up)

ERSY =External resync (HSYNC, VSYNC pads become inputs) (reset on power

 up)

PF2PRI=Playfield 2 (even planes) has priority over (appears in front of)

 playfield 1 (odd planes).

PF2P =Playfield 2 priority code (with respect to sprites)

PF1P =Playfield 1 priority code (with respect to sprites)

PF2H =Playfield 2 horizontal scroll code

PFlH =Playfield 1 horizontal scroll code

- Appendix A 265 -

BPLxDAT 110 W D Bit plane x data (parallel-to-serial convert)

These registers receive the DMA data fetched from

RAM by the bit plane address pointers described

above. They may also be written by either

microprocessor. They act as a six-word parallel-

to-serial buffer for up to six memory bit planes

(x=1-6). The parallel-to-serial conversion is

triggered whenever bit plane #1 is written,

indicating the completion of all bit planes for

that word (16 pixels). The MSB i9 output first,

and is, therefore, always on the left.

BPLxPTH 0E0 W A = Bit plane x pointer (high 3 bits)

BPLxPTL 0E2 W A Bit plane x pointer (low 15 bits)

This pair of registers contains the 18-bit pointer to

the address of bit-plane x (x21,2,3,4,5,6) DMA data.

This pointer must be reinitialized by the processor

or copper to point to the beginning of bit plane data

every vertical blank time.

CLXCON 098 W D Collision control

This register controls which bit-planes are

included (enabled) in collision detection and

their required state if included. It also controls

the individual inclusion of odd-numbered sprites

in the collision detection by logically OR-ing

them with their corresponding even-numbered sprite.

BIT FUNCTION DESCRIPTION

15 ENSP7 Enable sprite 7 (ORed with sprite 6)

14 ENSP5 Enable sprite 5 (ORed with sprite 4)

13 ENSP3 Enable sprite 3 (ORed with sprite 2)

12 ENSP1 Enable sprite 1 (ORed with sprite 0)

11 ENBP6 Enable bit plane 6 (match required for collision)

10 ENBP5 Enable bit plane 5 (match required for collision)

09 ENBP4 Enable bit plane 4 (match required for collision)

08 ENBP3 Enable bit plane 3 (match required for collision)

07 ENBP2 Enable bit plane 2 (match required for collision)

06 ENBP1 Enable bit plane 1 (match required for collision)

05 NVBP6 Match value for bit plane 6 collision

04 MVBP5 Match value for bit plane 5 collision

03 MVBP4 Match value for bit plane 4 collision

02 MVBP3 Match value for bit plane 3 collision

01 MVBP2 Match value for bit plane 2 collision

00 MVBP1 Match value for bit plane 1 collision

NOTE: Disabled bit planes cannot prevent collisions. Therefore if all bit

planes are disabled, collisions will be continuous, regardless of the

match values.

- 266 Appendix A -

CLXDAT 00E R D Collision data register (read and clear)

This address reads (and clears) the collision

detection register. The bit assignments are below.

NOTE: Playfield 1 is all odd-numbered enabled

bit planes. Playfield 2 is all even-numbered

enabled bit planes

BIT# COLLISIONS REGISTERED

15 not used

14 Sprite 4 (or 5) to sprite 6 (or 7)

13 Sprite 2 (or 3) to sprite 6 (or 7)

12 Sprite 2 (or 3) to sprite 4 (or 5)

11 Sprite 0 (or 1) to sprite 6 (or 7)

10 Sprite 0 (or 1) to sprite 4 (or 5)

09 Sprite 0 (or 1) to sprite 2 (or 3)

08 Playfield 2 to sprite 6 (or 7)

07 Playfield 2 to sprite 4 (or 5)

06 Playfield 2 to sprite 2 (or 3)

05 Playfield 2 to sprite 0 (or 1)

04 Playfield 1 to sprite 6 (or 7)

03 Playfield 1 to sprite 4 (or 5)

02 Playfield 1 to sprite 2 (or 3)

01 Playfield 1 to sprite 0 (or 1)

00 Playfield 1 to playfield 2

COLORxx 180 W D Color Table xx

There are 32 of these registers (xx=00-31) and they

are sometimes collectively called the "color

palette." They contain 12-bit codes representing

red, green, and blue colors for RGB systems.

One of these registers at a time is selected

(by the BPLxDAT serialized video code)

for presentation at the RGB video output pins.

The Table below shows the color register bit usage.

BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

--

 RGB X X X X R3 R2 B1 R0 G3 G2 G1 G0 B3 B2 B1 B0

B=blue, G=green, R=red,

COP1LCH 080 W A Copper first location register

 (high 3 bits)

COP1LCL 082 W A Copper first location register

 (low 15 bits)

COP2LCH 084 W A Copper second location register

 (high 3 bits)

COP2LCL 086 W A Copper second location register

 (low 15 bits)

These registers contain the jump addresses described above.

- Appendix A 267 -

COPCON 02E W A Copper control register

This is a 1-bit register that when set true, allows

the Copper to access the blitter hardware. This

bit is cleared by power-on reset, so that the

Copper cannot access the blitter hardware.

BIT NAME FUNCTION

01 CDANG Copper danger mode. Allows Copper

 access to blitter if true.

COPINS 08C W A Copper instruction fetch identify

This is a dummy address that is generated by the

Copper whenever it is loading instructions into

its own instruction register. This actually occurs

every Copper cycle except for the second (IR2)

cycle of the MOVE instruction. The three types

of instructions are shown below.

MOVE - Move immediate to destination.

WAIT - Wait until beam counter is equal to, or

greater than. (keeps Copper off of bus

until beam position has been reached).

SKIP - Skip if beam counter is equal to or greater

than (skips following MOVE instruction unless

beam position has been reached).

- 268 Appendix A -

COPINS (cont.) MOVE WAIT UNTIL SKIP IF

BIT IR1 IR2 IR1 IR2 IR1 IR2

15 X RD15 VP7 BFD * VP7 BFD *

14 X RD14 VP6 VE6 VP6 VE6

13 X RD13 VP5 VE5 VP5 VES

12 X RD12 VP4 VE4 VP4 VE4

11 X RD11 VP3 VE3 VP3 VE3

10 X RD10 VP2 VE2 VP2 VE2

09 X RD09 VP1 VE1 VP1 VE1

08 DA8 RD08 VP0 VE0 VP0 VE0

07 DA7 RD07 HP8 HE8 HP8 HE8

06 DA6 RD06 HP7 HE7 HP7 HE7

05 DAS RD05 HP6 HE6 HP6 HE6

04 DA4 RD04 HP5 HE5 HPS HES

03 DA3 RD03 HP4 HE4 HP4 HE4

02 DA2 RD02 HP3 HE3 HP3 HE3

01 DA1 RD01 HP2 HE2 HP2 HE2

00 0 RD00 1 0 1 1

IR1 =First instruction register

IR2 =Second instruction register

DA =Destination address for MOVE instruction. Fetched

 during IR1 time, used during IR2 time on RGA bus.

RD =RAM data moved by MOVE instruction at IR2 time

 directly from RAM to the address given by the

 DA field.

VP =Vertical beam position comparison bit.

HP =Horizontal beam position comparison bit.

VE =Enable comparison (mask bit).

HE =Enable comparison (mask bit).

* NOTE BFD-Blitter finished disable. When this bit is true, the Blitter

Finished flag will have no effect on the Copper. When this

bit is zero, the Blitter Finished flag must be true (in addition to the

rest of the bit comparison) before the Copper can exit from its wait

state or skip over an instruction. Note that the V7 comparison cannot be

masked.

The Copper is basically a two-cycle machine that requests the bus only

during odd memory cycles (4 memory cycles per instruction). This prevents

collisions with display, audio, disk, refresh, and sprites, all of which

use only even cycles. It therefore needs (and has) priority over only the

blitter and micro-processor.

There are only three types of instructions: MOVE immediate, WAIT until,

and SKIP if. All instructions (except for WAIT) require two bus cycles

(and two instruction words). Since only the odd bus cycles are requested,

four memory cycle times are required per instruction (memory cycles are

280 ns.)

- Appendix A 269 -

COPINS (cont.)

There are two indirect jump registers, COP1LC and COP2LC. These are 18-

bit pointer registers whose contents are used to modify the program

counter for initialization or jumps. They are transferred to the program

counter whenever strobe addresses COPJMP1 or COPJMP2 are written. In

addition, COP1LC is automatically used at the beginning of each vertical

blank time.

It is important that one of the jump registers be initialized and its

jump strobe address hit after power-up but before Copper DMA is

initialized. This insures a determined startup address and state.

COPJMP1 088 5 A Copper restart at first location

COPJMP2 08A 5 A Copper restart at second location

These addresses are strobe addresses. When written to, they cause the

Copper to jump indirect using the address contained in the first or

second location registers described below. The Copper itself can write to

these addresses, causing its own jump indirect.

- 270 Appendix A -

DDFSTOP 094 W A Display data fetch stop (horiz. position)

DDFSTRT 092 W A Display data fetch start (horiz. position)

These registers control the horizontal timing of the

beginning and end of the bit plane DMA display data

fetch. The vertical bit plane DMA timing is identical

to the display windows described above.

The bit plane modules are dependent on the bit plane

horizontal size and on this data-fetch window size.

Register bit assignment

BIT 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

USE X X X X X X X X H8 H7 H6 H5 H4 H3 X X

(X bits should always be driven with 0 to maintain

upward compatibility)

The Tables below show the start and stop timing for

different register contents.

DDFSTRT (left edge of display data fetch)

PURPOSE H8,H7,H6,H5,H4

Extra wide (max) * 0 0 1 0 1

Wide 0 0 1 1 0

Normal 0 0 1 1 1

Narrow 0 1 0 0 0

DDFSTOP (right edge of display data fetch)

PURPOSE H8,H7,H6,H5,H4

Narrow 1 1 0 0 1

Normal 1 1 0 1 0

Wide (max) 1 1 0 1 1

DIWSTOP 090 W A Display window stop (lower right

vertical-horizontal position)

DIWSTRT 08E W A Display window start (upper left

vertical-horizontal position)

These registers control display window size and

position by locating the upper left and lower right

corners.

BIT 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

USE V7 V6 V5 V4 V3 V2 V1 V0 H7 H6 H5 H4 H3 H2 H1 H0

DIWSTRT is vertically restricted to the upper 2/3

of the display (V8=0) and horizontally restricted to

the left 3/4 of the display (H8=0).

DIWSTOP is vertically restricted to the lower 1/2

of the display (V8=/V7) and horizontally restricted

to the right 1/4 of the display (H8=1).

DMACON 096 W A D P DMA control write (clear or set)

DMACONR 002 R A P DMA control (and blitter status) read

 This register controls all of the DMA channels and

 contains blitter DMA status bits.

 BIT FUNCTION DESCRIPTION

 15 SET/CLR Set/clear control bit. Determines

 if bits written with a 1 get set or

 cleared. Bits written with a zero

 are unchanged.

 14 BBUSY Blitter busy status bit (read only)

 13 BZERO Blitter logic zero status bit

 (read only).

 12 X

 11 X

 10 BLTPRI Blitter DMA priority

 (over CPU micro) (also called

 "blitter nasty") (disables /BLS

 pin, preventing micro from

 stealing any bus cycles while

 blitter DMA is running).

 09 DMAEN Enable all DMA below

 08 BPLEN Bit plane DMA enable

 07 COPEN Copper DMA enable

 06 BLTEN Blitter DMA enable

 05 SPREN Sprite DMA enable

 04 DSKEN Disk DMA enable

 03 AUD3EN Audio channel 3 DMA enable

 02 AUD2EN Audio channel 2 DMA enable

 01 AUD1EN Audio channel 1 DMA enable

 00 AUD0EN Audio channel 0 DMA enable

DSKBYTR 01A R P Disk data byte and status read

This register is the disk-microprocessor data

buffer. Data from the disk (in read mode) is

loaded into this register one byte at a time, and

bit 15 (DSKBYT) is set true.

BIT

15 DSKBYT Disk byte ready (reset on read)

14 DMAON Mirror of bit 15 (DMAEN) in DSKLEN,

 ANDed with Bit 09 (DMAEN) in DMACON

13 DISKWRITE Mirror of bit 14 (WRITE) in DSKLEN

12 WORDEQUAL This bit true only while the

 DSKSYNC register equals the data from disk.

11-08 X Not used

07-00 DATA Disk byte data

- 272 Appendix A -

DSKDAT 026 W P Disk DMA data write

DSKDATR 008 ER P Disk DMA data read (early read dummy

 address)

 This register is the disk DMA data buffer. It

 contains two bytes of data that are either sent

 (written) to or received (read) from the disk.

 The write mode is enabled by bit 14 of the LENGTH

 register. The DMA controller automatically

 transfer data to or from this register and RAM,

 and when the DMA data is finished (length=0) it

 causes a disk block interrupt. See interrupts below.

DSKLEN 024 W P Disk length

 This register contains the length (number of words)

 of disk DMA data. It also contains two control

 bits, a DMA enable bit, and a DMA

 direction (read/write) bit.

 BIT# FUNCTION DESRIPTION

 15 DMAEN Disk DMA enable

 14 WRITE Disk write (RAM to disk) if 1

 13-0 LENGTH Length (# of words) of DMA data.

DSKPTH 020 W A Disk pointer (high 3 bits)

DSKPTL 022 W A Disk pointer (low 15 bits)

 This pair of registers contains the 18-bit

 address of disk DMA data. These address registers

 must be initialized by the processor or Copper

 before disk DMA is enabled.

DSKSYNC 07E W P Disk sync register

 hold the match code for disk read synchronization.

 See ADKCON bit 10.

- Appendix A 273 -

INTENA 09A W P Interrupt enable bits (clear or set bits)

INTENAR 01C R P Interrupt enable bits (read)

 This register contains interrupt enable bits. The bit

 assignment for both the request and enable registers

 is given below.

 BIT# FUNCT LEVEL DESCRIPTION

 --

 15 SET/CLR Set/clear control bit. Determines if

 bits written with a 1 get set or

 cleared. Bits written with a zero

 are always unchanged.

 14 INTEN Master interrupt (enable only,

 no request)

 13 EXTER 6 External interrupt

 12 DSKSYN 5 Disk sync register (DSKSYNC)

 matches disk data

 11 RBF 5 Serial port receive buffer full

 10 AUD3 4 Audio channel 3 block finished

 09 AUD2 4 Audio channel 2 block finished

 08 AUDl 4 Audio channel 1 block finished

 07 AUD0 4 Audio channel 0 block finished

 06 BLIT 3 Blitter finished

 05 VERTB 3 Start of vertical blank

 04 COPER 3 Copper

 03 PORTS 2 I/O ports and timers

 02 SOFT 1 Reserved for software-initiated

 interrupt

 01 DSKBLK 1 Disk block finished

 00 TBE 1 Serial port transmit buffer empty

INTREQ 09C W P Interrupt request bits (clear or set)

INTREQR 01E R P Interrupt request bits (read)

This register contains interrupt request bits (or flags). These bits may

be polled by the processor; if enabled by the bits listed in the next

register, they may cause processor interrupts. Both a set and clear

operation are required to load arbitrary data into this register. These

status bits are not automatically reset when the interrupt is serviced,

and must be reset when desired by writing to this address. The bit

assignments are identical to the enable register below.

- 274 Appendix A -

JOY0DAT 00A R D Joystick-mouse 0 data (left vertical, horizontal)

JOY1DAT 00C R D Joystick-mouse 1 data (right vertical, horizontal)

These addresses each read a pair of 8-bit mouse counters. 0=left

controller pair, 1=right controller pair (four counters total). The bit

usage for both left and right addresses is shown below. Each counter is

clocked by signals from two controller pins. Bits 1 and 0 of each counter

may be read to determine the state of these two clock pins. This allows

these pins to double as joystick switch inputs.

Mouse counter usage:

(pins 1,3=Yclock, pins 2,4=Xclock)

BIT 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00

--

0DAT Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 X7 X6 X5 X4 X3 X2 X1 X0

1DAT Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 X7 X6 X5 X4 X3 X2 X1 X0

The following Table shows the mouse/joystick connector pin usage. The

pins (and their functions) are sampled (multiplexed) into the DENISE chip

during the clock times shown in the Table. This Table is for reference

only and should not be needed by the programmer. (Note that the joystick

functions are all "active low" at the connector pins.)

 Sampled by DENISE

Conn Joystick Mouse

Pin Function Function Pin Name Clock

--

L1 FORW* Y 38 M0V at CCK

L3 LEFT* YQ 38 M0V at CCK*

L2 BACK* X 9 M0H at CCK

L4 RIGH* XQ 9 M0H at CCK*

R1 FORW* Y 39 M1V at CCK

R3 LEFT* YQ 39 M1V at CCK*

R2 BACK* X 8 M1H at CCK

R4 RIGH* XQ 8 M1H at CCK*

After being sampled, these connector pin signals are used in quadrature

to clock the mouse counters. The LEFT and RIGHT joystick functions

(active high) are directly available on the Y1 and X1 bits of each

counter. In order to recreate the FORWARD and BACK joystick functions,

however, it is necessary to logically combine (exclusive OR) the lower

two bits of each counter. This is illustrated in the following Table.

TO DETECT READ THESE COUNTER BITS

--

Forward Y1 xor Y0 (BIT#09 xor BIT#08)

Left Y1

Back X1 xor X0 (BIT#01 xor BIT#00)

Right X1

- Appendix A 275 -

JOYTEST 036 W D Write to all four joystick-mouse counters at once.

Mouse counter write test data:

BIT# 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00

--

0DAT Y7 Y6 Y5 Y4 Y3 Y2 xx xx X7 X6 X5 X4 X3 X2 xx xx

1DAT Y7 Y6 Y5 Y4 Y3 Y2 xx xx X7 X6 X5 X4 X3 X2 xx xx

POT0DAT 012 R P Pot counter data left pair (vert,horiz)

POT1DAT 014 R P Pot counter data right pair (vert,horiz)

These addresses each read a pair of 8-bit pot counters.

(Four counters total.) The bit assignment for both

addresses is shown below. The counters are stopped by

signals from two controller connectors (left-right)

with two pins each.

BIT# 15,14,13,12,11,10,09,08 07,06,05,04,03,02,01,00

RIGHT Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 X7 X6 X5 X4 X3 X2 X1 X0

LEFT Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 X7 X6 X5 X4 X3 X2 X1 X0

 CONNECTORS PAULA

 --

 Loc. Dir. Sym Pin Pin# Pin Name

 --

 RIGHT Y RY 9 36 (POT1Y)

 RIGHT X RX 5 35 (POT1X)

 LEFT Y LY 9 33 (POT0Y)

 LEFT X LX 5 32 (POT0X)

POTGO 034 W P Pot port data write and start.

POTGOR 016 R P Pot port data read (formerly called POTINP).

This register controls a 4-bit bi-directional I/O port

that shares the same four pins as the four pot counters

above.

BIT# FUNCT DESCRIPTION

15 OUTRY Output enable for Paula pin 36

14 DATRY I/O data Paula pin 36

13 OUTRX Output enable for Paula pin 35

12 DATRX I/O data Paula pin 35

11 OUTLY Output enable for Paula pin 33

10 DATLY I/O data Paula pin 33

09 OUTLX Output enable for Paula pin 32

08 DATLX I/O data Paula pin 32

07-01 0 Reserved for chip ID code (presently 0)

00 START Start pots (dump capacitors, start counters)

REFPTR 028 W A Refresh pointer

This register is used as a dynamic RAM refresh address generator. It is

writeable for test purposes only, and should never be written by

the microprocessor.

- 276 Appendix A -

SERDAT 030 W P Serial port data and stop bits write

 (transmit data buffer)

 This address writes data to a transmit data buffer.

 Data from this buffer is moved into a serial shift

 register for output transmission whenever it is

 empty. This sets the interrupt request TBE

 (transmit buffer empty). A stop bit must be

 provided as part of the data word. The length of

 the data word is set by the position of the stop

 bit.

 BIT# 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

 --

 USE 0 0 0 0 0 0 S D8 D7 D6 D5 D4 D3 D2 D1 D0

 Note: S = stop bit = 1, D = data bits.

SERDATR 018 R P Serial port data and status read

 (receive data buffer)

 This address reads data from a receive data buffer.

 Data in this buffer is loaded from a receiving

 shift register whenever it is full. Several

 interrupt request bits are also read at this

 address, along with the data, as shown below.

BIT# SYM FUNCTION

15 OVRUN Serial port receiver overrun.

 Reset by resetting bit 11 of INTREQ.

14 RBF Serial port receive buffer full

 (mirror).

13 TBE Serial port transmit buffer empty (mirror).

12 TSRE Serial port transmit shift register empty.

 Reset by loading into buffer.

11 RXD RXD pin receives UART serial data for direct bit test

 by the microprocessor.

10 0 Not used

09 STP Stop bit

08 STP-DB8 Stop bit if LONG, data bit if not.

07 DB7 Data bit

06 DB6 Data bit

05 DBS Data bit

04 DB4 Data bit

03 DB3 Data bit

02 DB2 Data bit

01 DB1 Data bit

00 DB0 Data bit

- Appendix A 277 -

SERPER 032 W P Serial port period and control

This register contains the control bit LONG referred to

above, and a 15-bit number defining the serial port

baud rate. If this number is N, then the baud rate is

1 bit every (N+1) * 0.2794 microseconds.

BIT# SYM FUNCTION

--

15 LONG Defines serial receive as 9-bit word.

14-00 RATE Defines baud rate=1/ ((N+1) * 0.2794 microsec.

SPRxCTL 142 W A D Sprite x vert stop position and control data

SPRxPOS 140 W A D Sprite x vert-horiz start position data

These two registers work together as position, size and

feature sprite-control registers. They are usually loaded

by the sprite DMA channel during horizontal blank;

however, they may be loaded by either processor at any time.

SPRxPOS register:

BIT# SYM FUNCTION

--

15-08 SV7-SV0 Start vertical value. High bit(SV8) is in SPRxCTL

 register below.

07-00 SH8-SH1 Start horizontal value. Low bit(SH0) is in SPRxCTL

 register below.

SPRxCTL register (writing this address disables sprite horizontal

comparator circuit):

BIT# SYM FUNCTION

--

15-08 EV7-EV0 End (stop) vertical value low 8 bits

07 ATT Sprite attach control bit (odd sprites)

06-04 X Not used

02 SV8 Start vertical value high bit

01 EV8 End (stop) vertical value high bit

00 SH0 Start horizontal value low bit

SPRxDATA 144 W D Sprite x image data register A

SPRxDATB 146 W D Sprite x image data register B

These registers buffer the sprite image data. They are

usually loaded by the sprite DMA channel but may be

loaded by either processor at any time. When a

horizontal comparison occurs, the buffers are dumped

into shift registers and serially outputted to the

display, MSB first on the left.

NOTE: Writing to the A buffer enables (arms) the sprite.

Writing to the SPRxCTL register disables the sprite.

If enabled, data in the A and B buffers will be outputted

whenever the beam counter equals the sprite horizontal

position value in the SPRxPOS register.

SPRxPOS see SPRxCTL

- 278 Appendix A -

SPRxPTH 120 W A Sprite x pointer (high 3 bits)

SPRxPTL 122 W A Sprite x pointer (low 15 bits)

This pair of registers contains the 18-bit address

of sprite x (x=0,1,2,3,4,5,6,7) DMA data. These address

registers must be initialized by the processor or Copper

every vertical blank time.

STREQU 038 S D Strobe for horizontal sync with VB and EQU

STRHOR 03C 5 D P Strobe for horizontal sync

STRLONG 03E 5 D Strobe for identification of long

 horizontal line

One of the first three strobe addresses above is

placed on the destination address bus during the

first refresh time slot. The fourth strobe shown

above is used during the second refresh time slot of

every other line to identify lines with long counts

(228). There are four refresh time slots, and any

not used for strobes will leave a null (FF) address

on the destination address bus.

STRVBL 03A 5 D Strobe for horizontal sync with VB

 (vertical blank)

VHPOSR 006 R A Read vertical and horizontal position of

 beam or lightpen

VHPOSW 02C W A Write vertical and horizontal position

 of beam or lightpen

BIT# 15,14,13,12,11,10,09,03,07,06,05,04,03,02,01,00

USE V7 V6 V5 V4 V3 V2 V1 V0,H8 H7 H6 H5 H4 H3 H2 H1

RESOLUTION=1/160 of screen width (280 ns)

VPOSR 004 R A Read vertical most significant bit

 (and frame flop)

VPOSW 02A W A Write vertical most significant bit

 (and frame flop)

 BIT 15,14,13,12,11,10,09,08,07,06,05,04,03,02,01,00

 USE LOF V8

 LOF=Long frame (auto toggle control bit in BPLCON0)

- Appendix A 279 -

- 280 Appendix A -

APPENDIX B

REGISTER SUMMARY ADDRESS ORDER

This appendix contains information about the register set in address order.

- Appendix B 281 -

The following codes and abbreviations are used in this appendix:

& Register used by DMA channel only.

% Register used by DMA channel usually, processors sometimes.

+ Address register pair. Must be an even address pointing to chip

 memory.

* Address not wriTable by the Copper.

- Address not wriTable by the Copper unless the "copper danger bit",

 COPCON is set true.

A,D,P

 A=Agnus chip, D=Denise chip, P=Paula chip.

W,R

 W=write-only; R=read-only,

ER Early read. This is a DMA data transfer to RAM, from either the disk

 or the blitter. RAM timing requires data to be on the bus earlier than

 microprocessor read cycles. These transfers are therefore initiated

 by Agnus timing, rather than a read address on the destination address

 bus.

S Strobe (write address with no register bits). Writing the register

 causes the effect.

PTL,PTH

 Chip memory pointer that addresses DMA data. Must be reloaded by a

 processor before use (vertical blank for bit-plane and sprite

 pointers, and prior to starting the blitter for blitter pointers).

LCLLCH

 Chip memory location (starting address) of DMA data. Used to

 automatically restart pointers, such as the Copper program counter

 (during vertical blank) and the audio sample counter (whenever the

 audio length count is finished).

MOD

 15-bit modulo. A number that is automatically added to the memory

 address at the end of each line to generate the address for the

 beginning of the next line. This allows the blitter (or the display

 window) to operate on (or display) a window of data that is smaller

 than the actual picture in memory (memory map). Uses 15 bits, plus

 sign extend.

- 282 Appendix B -

NAME ADD R/W CHIP FUNCTION

BLTDDAT & *000 ER A Blitter destination early read (dummy address)

DMACONR *002 R A P DMA control (and blitter status) read

VPOSR *004 R A Read vert most signif. bit (and frame flop)

VHPOSR *006 R A Read vert and horiz. position of beam

DSKDATR & *008 ER P Disk data early read (dummy address)

JOY0DAT *00A R D Joystick-mouse 0 data (vert,horiz)

JOY1DAT *00C R D Joystick-mouse 1 data (vert,horiz)

CLXDAT *00E R D Collision data register (read and clear)

ADKCONR *010 R P Audio, disk control register read

POT0DAT *012 R P Pot counter pair 0 data (vert,horiz)

POT1DAT *014 R P Pot counter pair 1 data (vert,horiz)

POTGOR *016 R P Pot port data read (formerly POTINP)

SERDATR *018 R P Serial port data and status read

DSKBYTR *01A R P Disk data byte and status read

INTENAR *01C R P Interrupt enable bits read

INTREQR *01E R P Interrupt request bits read

DSKPTH + *020 W A Disk pointer (high 3 bits)

DSKPTL + *022 W A Disk pointer (low 15 bits)

DSKLEN *024 W P Disk length

DSKDAT & *026 W P Disk DMA data write

REFPTR & *028 W A Refresh pointer

VPOSW *02A W A Write vert most signif. bit (and frame flop)

VHPOSW *02C W A Write vert and horiz position of beam

COPCON *02E W A Coprocessor control register (CDANG)

SERDAT *030 W P Serial port data and stop bits write

SERPER *032 W P Serial port period and control

POTGO *034 W P Pot port data write and start

JOYTEST *036 W D Write to all 4 joystick-mouse counters at once

STREQU & *038 S D Strobe for horiz sync with VB and EQU

STRVBL & *03A S D Strobe for horiz sync with VB (vert. blank)

STRHOR & *03C S D P Strobe for horiz sync

STRLONG & *03E S D Strobe for identification of long horiz. line.

BLTCON0 -040 W A Blitter control register 0

BLTCON1 -042 W A Blitter control register 1

BLTAFWM -044 W A Blitter first word mask for source A

BLTALWM -046 W A Blitter last word mask for source A

BLTCPTH + -048 W A Blitter pointer to source C (high 3 bits)

BLTCPTL + -04A W A Blitter pointer to source C (low 15 bits)

BLTBPTH + -04C W A Blitter pointer to source B (high 3 bits)

BLTBPTL + -04E W A Blitter pointer to source B (low 15 bits)

BLTAPTH + -050 W A Blitter pointer to source A (high 3 bits)

BLTAPTL + -052 W A Blitter pointer to source A (low 15 bits)

BLTDPTH + -054 W A Blitter pointer to destination D (high 3 bits)

BLTDPTL + -056 W A Blitter pointer to destination D (low 15 bits)

BLTSIZE -058 W A Blitter start and size (window width, height)

 -05A

 -05C

 -05E

BLTCMOD -060 W A Blitter modulo for source C

BLTBMOD -062 W A Blitter modulo for source B

BLTAMOD -064 W A Blitter modulo for source A

BLTDMOD -066 W A Blitter modulo for destination D

 -068

 -06A

 -06C

 -06E

BLTCDAT % -070 W A Blitter source C data register

BLTBDAT % -072 W A Blitter source B data register

BLTADAT % -074 W A Blitter source A data register

 -076

 -078

 -07A

 -07C

DSRSYNC -07E W P Disk sync pattern register for disk read

COP1LCH + 080 W A Coprocessor first location register (high 3 bits)

COP1LCL + 082 W A Coprocessor first location register (low 15 bits)

COP2LCH + 084 W A Coprocessor second location register (high 3

 bits)

COP2LCL + 086 W A Coprocessor second location register (low 15

 bits)

COPJMP1 088 S A Coprocessor restart at first location

COPJMP2 08A S A Coprocessor restart at second location

COPINS 08C W A Coprocessor instruction fetch identify

DIWSTRT 08E W A Display window start (upper left vert-horiz

 position)

DIWSTOP 090 W A Display window stop (lower right vert.-horiz.

 position)

DDFSTRT 092 W A Display bit plane data fetch start (horiz.

 position)

DDFSTOP 094 W A Display bit plane data fetch stop (horiz.

 position)

DMACON 096 W A D P DMA control write (clear or set)

CLXCON 098 W D Collision control

INTENA 09A W P Interrupt enable bits (clear or set bits)

INTREQ 09C W P Interrupt request bits (clear or set bits)

ADKCON 09E W P Audio, disk, UART control

AUD0LCH + 0AO W A Audio channel 0 location (high 3 bits)

AUD0LCL + 0A2 W A Audio channel 0 location (low 15 bits)

AUD0LEN 0A4 W P Audio channel 0 length

AUD0PER 0A6 W P Audio channel 0 period

AUD0VOL 0A8 W P Audio channel 0 volume

AUD0DAT & 0AA W P Audio channel 0 data

 0AC

 0AE

AUD1LCH + 0B0 W A Audio channel 1 location (high 3 bits)

AUD1LCL + 0B2 W A Audio channel 1 location (low 15 bits)

AUD1LEN 0B4 W P Audio channel 1 length

AUD1PER 0B6 W P Audio channel 1 period

AUD1VOL 0B8 W P Audio channel 1 volume

AUD1DAT & 0BA W P Audio channel 1 data

 0BC

 0BE

AUD2LCH + 0C0 W A Audio channel 2 location (high 3 bits)

AUD2LCL + 0C2 W A Audio channel 2 location (low 15 bits)

AUD2LEN 0C4 W P Audio channel 2 length

AUD2PER 0C6 W P Audio channel 2 period

AUD2VOL 0C8 W P Audio channel 2 volume

AUD2DAT & 0CA W P Audio channel 2 data

 0CC

 0CE

AUD3LCH + 0D0 W A Audio channel 3 location (high 3 bits)

AUD3LCL + 0D2 W A Audio channel 3 location (low 15 bits)

AUD3LEN 0D4 W P Audio channel 3 length

AUD3PER 0D6 W P Audio channel 3 period

AUD3VOL 0D8 W P Audio channel 3 volume

AUD3DAT 6 0DA W P Audio channel 3 data

- 284 Appendix B -

 0DC

 0DE

BPL1PTH + 0E0 W A Bit plane 1 pointer (high 3 bits)

BPL1PTL + 0E2 W A Bit plane 1 pointer (low 15 bits)

BPL2PTH + 0E4 W A Bit plane 2 pointer (high 3 bits)

BPL2PTL + 0E6 W A Bit plane 2 pointer (low 15 bits)

BPL3PTH + 0E8 W A Bit plane 3 pointer (high 3 bits)

BPL3PTL + 0EA W A Bit plane 3 pointer (low 15 bits)

BPL4PTH + 0EC W A Bit plane 4 pointer (high 3 bits)

BPL4PTL + 0EE W A Bit plane 4 pointer (low 15 bits)

BPL5PTH + 0F0 W A Bit plane 5 pointer (high 3 bits)

BPLSPTL + 0F2 W A Bit plane 5 pointer (low 15 bits)

BPL6PTH + 0F4 W A Bit plane 6 pointer (high 3 bits)

BPL6PTL + 0F6 W A Bit plane 6 pointer (low 15 bits)

 0F8

 0FA

 0FC

 0FE

BPLCON0 100 W A D Bit plane control register (misc. control bits)

BPLCON1 102 W D Bit plane control reg. (scroll value PF1, PF2)

BPLCON2 104 W D Bit plane control reg. (priority control)

 106

BPL1MOD 108 W A Bit plane modulo (odd planes)

BPL2MOD 10A W A Bit Plane modulo (even planes)

 10C

 10E

BPL1DAT & 110 W D Bit plane 1 data (parallel-to-serial convert)

BPL2DAT & 112 W D Bit plane 2 data (parallel-to-serial convert)

BPL3DAT & 114 W D Bit plane 3 data (parallel-to-serial convert)

BPL4DAT & 116 W D Bit plane 4 data (parallel-to-serial convert)

BPL5DAT & 118 W D Bit plane 5 data (parallel-to-serial convert)

BPL6DAT & 11A W D Bit plane 6 data (parallel-to-serial convert)

 11C

 11E

- Appendix B 285 -

SPR0PTH + 120 W A Sprite 0 pointer (high 3 bits)

SPR0PTL + 122 W A Sprite 0 pointer (low 15 bits)

SPR1PTH + 124 W A Sprite 1 pointer (high 3 bits)

SPR1PTL + 126 W A Sprite 1 pointer (low 15 bits)

SPR2PTH + 128 W A Sprite 2 pointer (high 3 bits)

SPR2PTL + 12A W A Sprite 2 pointer (low 15 bits)

SPR3PTH + 12C W A Sprite 3 pointer (high 3 bits)

SPR3PTL + 12E W A Sprite 3 pointer (low 15 bits)

SPR4PTH + 130 W A Sprite 4 pointer (high 3 bits)

SPR4PTL + 132 W A Sprite 4 pointer (low 15 bits)

SPR5PTH + 134 W A Sprite 5 pointer (high 3 bits)

SPR5PTL + 136 W A Sprite 5 pointer (low 15 bits)

SPR6PTH + 138 W A Sprite 6 pointer (high 3 bits)

SPR6PTL + 13A W A Sprite 6 pointer (low 15 bits)

SPR7PTH + 13C W A Sprite 7 pointer (high 3 bits)

SPR7PTL + 13E W A Sprite 7 pointer (low 15 bits)

SPR0POS % 140 W A D Sprite 0 vert-horiz start position data

SPR0CTL % 142 W A D Sprite 0 vert stop position and control data

SPR0DATA % 144 W D Sprite 0 image data register A

SPR0DATB % 146 W D Sprite 0 image data register B

SPR1POS % 148 W A D Sprite 1 vert-horiz start position data

SPR1CTL % 14A W A D Sprite 1 vert stop position and control data

SPR1DATA % 14C W D Sprite 1 image data register A

SPR1DATB % 14E W D Sprite 1 image data register B

SPR2POS % 150 W A D Sprite 2 vert-horiz start position data

SPR2CTL % 152 W A D Sprite 2 vert stop position and control data

SPR2DATA % 154 W D Sprite 2 image data register A

SPR2DATB % 156 W D Sprite 2 image data register B

SPR3POS % 158 W A D Sprite 3 vert-horiz start position data

SPR3CTL % 15A W A D Sprite 3 vert stop position and control data

SPR3DATA $ 15C W D Sprite 3 image data register A

SPR3DATB % 15E W D Sprite 3 image data register B

SPR4POS % 160 W A D Sprite 4 vert-horiz start position data

SPR4CTL % 162 W A D Sprite 4 vert stop position and control data

SPR4DATA % 164 W D Sprite 4 image data register A

SPR4DATB % 166 W D Sprite 4 image data register B

SPR5POS % 168 W A D Sprite 5 vert-horiz start position data

SPR5CTL % 16A W A D Sprite 5 vert stop position and control data

SPR5DATA % 16C W D Sprite 5 image data register A

SPR5DATB % 16E W D Sprite 5 image data register B

- 286 Appendix B -

SPR6POS % 170 W A D Sprite 6 vert-horiz start position data

SPR6CTL % 172 W A D Sprite 6 vert stop position and control data

SPR6DATA % 174 W D Sprite 6 image data register A

SPR6DATB % 176 W D Sprite 6 image data register B

SPR7POS % 178 W A D Sprite 7 vert-horiz start position data

SPR7CTL % 17A W A D Sprite 7 vert stop position and control data

SPR7DATA % 17C W D Sprite 7 image data register A

SPR7DATB % 17E W D Sprite 7 image data register B

COLOR00 180 W D Color Table 00

COLOR01 182 W D Color Table 01

COLOR02 184 W D Color Table 02

COLOR03 186 W D Color Table 03

COLOR04 188 W D Color Table 04

COLOR05 18A W D Color Table 05

COLOR06 18C W D Color Table 06

COLOR07 18E W D Color Table 07

COLOR08 190 W D Color Table 08

COLOR09 192 W D Color Table 09

COLOR10 194 W D Color Table 10

COLORll 196 W D Color Table 11

COLOR12 198 W D Color Table 12

COLOR13 19A W D Color Table 13

COLOR14 19C W D Color Table 14

COLOR15 19E W D Color Table 15

COLOR16 1A0 W D Color Table 16

COLOR17 1A2 W D Color Table 17

COLOR18 1A4 W D Color Table 18

COLORl9 1A6 W D Color Table 19

COLOR20 1A8 W D Color Table 20

COLOR21 1AC W D Color Table 21

COLOR22 1AC W D Color Table 22

COLOR23 1AE W D Color Table 23

COLOR24 1B0 W D Color Table 24

COLOR25 1B2 W D Color Table 25

COLOR26 1B4 W D Color Table 26

COLOR2? 1B6 W D Color Table 27

COLOR28 1B8 W D Color Table 28

COLOR29 1BA W D Color Table 29

COLOR30 1BC W D Color Table 30

COLOR31 1BE W D Color Table 31

RESERVED 1110X

RESERVED 111lX

NO-OP(NULL) 1FE

- Appendix B 287 –

- 288 Appendix B -

APPENDIX C

CUSTOM CHIP PIN ALLOCATION LIST

NOTE: * Means an active low signal.

- Appendix C 289 -

AGNUS PIN ASSIGNMENT

PIN # DESIGNATION FUNCTION DEFINITION

 01-09 D8-D0 Data bus lines 8 to 0 I/O

 10 VCC +5 Volt I

 11 RES* System reset I

 12 INT3* Interrupt level 3 O

 13 DMAL DMA request line I

 14 BLS* Blitter slowdown I

 15 DBR* Data bus request O

 16 ARW* Agnus RAM write O

 17-24 RGA8-RGA1 Register address bus 8-1 I/O

 25 CCK Color clock I

 26 CCKQ Color clock delay I

 27 VSS Ground I

 28-36 DRA0-DRA8 DRAM address bus 0 to 8 O

 37 LP* Light pen input I

 38 VSY* Vertical sync I/O

 39 CSY* Composite sync O

 40 HSY* Horizontal sync I/O

 41 VSS Ground I

 42-48 D15-D9 Data bus lines 15 to 9 I/O

DENISE PIN ASSIGNMENT

 PIN DESIGNATION FUNCTION DEFINITION

 01-07 D6-D0 Data bus lines 6 to 0 I/O

 08 M1H Mouse 1 horizontal I

 09 M0H Mouse 0 horizontal I

 10-17 RGA8-RGA1 Register address bus 8-1 I

 18 BURST* Color burst O

 19 VCC +5 Volt I

 20-23 R0-R3 Video red bits 0-3 O

 24-27 B0-B3 Video blue bits 0-3 O

 28-31 G0-G3 Video green bits 0-3 O

 32 N/C Not connected N/C

 33 ZD* Background indicator O

 34 N/C Not connected N/C

 35 7M 7.15909 MHZ I

 36 CCK Color clock I

 37 VSS Ground I

 38 M0V Mouse 0 vertical I

 39 M1V Mouse 1 vertical I

 40-48 D15-D7 Data bus lines 15 to 7 I/O

- 290 Appendix C -

PAULA PIN ASSIGNMENT

 PIN DESIGNATION FUNCTION DEFINITION

 01-07 D8-D2 Data bus lines 8 to 2 I/O

 08 VSS Ground I

 09-10 D1-D0 Data bus lines 1 and 0 I/O

 11 RES* System reset I

 12 DMAL DMA request line O

 13-15 IPL0*-IPL2 Interrupt lines 0-2 O

 16 INT2* Interrupt level 2 I

 17 INT3* Interrupt level 3 I

 18 INT6* Interrupt level 6 I

 19-26 RGA8-RGA1 Register address bus 8-1 I

 27 VCC +5 Volt I

 28 CCK Color clock I

 29 CCKQ Color clock delay I

 30 AUDB Right audio O

 31 AUDA Left audio O

 32 POT0X Pot 0X I/O

 33 POT0Y Pot 0Y I/O

 34 VSSANA Analog ground I

 35 POT1X Pot 1X I/O

 36 POT1Y Pot 1Y I/O

 37 DKRD* Diak read data I

 38 DKWD* Diak write data O

 39 DKWE Diak write enable O

 40 TXD Serial transmit data O

 41 RXD Serial receive data I

 42-48 D15-D9 Data bus lines 15 to 9 I/O

- Appendix C 291 -

FAT AGNUS PIN ASSIGNMENT

 PIN DESIGNATION FUNCTION DEFINITION

 01-14 RD1S-RD2 Register bus lines 15 to 2 I/O

 17 INT3* Blitter ready interrupt O

 18 DMAL Request audio/disk DMA I

 18 RD1 Register bus line 1 I/O

 18 RST* Reset I

 19 BLS* Blitter slowdown I

 20 DBR* Data bus request O

 21 RRW DRAM Write/Read O

 22 PRW Processor Write/Read I

 23 RGEN* RG Enable I

 24 AS* Address Strobe I

 25 RAMEN* RAM Enable I

 26-33 RGA8-RGA1 Register address bus 8-1 O

 34 28MHZ Master clock I

 35 XCLR Alternate master clock I

 36 XCLKEN* Master clock enable I

 37 CDAC* Inverted shifted 7MHZ clk O

 38 7MHZ 28MHZ clk divided by four O

 39 CCRQ Color clock delay O

 40 CCR Color clock O

 41 TEST Test - access registers I

 43-51 MA0-MA8 Output bus lines 0 to 8 O

 52 LDS* Lower data strobe I

 53 UDS* Upper data strobe I

 54 CASL* Column addr strobe lower O

 55 CASU* Column addr strobe upper O

 56 RAS1* Row address strobe one O

 57 RAS0* Row address strobe zero O

 59-77 A19-A1 Address bus lines 19 to 1 I

 78 LP* Light pen O

 79 VSY* Vertical synch I/O

 80 CSY* Composite video synch O

 81 HSY* Horizontal synch I/O

 84 RD0 Register bus line 0 I/O

- 292 Appendix C -

APPENDIX D

SYSTEM MEMORY MAP

- Appendix D 293 -

A true software memory map, showing system utilization of the various

sections of RAM and free space is not provided, or possible with the

Amiga. All memory is dynamically allocated by the memory manager, and the

actual locations may change from release-to-release, machine-to-machine

or boot-to-boot (see the exec/AllocMem function for details). To find the

locations of system structures software must use the defined access

procedures, starting by fetching the address of the exec.library from

location 4; the only absolute memory location in the system. All software

is written so that it can be loaded and relocated anywhere in memory by

the loader. What follows is the general layout of memory areas within

the current generation of Amiga computers.

ADDRESS RANGE NOTES

000000-03FFFF 256K Bytes of chip RAM

040000-07FFFF 256K bytes of chip RAM (option card)

080000-0FFFFF 512K Extended chip RAM (to 1 MB).

100000-1FFFFF Reserved. Do not use.

200000-9FFFFF Primary 8 MB Auto-config space.

A00000-BEFFFF Reserved. Do not use.

BFD000-BFDF00 8520-B (access at even-byte addresses only)

BFE001-BFEF01 8520-A (access at odd-byte addresses only)

The underlined digit chooses which of the 16 internal registers of the

8520 is to be accessed. See Appendix F.

C00000-DFEFFF Reserved. Do not use.

 |

 | C00000-D7FFFF Internal expansion memory.

 | D80000-DBFFFF Reserved. Do not use.

 | DC0000-DCFFFF Real time clock.

 | DFF000-DFFFFF Chip registers. See Appendix A and Appendix B.

 |

 +-

E00000-E7FFFF Reserved. Do not use.

E80000-E8FFFF Auto-config space. Boards appear here before

 the system relocates them to their final address.

E90000-EFFFFF Secondary auto-config space (usually 64K I/O

 boards).

F00000-FBFFFF Reserved. Do not use.

FC0000-FFFFFF 256K System ROM.

- 294 Appendix C -

APPENDIX E

INTERFACES

This appendix consists of four distinct parts, related to the way in which the Amiga talks
to the outside world.

The first part specifies the pinouts of the externally accessible connectors and the power
available at each connector. It does not, however, provide timing or loading information.

The second part briefly describes the functions of those pins whose purpose may not be
evident.

The third part contains a list of the connections for certain internal connectors, notably the
disk.

The fourth part specifies how various signals relate to the available ports of the 8520. This
information enables the programmer to relate the port addresses to the outside-world
items (or internal control signals) that are to be affected.

- Appendix E 295 -

The third and fourth parts are primarily for the use of the systems programmer and
should generally not be utilized by applications programmers.

Systems software normally is conFigured to handle the setting of particular signals, no

matter how the physical connections may change. In other words, if you have a version of
the system software that matches the revision level of the machine (normally a true
condition), when you ask that a particular bit be set, you don't care which port that bit is
connected to. Thus, applications programmers should rely on system documentation
rather than going directly to the ports.

NOTE

In a multitasking operating system, many different tasks may be competing for the use of
the system resources. Applications programmers should follow the established rules for
resource access in order to assure compatibility of their software with the system.

************** PART 1 - OUTSIDE WORLD CONNECTORS ********************

This is a list of the connections to the outside world on the Amiga.

RS232 and MIDI Port

A500/ CBM

PIN RS232 A1000 A2000 PCs HAYES DESCRIPTION

--

1 GND GND GND GND GND FRAME GROUND

2 TXD TXD TXD TXD TXD TRANSMIT DATA

3 RXD RXD RXD RXD RXD RECEIVE DATA

4 RTS RTS RTS RTS Ñ REQUEST TO SEND

5 CTS CTS CTS CTS CTS CLEAR TO SEND

6 DSR DSR DSR DSR DSR DATA SET READY

7 GND GND GND GND GND SYSTEM GROUND

8 CD CD CD DCD DCD CARRIER DETECT

9 - - +12v +12v - +12 VOLT POWER

10 - - -12v -12v - -12 VOLT POWER

11 - - AUDO - - AUDIO OUTPUT

12 S.SD - - - SI SPEED INDICATE

13 S.CTS - - - -

14 S.TXD -5Vdc - - - -5 VOLT POWER

15 TXC AUDO - - - AUDIO OUT OF AMIGA

16 S.RXD AUDI - - - AUDIO IN TO AMIGA

17 RXC EB - - - BUFFERED PORT CLOCK 716kHz

18 - INT2* AUDI - - INTERRUPT LINE TO AMIGA

19 S.RTS - - - -

20 DTR DTR DTR DTR DTR DATA TERMINAL READY

21 SQD +5 - - - + 5 VOLT POWER

22 RI - RI RI RI RING INDICATOR

23 SS +12Vdc - - - +12 VOLT POWER

24 TXC1 C2* - - - 3.58 MHZ CLOCK

25 - RESB* - - - BUFFERED SYSTEM RESET

- 296 Appendix E -

PARALLEL (CENTRONICS) PORT

PIN 1000 500/2000 Commodore PC's

--- ---- -------- --------------

1 DRDY* STROBE* STROBE*

2 Data 0 Data 0 Data 0

3 Data 1 Data 1 Data 1

4 Data 2 Data 2 Data 2

5 Data 3 Data 3 Data 3

6 Data 4 Data 4 Data 4

7 Data 5 Data 5 Data 5

8 Data 6 Data 6 Data 6

9 Data 7 Data 7 Data 7

10 ACK* ACK* ACK*

11 BUSY (data) BUSY BUSY

12 POUT (cl) POUT POUT

13 SEL SEL SEL

14 GND +5v pullup AUTODXT

15 GND NC ERROR*

16 GND RESET* INIT*

17 GND GND SLCT IN*

18-22 GND GND GND

23 +5 GND GND

24 NC GND GND

25 Reset* GND GND

KEYBOARD ...RJ11

 A1000 A2000

 ----- -----

1 +5 Volts KCLK

2 CLOCK KDAT

3 DATA NC

4 GND GND

5 - +5 Volts

Not Applicable to the A500.

Video ...DB3 MALE

For A500, A1000, A2000 unless otherwise stated

1 XCLK* 13 GNDRTN (Return for XCLKEN*)

2 XCLKEN* 14 ZD*

3 RED 15 C1*

4 GREEN 16 GND

5 BLUE 17 GND

6 DI 18 GND

7 DB 19 GND

8 DG 20 GND

9 DR 21 A1000/2000 -5 VOLT POWER

10 CSYNC* A500 -12 VOLT POWER

11 HSYNC* 22 +12 VOLT POWER

12 VSYNC* 23 +5 VOLT POWER

- Appendix E 297 -

RF Monitor ...8 PIN DIN (J2) A1000 only

1 N.C.

2 GND

3 AUDIO LEFT

4 COMP VIDEO

5 GND

6 N.C.

7 +12 VOLT POWER

8 ADIO RIGHT

DISK EXTERNAL ...DB23 FEMALE

For A500, A1000, and A2000 with A2000 differences noted.

1 RDY* 13 SIDEB*

2 DKRD* 14 WPRO*

3 GND 15 TK0*

4 GND 16 DKWEB*

5 GND 17 DKWDB*

6 GND 18 STEPB*

7 GND 19 DIRB

8 MTRXD* 20 SEL3B* A2000 not used (1)

9 SEL2B* A2000 SEL3B* (1) 21 SEL1B* A2000 SEL2B* (1)

10 DRESB* 22 INDEX*

11 CHNG* 23 +12

12 +5

(1) SEL1B* is not drive 1, but rather the first external drive. Not

all elect lines may be implemented.

- 298 Appendix E -

RAMEX . 60 PIN EDGE (156) (P1) A1000 only

--

 gnd A gnd

 2 D15 B D14

 3 +5 C +5

 4 D12 D D13

 5 gnd E gnd

 6 D11 F D10

 7 +5 H +5

 8 D8 J D9

 9 gnd K gnd

 10 D7 L D6

 11 +5 M +5

 12 D4 N D5

 13 gnd P gnd

 14 D3 R D2

 15 +5 S +5

 16 D0 T D1

 17 gnd U gnd

 18 DRA4 V DRA3

 19 DRA5 W DRA2

 20 DRA6 X DRA1

 21 DRA7 Y DRA0

 22 gnd Z gnd

 23 RAS* AA RRW*

 24 gnd BB gnd

 25 gnd CC gnd

 26 CASU0* DD CASU1*

 27 gnd EE gnd

 28 CASL0* FF CASL1*

 29 +5 HH +5

 30 +5 JJ +5

- Appendix E 299 -

EXPANSION ...86 PIN EDGE (.1) (P2)

PIN A500 A1000 A2000 A2000b FUNCTION

--- ---- ----- ----- ------ --------

 1 x x x x ground

 2 x x x x ground

 3 x x x x ground

 4 x x x x ground

 5 x x x x +5VDC

 6 x x x x +5VDC

 7 x x x x No Connect

 8 x x x x -5VDC

 9 x x No Connect

 x x 28MHz Clock

10 x x x x +12VDC

11 x x x No Connect

 x /COPCFG (Configuration Out)

12 x x x x CONFIG IN, Grounded

13 x x x x Ground

14 x x x x /C3 Clock

15 x x x x CDAC Clock

16 x x x x /C1 Clock

17 x x x x /OVR

18 x x x x RDY

19 x x x x /INT2

20 x /PALOPE

 x x No Connect

 x /BOSS

21 x x x x A5

22 x x x x /INT6

23 x x x x A6

24 x x x x A4

25 x x x x ground

26 x x x x A3

27 x x x x A2

28 x x x x A7

29 x x x x A1

30 x x x x A8

31 x x x x FC0

32 x x x x A9

33 x x x x FC1

34 x x x x A10

35 x x x x FC2

36 x x x x A11

37 x x x x Ground

38 x x x x A12

39 x x x x A13

40 x x x x /IPL0

41 x x x x A14

42 x x x x /IPL1

43 x x x x A15

44 x x x x /IPL2

45 x x x x A16

46 x x x x BEER*

47 x x x x A17

48 x x x x /VPA

49 x x x x Ground

50 x x x x E Clock

- 300 Appendix E -

EXPANSION ...86 PIN EDGE (.1) (P2) (cont.)

--

PIN A500 A1000 A2000 A2000b FUNCTION

--- ---- ----- ----- ------ --------

51 x x x x /VMA

52 x x x x A18

53 x x x x RST

54 x x x x Al9

55 x x x x /HLT

56 x x x x A20

57 x x x x A22

58 x x x x A21

59 x x x x A23

60 x x x /BR

 x /CBR

61 x x x x Ground

62 x x x x /BGACK

63 x x x x D15

64 x x x /BG

 x /CBG

65 x x x x D14

66 x x x x /DTACK

67 x x x x D13

68 x x x x R/W

69 x x x x D12

70 x x x x /LDS

71 x x x x D11

72 x x x x /UDS

73 x x x x Ground

74 x x x x /AS

75 x x x x D0

76 x x x x D10

77 x x x x D1

78 x x x x D9

79 x x x x D2

80 x x x x D8

81 x x x x D3

82 x x x x D7

83 x x x x D4

84 x x x x D6

85 x x x x Ground

86 x x x x D5

JOYSTICKS ...DB9 male

USAGE JOYSTICK MOUSE

----- -------- -----

1 FORWARD* (MOUSE V)

2 BACK* (MOUSE H)

3 T.FT* (MOUSE VQ)

4 RIGHT* (MOUSE HQ)

5 POT X (or button 3if used)

6 FIRE* (or button 1)

7 +5

8 GND

9 POT Y (or button 2)

- Appendix E 301 -

************** PART 2 MORE OUTSIDE WORLD ********************

PARALLEL INTERFACE CONNECTOR SPECIFICATION

The 25-pin D-type connector with pins (DB25P=male for the A1000,

female for A500/A2000 and IBM compatibles) at the rear of the

Amiga is nominally used to interface to parallel printers. In this

capacity, data flow from the Amiga to the printer. This interface

may be used for input or bi-directional data transfers. The

implementation is similar to Centronics, but the pin assignment and

drive characteristics vary significantly from that specification

(See Pin assignment). Signal names correspond to those used in the

other places in this appendix, when possible.

PARALLEL CONNECTOR PIN ASSIGNNENT (J8)

NAME DIR NOTES

---- --- -----

DRDY* O Output-data-ready signal to parallel device in

 output mode, used in conjunction with ACK* (pin

 10) for a two-line asynchronous handshake.

 Functions as input data accepted from Amiga in

 input mode (similar to ACK* in output mode). See

 timing diagrams in the following section.

D0 I/O +

Dl I/O |

D2 I/O |

D3 I/O | D0-D7 comprise an eight-bit bidirectional bus

D4 I/O | for communication with parallel devices,

D5 I/O | nominally, a printer.

D6 I/O |

D7 I/O +

ACK* I Output-data-acknowledge from parallel device in

 output mode, used in conjunction with DRDY* (pin ÿ

 1) for a two-line asynchronous handshake.

 Functions as input-data-ready from parallel device

 in input mode similar to DRDY* in output mode).

 See timing diagrams. The 8520 can be programmed to

 conditionally generate a level 2 interrupt to the

 68000 whenever the ACK* input goes active.

BUSY I/O This is a general purpose I/O pin also connected

 to a serial data I/O pin (serial clock on pin 12).

 Note: Nominally used to indicate printer buffer full.

POUT I/O This is a general purpose I/O pin to a serial

 clock I/O pin (serial data on pin 11).

 Note: Nominally used to indicate printer paper out.

SEL I/O This is a general purpose I/O pin.

 Note: nominally a select output from the parallel

 device to the Amiga. On the A500/A2000 also shared

 with RS232 "ring indicator" signal.

RESET* O Amiga System reset

- 302 Appendix E -

PARALLEL CONNECTOR INTERFACE TIMING, OUTPUT CYCLE

 PA<7:0>_____ __ ____

 PB<7:0>_____X__X____

 |<-- T1 --->| |

 | |<--------- T2 -------->|

 DRDY* _________________V V____________________________

 Output data ready |________|

 |<- T3 ->|

 |<--- T4 ---->|

 ACK* ________________________________|<- T5 -->|_____________

 Output data acknowledge | |

 Microseconds

 Min Typ Max

 --- --- ---

 T1: 4.3 -x- 5.3 Output data setup to ready delay.

 T2: nsp -x- upc Output data hold time.

 T3: nsp 1.4 nsp Output data ready width.

 T4: 0 -x- upc Ready to acknowledge delay.

 TS: nsp -x- upc Acknowledge width.

nsp - not specified

upc - under program control

PARALLEL CONNECTOR INTERFACE TIMING, INPUT CYCLE

 PA<7:0>_____ __ ____

 PB<7:0>_____X__X____

 |<-- T1 --->|

 | T2 -->|<------>|

 DRDY* _________________V ______________|_____________

 input data ready |________| |

 |<- T3 ->| |

 |<--- T4 ---->|

 ACK* ________________________________|<- T5 -->|_____________

 input data acknowledge | |

 Microseconds

 Min Typ Max

 --- --- ---

 T1: 0 -x- upc Input data setup time.

 T2: nsp -x- upc Input data hold time.

 T3: nsp -x- upc Input data ready width.

 T4: upc -x- upc Input data ready to data

 acknowledge delay.

 TS: nsp 1.4 nsp Input data acknowledge width.

nsp=not specified

upc=under program control

- Appendix E 303 -

SERIAL INTERFACE CONNECTOR SPECIFICATION

This 25-pin D-type connector with sockets (DB255=female) is used to

interface to RS-232-C standard signals. Signal names correspond to

those used in other places in this appendix, when possible.

WARNING: Pin on the R5232 connector other than these standard ones

described below may be connected to power or other non-R5232 standard

signals. When making up RS232 cables, connect only those pins actually

used for particular application. Avoid generic 25-connector "straight-

thru" cables.

SERIAL INTERFACE CONNECTOR PIN ASSIGNMENT (J6)

R5-232-C

NAME DIR STD NOTES

---- --- --- -------------------------------

FGND y Frame ground -- do not tie to signal ground

TXD O y Transmit data

RXD I y Receive data

RTS O y Request to send

CTS I y Clear to send

DSR I y Data set ready

GND y Signal ground -- do not tie to frame ground

CD I y Carrier detect

-5V n* 50 ma maximum *** WARNING -5V ***

AUDO O n* Audio output from left (channels 0, 3) port,

 intended to send audio to the modem.

AUDI I n* Audio input to right (channels 1, 2) port,

 intended to receive audio from the modem; this

 input is mixed with the analog output of the

 right (channels 1, 2). It is not digitized or

 used by the computer in any way.

DTR O y Data terminal ready.

RI I y Ring Indicator (A500/A2000 only) shared with printer

 "select" signal.

RESB* O n* Amiga system reset.

NOTES:

n*: See warning above

See part 1 of this appendix for pin numbers.

SERIAL INTERFACE CONNECTOR TIMING

Maximum operating frequency is 19.2 KHz. Refer to EIA standard

R5-232-C for operating and installation specifications.

A rate of 31.25 KHz will be supported through the use of a MIDI adapter.

Modem control signals (CTS, RTS, DTR, DSR, CD) are completely under

software control. The modem control lines have no hardware affect

on and are completely asynchronous to TXD and RXD.

- 304 Appendix E -

SERIAL INTERFACE CONNECTOR ELECTRICAL CHARACTERISTICS

OUTPUTS MIN TYP MAX

------- --- --- ---

Vo(-): 13.2 -x- -2.5 V Negative output voltage range

Vo(+): 8.0 -x- 13.2 V Positive output voltage range

Io: -x- -x- 10.0 ma Output current

INPUTS MIN TYP MAX

------ --- --- ---

Vi(+): 3.0 -x- 25.0 V Positive input voltage range

Vi(-): 25.0 -x- 0.5 V Negative input voltage range

Vhy: -x- 1.0 -x- V Input hysteresis voltage

Ii: 0.3 -x- 10.0 ma Input current

Unconnected inputs are interpreted the same as positive input voltages.

GAME CONTROLLER INTERFACE CONNECTOR SPECIFICATION

The two 9-pin D-type connectors with pins (male) are used to

interface to four types of devices:

1. Mouse or trackball, 3 buttons max.

2. Digital joystick, 2 button max.

3. Proportional (pot or proportional joystick), 2 buttons max.

4. Light pen, including pen-pressed-to-screen button.

The connector pin alignment are discussed in sections organized

by similar hardware and/or software operating requirements as shown

in the previous list. Signal names follow those used elsewhere

in this appendix, when possible.

J11 is the right controller port connector (JOY1DAT, POT1DAT).

J12 is the left controller port connector (JOY0DAT, POT0DAT).

NOTE: While most of the hardware discussed below is directly

accessible, hardware should be accessed through ROM kernel software.

This will keep future hardware changes transparent to the user.

- Appendix E 305 -

GAME CONTROLLER INTERFACE TO MOUSE/TRACKBALL QUADRATURE INPUTS

A mouse or trackball is a device that translates planar motion into

pulse trains. Quadrature techniques are employed to preserve the

direction as well as magnitude of displacement. The registers JOY0DAT

and JOY1DAT become counter registers, with y displacement in the high

byte and x in the low byte. Movement causes the following action:

Up: y decrements

Down: y increments

Right: x increments

Left: x decrements

To determine displacement, JOYxDAT is read twice with corresponding x

and y values subtracted (careful, modulo 128 arithmetic). Note that

if either count changes by more than 127, both distance and direction

become ambiguous. There is a relationship between the sampling

interval and the maximum speed (that is, change in distance) that

can be resolved as follows:

Velocity < Distance(max) / SampleTime

Velocity < SQRT(DeltaX**2 + DeltaY**2) / SampleTime

For an Amiga with a 200 count-per-inch mouse sampling during each

vertical blanking interval, the maximum velocity in either the X or Y

direction becomes:

Velocity < (128 Counts * 1 inch/200 Counts) / .017 sec = 38 in/sec

which should be sufficient for most users.

NOTE: The Amiga software is designed to do mouse update cycles during

vertical blanking. The horizontal and vertical counters are always

valid and may be read at any time.

CONNECTOR PIN USAGE FOR MOUSE/TRACKBALL QUADRATURE INPUTS

PIN MNEMONIC DESCRIPTION HARDWARE REGISTER/NOTES

--- -------- ----------- -----------------------

1 V Vertical pulses JOY[0/1]DAT<15:8>

2 H Horizontal pulses JOY[0/1]DAT(7:0>

3 VQ Vertical quadrature pulses JOY[0/1]DAT<15:8>

4 HQ Horizontal quadrature pulses JOY[0/1]DAT<7:0>

5 UBUT* Unused mouse button See Proportional Inputs.

6 LBUT* Left mouse button See Fire Button.

7 +5V +5V, current limited

8 Ground

9 RBUT* Right mouse button See Proportional Inputs.

- 306 Appendix E -

GAME PORT INTERFACE TO DIGITAL JOYSTICKS

A joystick is a device with four normally opened switches arranged 90

degree apart. The JOY[0/1]DAT registers become encoded switch input

port as follows:

Forward: bit9 xor bit#8

Left: bit9

Back: bit1 xor bit0

Right: bit1

Data is encoded to facilitate the mouse/trackball operating mode.

NOTE: The right and left direction inputs are also designed to be

right and left buttons, respectively, for use with proportional

input. In this case, the forward and back inputs are not used,

while right and left become button inputs rather than joystick inputs.

The JOY[0/1]DAT registers are always valid and may be read at any time.

CONNECTOR PIN USAGE FOR DIGITAL JOYSTICK INPUTS

PIN MNEMONIC DESCRIPTION HARDWARE REGISTER/NOTES

--- -------- ----------- -----------------------

1 FORWARD* Forward joystick switch JOY[0/1]DAT<9 xor 8>

2 BACK* Back joystick switch JOY[0/1]DAT(1 xor 0>

3 LEFT* Left joystick switch JOY[0/1]DAT<9>

4 RIGHT* Right joystick switch JOY[0/1]DAT<1>

5 Unused

6 FIRE* Left mouse button See Fire Button.

7 +5V 125ma max, 200ma surge Total both ports.

8 Ground

9 Unused

GAME PORT INTERFACE TO FIRE BUTTONS

The fire button are normally opened switches routed to the 8520

adapter PRA0 a follow:

 PRA0 bit 7 - Fire* left controller port

 PRA0 bit 6 - Fire* right controller port

Before reading this register, the corresponding bits of the data

direction register must be cleared to define input mode:

 DDRA0<7:6> cleared as appropriate

NOTE: Do not disturb the settings of other bits in DDRA0 (Use of ROM

kernel call is recommended).

Fire buttons are always valid and may be read at any time.

- Appendix E 307 -

CONNECTOR PIN USAGE FOR FIRE BUTTON INPUTS

PIN MNEMONIC DESCRIPTION

--- -------- -----------

1 -x-

2 -x-

3 -x-

4 -x-

5 -x-

6 FIRE* Left mouse button/fire button

7 -x-

8 ground

9 -x-

GAME PORT INTERFACE TO PROPORTIONAL CONTROLLERS

Resistive (potentiometer) element linear taper proportional

controllers are supported up to 528k Ohms max (470k +/- 10%

recommended). The JOY[0/1]DAT registers contain digital

translation values for y in the high byte and x in the low byte.

A higher count value indicates a higher external resistance.

The Amiga performs an integrating analog-to-digital conversion

a follows:

1. For the first 7 (NTSC) or 8 (PAL) horizontal display lines,

the analog input capacitors are discharged and the positions

counters reflected in the POT[0/1]DAT registers are held reset.

For the remainder of the display field, the input capacitors are

allowed to recharge through the resistive element in the external

control device.

2. The gradually increasing voltage is continuously compared to

an internal reference level while counter keeps track of the

number of lines since the end of the reset interval.

3. When the input voltage finally exceeds the internal threshold

for a given input channel, the current counter value is latched

into the POT[0/1]DAT register corresponding to that channel.

4. During the vertical blanking interval, the software examines

the resulting POT[0/1]DAT register values and interprets the

counts in terms of joystick position.

NOTE: The POTY and POTX inputs are designated as "right mouse button" and

"unused mouse button" respectively. An opened switch corresponds to high

resistance, a closed switch to a low resistance. The buttons are also

available in POTGO and POTINP registers. It is recommended that

ROM kernel calls be used for future hardware compatibility.

It is important to realize that the proportional controller is more of a

"pointing" device than an absolute position input. It is up to the

software to provide the calibration, range limiting and averaging functions

needed to support the application's control requirements.

The POT[0/1]DAT register are typically read during video blanking,

but MAY be available prior to that.

- 308 Appendix E -

CONNECTOR PIN USAGE FOR PROPORTIONAL INPUTS

PIN MNEMONIC DESCRIPTION HARDWARE REGISTER/NOTES

--- -------- ----------- -----------------------

1 XBUT Extra Button

2 Unused

3 LBUT* Left button See Digital Joystick

4 RBUT* Right button See Digital Joystick

5 POTX X analog in POT[0/1]DAT<7:0>, POTGO, POTINP

6 Unused

7 +5V 125ma max, 200 ma surge

8 Ground

9 POTY Y analog in POT[0,1]DAT<15:8>, POTGO, POTINP

GAME PORT INTERFACE TO LIGHT PEN

A light pen is an optoelectronic device whose light-sensitive portion

is placed in proximity to a CRT. As the electron beam sweeps past the

light pen, a trigger pulse is generated which can be enabled to latch the

horizontal and vertical beam positions. There is no hardware bit to

indicate this trigger, but this can be determined in the two ways

as shown in chapter 8, "Interface Hardware."

Light pen position is usually read during blanking, but MAY be available

prior to that.

CONNECTOR PIN USAGE FOR LIGHT PEN INPUTS

PIN MNEMONIC DESCRIPTION HARDWARE REGISTER/NOTES

--- -------- ----------- -----------------------

1 Unused

2 Unused

3 Unused

4 Unused

5 LPENPR* Light pen pressed See Proportional Inputs

6 LPENTG* Light pen trigger VPOSR, VHPOSR

7 +5V 125ma max, 200 ma surge Booth ports

8 Ground

9 Unused

Note: depending on the maker, the light pen input may be either.

- Appendix E 309 -

EXTERNAL DISK INTERFACE CONNECTOR SPECIFICATION

The 23-pin D-type connector with sockets (DB23S) at the rear of the

Amiga is nominally used to interface to MFM devices.

EXTERNAL DISK CONNECTOR PIN ASSIGNMENT (J7)

PIN NAME DIR NOTES

--- ---- --- -----

1 RDY* I/O If motor on, indicates disk installed and up to

 speed. If motor not on, identification mode. See

 below.

2 DKRD* I MFM input data to Amiga.

3 GND

4 GND

5 GND

6 GND

7 GND

8 MTRXD* OC Motor on data, clocked into drive’s motor-on flip-flop by

 the active transition of SELxB*.

 Guaranteed setup time is 1.4 usec.

 Guaranteed hold time is 1.4 usec.

9 SEL2B* OC Select drive 2.*

10 DRESB* OC Amiga system reset. Drives should reset their

 motor-on flip-flops and set their write-protect

 flip-flops.

11 CHNG* I/O Note: Nominally used as an open collector input.

 Drive's change flop is set at power up or when no

 disk is not installed. Flop is reset when drive is

 selected and the head stepped, but only if a disk

 is installed.

12 +5V 270 ma maximum; 410 ma surge

 When below 3.75V, drives are required to reset their

 motor-on flopa, and set their write-protect flops.

13 SIDEB* O Side 1 if active, side 0 if inactive

14 WPRO* I/O Asserted by selected, write-protected disk.

15 TK0* I/O Asserted by selected drive when read/write head

 is positioned over track 0.

16 DKWEB* OC Write gate (enable) to drive.

17 DKWDB* OC MFM output data from Amiga.

18 STEPB* OC Selected drive steps one cylinder in the direction

 indicated by DIRB.

19 DIRB OC Direction to step the head. Inactive to step

 towards centre of disk (higher-numbered tracks).

20 SEL3B* OC Select drive 3. *

21 SEL1B* OC Select drive 1. *

22 INDEX* I/O Index is a pulse generated once per disk revolution,

 between the end and beginning of cylinders. The

 8520 can be programmed to conditionally generate a

 level 6 interrupt to the 68000 whenever the INDEX*

 input goes active.

23 +12V 160 ma maximum; 540 ma surge.

* Note: the drive select lines are shifted as they pass through

a string of daisy chained devices. Thus the signal that appears

drive 2 select at the first drive shows up as drive 1 select

at the second drive and so on...

- Appendix E 310 -

EXTERNAL DISK CONNECTOR IDENTIFICATION MODE

An identification mode is provided for reading a 32-bit serial

identification data stream from an external device. To initialize

this mode, the motor must be turned on, then off. See pin 8,

MTRXD* for a discussion of how to turn the motor on and off. The

transition from motor on to motor off reinitializes the serial

shift register.

After initialization, the SELxB* signal should be left in the

inactive state.

Now enter a loop where SELxB* is driven active, read serial input

data on RDY* (pin 1), and drive SELxB* inactive. Repeat this loop

a total of 32 times to read in 32 bits of data. The most significant

bit is received first.

EXTERNAL DISK CONNECTOR DEFINED IDENTIFICATIONS

$0000 0000 - no drive present.

$FFFF FFFF - Amiga standard 3.25 diskette.

$5555 5555 - 48 TPI double-density, double-sided.

As with other peripheral ID's, users should contact Commodore-Amiga

for ID assignment.

The serial input data is active low and must therefore be inverted

to be consistent with the above Table.

EXTERNAL DISK CONNECTOR LIMITATIONS

1. The total cable length, including daisy chaining, must not exceed

1 meter.

2. A maximum of 3 external devices may reside on this interface,

but specific implementations may support fewer external devices.

3. Each device must provide a 1000-0hm pull-up resistor on those

outputs driven by an open-collector device on the Amiga

(pin 8-10, 16-21).

4. The system provides power for only the first external device in the

daisy chains.

- Appendix E 311 -

************** PART 3 - INTERNAL CONNECTORS *******************

DISK INTERNAL ...34 PIN RIBBON (J10)

 1 GND 18 DIRB

 2 CHNG* 19 GND

 3 GND 20 STEPB*

 4 MTROD* led) 21 GND

 5 GND 22 DKWDB*

 6 N.C. 23 GND

 7 GND 24 DKWEB*

 8 IND B * 25 GND

 9 GND 26 TK0*

10 SELOB* 27 GND

11 GND 28 WPRO*

12 N.C. 29 GND

13 GND 30 DKRD*

14 N.C. 31 GND

15 GND 32 SIDEB*

16 MTROD* 33 GND

17 GND 34 RDY*

DISK INTERNAL POWER ...4 PIN STRAIGHT (J13)

+12 (some drive are +5 only)

2 GND

3 GND

4 +5

- 312 Appendix E -

********** PART 4 - PORT SIGNAL ASSIGNMENTS FOR 8520 ************

Address BFFR01 data bits 7-0 (A12*) (int2)

--

PA7..game port 1, pin 6 (fire button*)

PA6..game port 0, pin 6 fire button*)

PA5..RDY* disk ready*

PA4..TK0* disk track 00*

PA3..WPRO* write protect*

PA2..CHNG* disk change*

PAl..LED* led light (0=bright) / audio filter control (A500 & A2000)

PA0..OVL ROM/RAM overlay bit

SP...KDAT keyboard data

CNT..KCLK keyboard clock

PB7..P7 data 7

PB6..P6 data 6

PB5..P5 data 5 Centronics parallel interface

PB4..P4 data 4 data

PB3..P3 data 3

PB2..P2 data 2

PBl..P1 data 1

PB0..P0 data 0

PC...drdy* Centronics control

F....ack*

Address BFDRFE data bits 15-8 (A13*) (int6)

PA7..com line DTR*, driven output

PA6..com line RTS*, driven output

PA5..com line carrier detect*

PA4..com line CTS*

PA3..com line DSR*

PA2..SEL Centronics control

PA1..POUT +--- paper out -------------+

PA0..BUSY | +--busy-----------------+ |

 | | | |

SPBUSY | +- commodore serial bus-+ |

CNT..POUT + --commodore serial bus ---+

PB7..MTR* motor

PB6..SEL3* select external 3rd drive

PB5..SEL2* select external 2nd drive

PB4..SEL1* select external 1st drive

PB3..SEL0* select internal drive

PB2..SIDE* side select*

PB1..DIR direction

PB0..STEP* step*

PC...not used

F....INDEX* disk index pulse*

- Appendix E 313 -

 PORT 0

 __________________ POTOX

 \ 5 o_/________________________

 \ 9 o__/___________ |

 ____________/ POTOY | |

 \|/ \|/

 ______V_____________V______

 | | |

 | POT0Y | POT0Y | POT0DAT

 | COUNTER | COUNTER | DFF012

 |_____________|_____________|

 PORT 1

 __________________ POTOX

 \ o_/________________________

 \ o__/___________ |

 ____________/ POTOY | |

 \|/ \|/

 ______V_____________V______

 | POT1Y | POT1X |

 | COUNTER | COUNTER | POT1DAT

 | LATCH | LATCH | DFF014

 |_____________|_____________|

 | | | POTGO

 |_________________________|_| DFF034

 | | POT1NP

 |___________________________| DFF016

 POT COUNTERS

- Appendix E 314 -

 PORT 1 __________________ PORT 2 __________________

 \ o o o o o / \ o o o o o /

 \ o o o o / \ o o o o /

 __|_________/ __|_________/

 _________| |

 |FIRE 0\ ______________________________________|

 | | FIRE 1\

 | |

 | ___|___

 | | FIRE | FIRE | | PRA

 | | 1\ | 0\ | |$BFE001

 | |______|______|______|______|______|______|______|______|

 | 7 | 0

 |______________|

 | | | |Data

 | O | O | O O O O 1 1 |direc-

 |______|______|______|______|______|______|______|______| tion

 IN IN OUT OUT OUT OUT OUT OUT DDRA

 $BFE201

READING FIRE BUTTONS

- Appendix E 315 -

 __

 | | VPOSR read only

 | | DFF004

 |__|

 __

 | | VHPOSR read only

 | | DFF006

 |__|

 __

 | | | BPLCON0 write only

 | | | DFF104

 |__|__|__|__|__|__|__|__|__|__|__||_|__|__|__|

 15 |3 0

 |________Light Pen Enable

 __

 | | POT1NP read only

 | | DFF016 (Bit 8)

 |__|__|__|__|__|__|__|__|__|__|__|__|__|__|__|

 15 | 0

 | PEN PRESS=POTOX

 |___________________

 |

 _________________ |

 \ o o o o o_/_____|

 \ o o o o /

 _|_________/

 |PORT 0

 Light Pen _________|

 |

 \|/

 V_____Latches V & H positions

 LIGHT PEN

- 316 Appendix E –

APPENDIX F

COMPLEX INTERFACE ADAPTERS

This appendix contains information about the 8520 peripheral interface adapters.

8520 COMPLEX INTERFACE ADAPTOR CIA) CHIPS

Each Amiga system contains two 8520 Complex Interface Adaptor (CIA) chips. Each chip
has 16 general purpose input/output pins, plus a serial shift register, three timers, an

output pulse pin and an edge detection input. In the Amiga system various tasks are
assigned to the chip's capabilities.

- Appendix F 317 -

CIAA Address Map

 Byte Register Data bits

Address Name 7 6 5 4 3 2 1 0

--

BFE001 pra /FIR1 /FIR0 /RDY /TK0 /WPRO /CHNG /LED OVL

BFE101 prb Parallel port

BFE201 ddra Direction for port A (BFE001);1 output (set to 0x03)

BFE301 ddrb Direction for port B (BFE101);1 output (can be in/out)

BFE401 talo CIAA timer A low byte (.715909 Mhz NTSC; .709379 Mhz PAL)

BFE501 tahi CIAA timer A high byte

BFE601 tblo CIAA timer B low byte (.715909 Mhz NTSC; .709379 Mhz PAL)

BFE701 tbhi CIAA timer B high byte

BFE801 todlo 50/60 Hz event counter bits 7-0 (VSync or line tick)

BFE901 todmid 50/60 Hz event counter bits 15-8

BFEA01 todhi 50/60 Hz event counter bits 23-16

BFEB01 not used

BFEC01 sdr CIAA serial data register (connected to keyboard)

BFED01 icr CIAA interrupt control register

BFEE01 cra CIAA control register A

BFEF01 crb CIAA control register B

Note: CIAA can generate interrupt INT2.

CIAB Address Map

Byte Register Data bits

Address Name 7 6 5 4 3 2 1 0

BFD000 pra /DTR /RTS /CD /CTS /DSR SEL POUT BUSY

BFD100 prb /MTR /SEL3 /SEL2 /SEL1 /SEL0 /SIDE DIR /STEP

BFD200 ddra Direction for Port A (BFD000);1 = output (set to 0xFF)

BFD300 ddrb Direction for Port B (BFD100);1 - output (set to 0xFF)

BFD400 talo CIAB timer A low byte (.715909 Mhz NTSC; .709379 Mhz PAL)

BFD500 tahi CIAB timer A high byte

BFD600 tblo CIAB timer B low byte (.715909 Mhz NTSC; .709379 Mhz PAL)

BFD700 tbhi CIAB timer B high byte

BFD800 todlo Horizontal sync event counter bits 7-0

BFD900 todmid Horizontal sync event counter bits 15-8

BFDA00 todhi Horizontal sync event counter bits 23-16

BFDB00 not used

BFDC00 dr CIAB serial data register (unused)

BFDD00 icr CIAB interrupt control register

BFDE00 cra CIAB Control register A

BFDF00 crb CIAB Control register B

Note: CIAB can generate INT6.

- 318 Appendix F -

CHIP REGISTER MAP

Each 8520 has 16 registers that you may read or write. Here is the list

of register and the access addresses of each within the memory space

dedicated to the 8520:

 Register

RS3 R52 RS1 RS0 (hex) NAME MEANING

--

0 0 0 0 0 pra Peripheral data register A

0 0 0 1 1 prb Peripheral data regigter B

0 0 1 0 2 ddra Data direction register A

0 0 1 1 3 ddrb Direction register B

0 1 0 0 4 talo Timer A low register

0 1 0 1 5 tahi Timer A high register

0 1 1 0 6 tblo Timer B low register

0 1 1 1 7 tbhi Timer B high register

1 0 0 0 8 todlow Event LSB

1 0 0 1 9 todmid Event 8-15

1 0 1 D A todhi Event S

1 0 1 1 B No connect

1 1 0 0 C sdr Serial data register

1 1 0 1 D icr Interrupt control register

1 1 1 0 E cra Control register A

I 1 1 1 F crb Control register B

SOFTWARE NOTE:

The operating system kernel has already allocated the use of

several of the 8520 timers.

CIAA, timer A - keyboard (used continuously to handshake

 keystrokes). NOT AVAILABLE.

CIAA, timer B - Virtual timer device (used continuously

 whenever system Exec is in control; used

 for task switching, interrupts and timing).

CIAA, TOD - 50/60 Hz timer used by timer.device. The

 A1000 uses power line tick. The A500 uses

 vertical sync. The A2000 has a jumper

 selection.

CIAB, timer A - not used

CIAB, timer B - not used

CIAB, TOD - graphics.library video beam follower. This

 timer counts at the horizontal sync rate,

 and is used to synchronize graphics events

 to the video beam.

 Note that previous editions of this chart were incorrect.

- Appendix F 319 -

REGISTER FUNCTIONAL DESCRIPTION

I/O PORTS (PRA, PRB, DDRA, DDRB)

Ports A and B each consist of an 8-bit peripheral data register (PR) and

an 8-bit data direction register (DDR). If a bit in the DDR is set to a

1, the corresponding bit position in the PR becomes an output. If a DDR

bit is set to a 0, the corresponding PR bit is defined as an input.

When you READ a PR register, you read the actual current state of the I/O

pins (PA0-PA7, PB0-PB7, regardless of whether you have set them to be

inputs or outputs.

Ports A and B have passive pull-up devices as well as active pull-ups,

providing both CMOS and TTL compatibility. Both ports have two TTL load

drive capability.

In addition to their normal IO operations, ports PB6 and PB7 also provide

timer output functions.

HANDSHAKING

Handshaking occurs on data transfers using the PC output pin and the FLAG

input pin. PC will go low on the third cycle after a port B access. This

signal can be used to indicate "data ready" at port B or "data accepted"

from port B. Handshaking on 16-bit data transfers (using both ports

A and B) is possible by always reading or writing port A first. FLAG is a

negative edge-sensitive input that can be used for receiving the PC

output from another 8520 or as a general purpose interrupt input. Any

negative transition on FLAG will set the FLAG interrupt bit.

REG NAME D7 D6 D5 D4 D3 D2 D1 D0

--- ---- -- -- -- -- -- -- -- --

0 PRA PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

1 PRB PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

2 DDRA DPA7 DPA6 DPA5 DPA4 DPA3 DPA2 DPA1 DPA0

3 DDRB DPB7 DPB6 DPB5 DPB4 DPB3 DPB2 DPB1 DPB0

INTERVAL TIMERS (TIMER A, TIMER B)

Each interval timer consists of a 16-bit read-only timer counter and a

16-bit write-only timer latch. Data written to the timer is latched into

the timer latch, while data read from the timer is the present contents

of the timer counter.

- 320 Appendix F -

The latch is also called a prescalar in that it represents the countdown

value which must be counted before the timer reaches an underflow (no

more counts) condition. This latch (prescalar) value is a divider of the

input clocking frequency. The timers can be used independently or linked

for extended operations. Various timer operating modes allow generation

of long time delays, variable width pulses, pulse trains, and variable

frequency waveforms. Utilizing the CNT input, the timers can count

external pulses or measure frequency, pulse width, and delay times of

external signals.

Each timer has an associated control register, providing independent

control over each of the following functions:

START/STOP

A control bit allows the timer to be started or stopped by the

microprocessor at any time.

PB ON/OFF

A control bit allows the timer output to appear on a port B output line

(PB6 for timer A and PB7 for timer B). This function overrides the DDRB

control bit and forces the appropriate PB line to become an output.

TOGGLE/PULSE

A control bit selects the output applied to port B while the PB on/off

bit is ON. On every timer underflow, the output can either toggle or

generate a single positive pulse of one cycle duration.

The toggle output is set high whenever the timer is started, and set low

by RES.

ONE-SHOT/CONTINUOUS

A control bit selects either timer mode. In one-shot mode, the timer will

count down from the latched value to zero, generate an interrupt, reload

the latched value, then stop. In continuous mode, the timer will count

down from the latched value to zero, generate an interrupt, reload the

latched value, and repeat the procedure continuously.

In one-shot mode, a write to timer-high (register 5 for timer A, register

7 for Timer B) will transfer the timer latch to the counter and initiate

counting regardless of the start bit.

- Appendix F 321 -

FORCE LOAD

A strobe bit allows the timer latch to be loaded into the timer counter

at any time, whether the timer is running or not.

INPUT MODES

Control bits allow selection of the dock used to decrement the timer.

Timer A can count 02 clock pulses or external pulses applied to the CNT

pin. Timer B can count 02 pulses, external CNT pulses, timer A underflow

pulses, or timer A underflow pulses while the CNT pin is held high.

The timer latch is loaded into the timer on any timer underflow, on a

force load, or following a write to the high byte of the pre-scalar

while the timer is stopped. If the timer is running, a write to the high

byte will load the timer latch but not the counter.

BIT NAMES on READ-Register

REG NAME D7 D6 D5 D4 D3 D2 D1 D0

--- ---- -- -- -- -- -- -- -- --

4 TALO TAL7 TAL6 TAL5 TAL4 TAL3 TAL2 TAL1 TAL0

5 TAHI TAH7 TAH6 TAH5 TAH4 TAH3 TAH2 TAH1 TAH0

6 TBLO TBL7 TBL6 TBLS TBL4 TBL3 TBL2 TBL1 TBL0

7 TBHI TBH7 TBH6 TBH5 TBH4 TBH3 TBH2 TBH1 TBH0

BIT NAMES on WRITE-Register

REG NAME D7 D6 D5 D4 D3 D2 D1 D0

--- ---- -- -- -- -- -- -- -- --

4 TALO PAL7 PAL6 PAL5 PAL4 PAL3 PAL2 PAL1 PAL0

5 TAHI PAH7 PAH6 PAH5 PAH4 PAH3 PAH2 PAH1 PAH0

6 TBLO PBL7 PBL6 PBL5 PBL4 PBL3 PBL2 PBL1 PBL0

7 TBHI PBH7 PBH6 PBH5 PBH4 PBH3 PBH2 PBH1 PBH0

- 322 Appendix F -

TIME OF DAY CLOCK

TOD consists of a 24-bit binary counter. Positive edge transitions on

this pin cause the binary counter to increment. The TOD pin has a passive

pull-up on it.

A programmable alarm is provided for generating an interrupt at a desired

time. The alarm registers are located at the same addresses as the

corresponding TOD registers. Access to the alarm is governed by a control

register bit. The alarm is write-only; any read of a TOD address will

read time regardless of the state of the ALARM access bit.

A specific sequence of events must be followed for proper setting and

reading of TOD. TOD is automatically stopped whenever a write to the

register occurs. The clock will not start again until after a write to

the LSB event register. This assures that TOD will always start at the

desired time.

Since a carry from one stage to the next can occur at any time with

respect to a read operation, a latching function is included to keep all

TOD information constant during a read sequence. All TOD registers latch

on a read of MSB event and remain latched until after a read of LSB

event.

The TOD clock continues to count when the output registers are latched.

If only one register is to be read, there is no carry problem and the

register can be read "on the fly" provided that any read of MSB event is

followed by a read of LSB Event to disable the latching.

BIT NAMES for WRITE TIME/ALARM or READ TIME

REG NAME

--- ----

 8 LSB Event E7 E6 E5 E4 E3 E2 E1 E0

 9 Event 8-15 E15 E14 E13 E12 E11 E10 E9 E8

 A MSB Event E23 E22 E21 E20 E19 E18 E17 E16

WRITE

CRB7 = 0

CRB7 = 1 ALARM

- Appendix F 323 -

SERIAL SHIFT REGISTER (SDR)

The serial port is a buffered, 8-bit synchronous shift register. A

control bit selects input or output mode. In the Amiga system one shift

register is used for the keyboard, and the other is unassigned. Note that

the RS-232 compatible serial port is controlled by the Paula chip; see

chapter 8 for details.

INPUT MODE

In input mode, data on the SP pin is shifted into the shift register on

the rising edge of the signal applied to the CNT pin. After eight CNT

pulses, the data in the shift register is dumped into the serial data

register and an interrupt is generated.

OUTPUT MODE

In the output mode, Timer A is used as the baud rate generator. Data is

shifted out on the SP pin at 1/2 the underflow rate of Timer A. The

maximum baud rate possible is 02 divided by 4, but the maximum usable

baud rate will be determined by line loading and the speed at which the

receiver responds to input data.

To begin transmission, you must first set up Timer A in continuous mode,

and start the timer. Transmission will start following a write to the

serial data register. The clock signal derived from Timer A appears as an

output on the CNT pin. The data in the serial data register will be

loaded into the shift register, then shifted out to the SP pin when a CNT

pulse occurs. Data shifted out becomes valid on the next falling edge of

CNT and remains valid until the next falling edge.

After eight CNT pulses, an interrupt is generated to indicate that more

data can be sent. If the serial data register was reloaded with new

information prior to this interrupt, the new data will automatically be

loaded into the shift register and transmission will continue.

If no further data is to be transmitted after the eighth CNT pulse, CNT

will return high and SP will remain at the level of the last data bit

transmitted.

SDR data is shifted out MSB first. Serial input data should appear in

this same format.

- 324 Appendix F -

BIDIRECTIONAL FEATURE

The bi-directional capability of the shift register and CNT clock allows

many 8520s to be connected to a common serial communications bus on which

one 8520 acts as a master, sourcing data and shift clock while all other

8520 chips act as slaves. Both CNT and SP outputs are open drain to allow

such a common bus. Protocol for master/slave selection can be transmitted

over the serial bus or via dedicated handshake lines.

 REG NAME D7 D6 D5 D4 D3 D2 D1 D0

 --- ---- -- -- -- -- -- -- -- --

 C SDR S7 S6 S5 S4 S3 S2 S1 S0

INTERRUPT CONTROL REGISTER (ICR)

There are five sources of interrupts on the 8520:

 -Underflow from Timer A (timer counts down past 0)

 -Underflow from Timer B

 -TOD alarm

 -Serial port full/empty

 -Flag

A single register provides masking and interrupt information. The

interrupt control register consists of a write-only MASK register and a

read-only DATA register. Any interrupt will set the corresponding bit in

the DATA register. Any interrupt that is enabled by a 1-bit in that

position in the MASK will set the IR bit (MSB) of the DATA register and

bring the IRQ pin low. In a multichip system, the IR bit can be polled to

detect which chip has generated an interrupt request.

When you read the DATA register, its contents are cleared (set to 0), and

the IRQ line returns to a high state. Since it is cleared on a read, you

must assure that your interrupt polling or interrupt service code can

preserve and respond to all bits which may have been set in the DATA

register at the time it was read. With proper preservation and response,

it is easily possible to intermix polled and direct interrupt service

methods.

You can set or clear one or more bits of the MASK register without

affecting the current state of any of the other bits in the register.

This is done by setting the appropriate state of the MSBit, which is

called the set/clear bit. In bits 6-0, you yourself form a mask that

specifies which of the bits you wish to affect. Then, using bit 7, you

specify HOW the bits in corresponding positions in the mask are to be

affected.

- Appendix F 325 -

o If bit 7 is a 1, then any bit 6-0 in your own mask byte which is set

to a 1 sets the corresponding bit in the MASK register. Any bit that you

have set to a 0 causes the MASK register bit to remain in its current

state.

o If bit 7 is a 0, then any bit 6-0 in your own mask byte which is set

to a 1 clears the corresponding bit in the MASK register. Again, any 0

bit in your own mask byte causes no change in the contents of the

corresponding MASK register bit.

If an interrupt is to occur based on a particular condition, then that

corresponding MASK bit must be a 1.

Example: Suppose you want to set the Timer A interrupt bit (enable the

Timer A interrupt), but want to be sure that all other interrupts are

cleared. Here is the sequence you can use:

 INCLUDE "hardware/cia.i"

 XREF ciaa ; From amiga.lib

 lea ciaa,a0 ; Defined in amiga.lib

 move.b 401111110,ciaicr(a0)

MSB is 0, means clear any bit whose value is 1 in the rest of the byte

 INCLUDE "hardware/cia.i"

 XREF ciaa ; From amiga.lib

 lea ciaa,a0 ; Defined in amiga.lib

 move.b %100000001,ciaicr(a0)

MSB is 1, means set any bit whose value is 1 in the rest of the byte (do

not change any values wherein the written value bit is a zero)

READ INTERRUPT CONTROL REGISTER

REG NAME D7 D6 D5 D4 D3 D2 D1 D0

--- ---- -- -- -- -- -- -- -- --

D ICR IR 0 0 FLG SP ALRM TB TA

WRITE INTERRUPT CONTROL MASK

REG NAME D7 D6 D5 D4 D3 D2 D1 D0

--- ---- -- -- -- -- -- -- -- --

D ICR S/C x x FLG SP ALRM TB TA

- 326 Appendix F -

CONTROL REGISTERS

There are two control registers in the 8520, CRA and CRB. CRA is

associated with Timer A and CRB is associated with Timer B. The format of

the registers is as follows:

CONTROL REGISTER A

BIT NAME FUNCTION

0 START 1 = start Timer A, 0 - top Timer A.

 This bit is automatically reset (= 0) when

 underflow occurs during one-shot mode.

1 PBON 1 = Timer A output on PB6, 0 = PB6 is normal operation.

2 OUTMODE 1 = toggle, 0 = pulse.

3 RUNMODE 1 = one-shot mode, 0 = continuous mode.

4 LOAD 1 = force load (this is a strobe input, there is no

 data storage; bit 4 will always read back a zero

 and writing a 0 has no effect.)

5 INMODE 1 = Timer A count positive CNT transition,

 0 = Timer A counts 02 pulses.

6 SPMODE 1 = Serial port=output (CNT is the source of the shift

 clock)

 0 = Serial port-input (external shift clock is

 required)

7 UNUSED

- Appendix F 327 -

BIT MAP OF REGISTER CRA

REG# NAME UNUSED SPMODE INMODE LOAD RUNMODE OUTMODE PBON START

E CRA unused 0=input 0=02 1=force 0=cont. 0=pulse 0=PB60FF 0=stop

 unused 1=output 1=CNT load 1=one- 1=toggle 1-PB60N 1=start

 (strobe) shot

 |<------------Timer A Variables------------->|

All unused register bits are unaffected by a write and forced to 0 on a

read.

CONTROL REGISTER B:

BIT NAME FUNCTION

0 START 1=start Timer B, 0=stop Timer B.

 This bit is automatically reset (=0) when

 underflow occurs during one-shot mode.

1 PBON 1=Timer B output on PB7, 0= PB7 is normal operation.

2 OUTMODE 1=toggle, 0=pulse.

 RUNMODE 1=one-shot mode, 0=continuous mode.

4 LOAD 1=force load (this is a strobe input, there is no

 data storage; bit 4 will always read back a

 zero and writing a 0 has no effect.)

6,5 INMODE Bits CRB6 and CRB5 select one of four possible

 input modes for Timer B, as follows:

 CRB6 CRB5 Mode Selected

 ---- ---- --------------------------

 0 0 Timer B counts 02 pulses

 0 1 Timer B counts positive CNT transitions

 1 0 Timer B counts Timer A underflow pulses

 1 1 Timer B counts Timer A underflow pulses

 while CNT pin is held high.

7 ALARM 1=writing to TOD registers sets Alarm

 0=writing to TOD registers sets TOD clock.

 Reading TOD registers always reads TOD clock,

 regardless of the state of the Alarm bit.

- 328 Appendix F -

BIT MAP OF REGISTER CRB

REG

 # NAME ALARM INMODE LOAD RUNMODE OUTMODE PBON START

 F CRB 0=TOD 00-02 1=force 0=cont. 0=pulse 0=PB70FF 0=stop

 1=Alarm 01=CNT load 1=one- 1=toggle 1=PB70N 1=start

 10=Timer A (strobe) shot

 11=CNT+

 Timer A

 <--------------Timer B Variables---------------->

All unused register bits are unaffected by a write and forced to 0 on a

read.

PORT SIGNAL ASSIGNMENTS

This part specifies how various signals relate to the available ports of

the 8520. This information enables the programmer to relate the port

addresses to the outside-world items (or internal control signals) which

are to be affected. This part is primarily for the use of the systems

programmer and should generally not be used by applications programmers.

Systems software normally is conFigured to handle the setting of

particular signals, no matter how the physical connections may change.

NOTE

In a multi-tasking operating system, many different tasks may be

competing for the use of the system resources. Applications programmers

should follow the established rules for resource access in order to

assure compatibility of their software with the system.

- Appendix F 329 -

Address BFEr01 data bits 7-0 (A12*) (INT2)

PA7..game port 1, pin 6 (fire button*)

PA6..game port 0, pin 6 (fire button*)

PAS..RDY* disk ready*

PA4..TKO* disk track 00*

PA3..WPRO* write protect*

PA2..CHNG* disk change*

PAl..LED* led light (0=bright)

PAO..OVL memory overlay bit

SP...RDAT keyboard data

CNT..RCLR

PB7..P7 data 7

PB6..P6 data 6

PB5..P5 data 5 Centronics parallel interface

PB4..P4 data 4 data

PB3..P3 data 3

PB2..P2 data 2

PBl..P1 data 1

PBO..P0 data 0

PC...drdy* centronics control

F....ack*

Address BFDrOO data bit 15-8 (A13*) (INT6)

PA7..com line DTR*, driven output

PA6..com line RTS*, driven output

PA5..com line carrier detect*

PA4..com line CTS*

PA3..com line DSR*

PA2..SEL centronics control

PA1..POUT paper out ---+

PA0..BUSY busy -----+ |

 | |

SP...BUSY commodore -+ |

CNT..POUT commodore ---+

PB7..MTR* motor

PB6..SEL3* select external 3rd drive

PB5..SEL2* select external 2nd drive

PB4..SEL1* select external 1st drive

PB3..SEL0* select internal drive

PB2..SIDE* side select*

PBl..DIR direction

PBO..STEP* step* (3.0 milliseconds minimum)

PC...not used

F....INDEX* disk index*

- 330 Appendix F -

; A complete 8520 timing example. This blinks the power light at (exactly)

; 3 millisecond intervals. It takes over the machine, 50 watch out!

;

; The base Amiga crystal frequencies are:

; NTSC 28.63636 MHz

; PAL 28.37516 MHz

;

; The two 16 bit timers on the 8520 chips each count down at 1/10 the CPU

; clock, or 0.715909 MHz. That works out to 1.3968255 microseconds per

count.

; Under PAL the countdown is slightly slower, 0.709379 MHz.

;

; To wait 1/100 second would require waiting 10,000 microseconds.

; The timer register would be set to (10,000 / 1.3968255 - 7159).

;

; To wait 3 milliseconds would require waiting 3000 microseconds.

; The register would be set to (3000 / 1.3968255 - 2148).

 INCLUDE "hardware/cia.i"

 INCLUDE "hardware/custom.i"

;

 XREF _ciaa

 XREF _ciab

 XREF _custom

;

 lea _custom,a3 ; Base of custom chips

 lea _ciaa,a4 ; Get base address if CIA-A

;

 move.w S7fff,dmacon(a3) ; Kill all chip interrupts

;

; Setup, only do once

; This set all bits needed for timer A one-shot mode.

;

 move.b ciacra(a4),d0 ;Set control register A on CIAA

 and.b #%11000000,d0 ;Don't trash bits we are not

 or.b #%00001000,d0 ;using...

 move.b d0,ciacra(a4)

 move.b #%01111111,ciaicr(a4) ;Clear all 8520 interrupts

;

 Set time (low byte THEN high byte)

 And the low order with $ff

 Shift the high order by 8

;

TIME equ 2148

 move.b (TIME&$FF),ciatalo(a4)

 move.b (TIME>>8),ciatahi(a4)

;

; Wait for the timer to count down

busy_wait:

;

 btst.b #0,ciaicr(a4) ;Wait for timer expired flag

 beq.s busy wait

 bchg.b #CIAB LED,ciapra(a4) ;Blink light

 bset.b #0,ciacra(a4) ;Restart timer

 bra.s busy_wait

 END

- Appendix F 331 -

HARDWARE CONNECTION DETAILS

The system hardware selects the CIAs when the upper three address bits

are 101. Furthermore, CIAA is selected when A12 is low, A13 high; CIAB is

selected when A12 is high, A13 low. CIAA communicates on data bits 7-0,

CIAB communicates on data bits 15-8.

Address bits A11, A10, A9, and A8 are used to specify which of the 16

internal registers you want to access. This is indicated by "r" in the

address. All other bits are don't cares. So, CIAA is selected by the

following binary address: 101x xxxx xx01 rrrr xxxx xxx0. CIAB address:

101x xxxx xx10 rrrr xxxx xxx1

With future expansion in mind, we have decided on the following

addresses: CIAA = BFEr01; CIAB = BFDr00. Software must use byte accesses

to these address, and no other.

INTERFACE SIGNALS

CLOCK INPUT

The 02 clock is a TTL compatible input used for internal device operation

and as a timing reference for communicating with the system data bus. On

the Amiga, this is connected to the 68000 "E" clock. The "E" clock runs

at 1/10 of the CPU clock. This works out to .715909 Mhz for NTSC or

.709379 Mhz for PAL.

CS - CHIP-SELECT INPUT

The CS input controls the activity of the 8520. A low level on CS while

02 is high causes the device to respond to signals on the R/W and address

(RS) lines. A high on CS prevents these lines from controlling the 8520.

The CS line is normally activated (low) at 02 by the appropriate

address combination.

R/W - READ/WRITE INPUT

The RW signal is normally supplied by the microprocessor and controls the

direction of data transfers of the 8520. A high on R/W indicates a read

(data transfer out of the 8520), while a low indicates a write (data

transfer into the 8520).

- 332 Appendix F -

RSRS0 - ADDRESS INPUTS

The address inputs select the internal registers as described by the

register map.

DB7-DB0 - DATA BUS INPUTS/OUTPUTS

The eight data bus output pins transfer information between the 8520 and

the system data bus. These pins are high impedance inputs unless CS is

low and R/W and 02 are high, to read the device. During this read, the

data bus output buffers are enabled, driving the data from the selected

register onto the system data bus.

IRQ - INTERRUPT REQUEST OUTPUT

IRQ is an open drain output normally connected to the processor interrupt

input. An external pull-up resistor holds the signal high, allowing

multiple IRQ outputs to be connected together.

The IRQ output is normally off (high impedance) and is activated low as

indicated in the functional description.

RES - RESET INPUT

A low on the RES pin resets all internal registers. The port pins are set

as inputs and port registers to zero (although a read of the ports will

return all highs because of passive pull-ups). The timer control registers

are set to zero and the timer latches to all ones. All other registers

are reset to zero.

- Appendix F 333 –

- 334 Appendix F -

APPENDIX G

AUTOCONFIG (TM)

The AUTOCONFIG protocol is designed to allow the dynamic assignment of available
address slots to expansion boards, eliminating the need for user configuration via
jumpers. Upon reset, each board appeals in turn at $E80000. with readable identification
information, most of which is in one's complement format, stored in the high nibbles of
the first $40 words ($80 bytes) of the board. This identification information includes the
size of the board, its address space preferences, type of board (memory or other), and a

unique Hardware Manufacturer Number assigned by Commodore Amiga Technical
Support, West Chester, Pennsylvania.

Each board contains configuration hardware including an address latch appearing in the
nibble at offset S0048 and a nibble at offset $004a. When A23 through A16 of the
assigned board base address are written to this register, the board latches and appears at
the assigned address, then passes a signal called CONFIG-OUT that causes the next board
to appear at $E80000. To make certain types of boards less expensive, an expansion
board's write registers may be organized as

- Appendix G 335 -

either a byte-wide register or two nibble-wide registers. If the register is nibble-wide then
it must latch the low nibble of the assigned address (at $4A) until the high nibble (at $48)
is written. This allows the following algorithm to work with either type of board:

 Write the low order address nibble to offset $4A
 Write the entire address byte to offset $48

Alternatively, many boards can be asked to "shut-up" (pass CONFIG-OUT and stop
responding) by writing to offset S004c of the board. A bit in the nibble at offset $0008
flags whether a board supports shut-up.

All commercial expansion slot boards for the Amiga must implement the AUTOCONFIG
protocol. More in-depth machine-specific information on the design and implementation of
AUTOCONFIG boards is available from Commodore Amiga Technical Support.

The Amiga operating system contains support for matching up disk-based drivers with
AUTO-CONFIG boards. Since 1.3, the OS also supports initialisation of onboard ROM driver
software.

As a general rule, applications should not attempt to AUTOCONFIG expansion peripherals,
but rather should allow the Amiga system software to handle all automatic configuration.
Many boards contain registers which once activated could do irreparable damage, for
example, data on a user's hard disk could be lost if the board had been configured
improperly.

However, certain types of low level stand-alone applications may need to configure
hardware such as RAM boards without using the Amiga operating system. Such
applications should only configure expansion RAM boards (boards which ask to be added
to the free memory list) and known dedicated boards designed for specific applications. All
other boards should be shut-up if the board supports shut-up, or configured and ignored if
shut-up is not supported. (There are many boards which do not support shut-up).
Configuration of boards should only be attempted by applications which take over the
whole machine at reset. Presence of an AUTOCONFIG board waiting for configuration is
determined by comparing the nibbles appearing at the initial AUTOCONFIG address with
the valid values for such nibbles in the specifications.

The AUTOCONFIG spec requires that boards be configured on boundaries that match their
space requirements. For example, a 1 MB memory board should be configured on a 1 MB
boundary. There are two exceptions to this rule: boards with a 4 MB address space are

capable of being placed at S200000 and S600000 as well as being placed on 4 MB
boundaries; 8 MB boards can be placed at S200000. These exceptions are necessary
because the 8 MB space reserved for expansion in the current machine begins at
$200000.

DEBUGGING AUTOCONG BOARDS
If there is a defect in your configuration information, your board may be ignored, may
shut-up or may crash in a way that makes diagnosis difficult. There is a simple trick allows
you to test the configuration information. Cut the CONFIGIN* line to your board and wire
a switch into the line. Wire in the switch such that when it is set one way, the CONFIGIN*
line will pass through

- 336 Appendix G -

from the bus to the board. This allows the board to respond to the AUTOCONFIG process.
When the switch is set the other way, it should be wired such that the input to the board
is forced high This will disable the AUTOCONFIG of the board.

Set the switch so that the CONFIGIN* line is forced high, then bring up the system. Your
board will be invisible to the system software. Activate a debugger, and flip the switch,
Your board should now respond at the normal $E80000 address. Your view of the board is
identical to what the operating system sees when configuring your board. You can
compare the bits with the expected values.

NOTE

The board to be debugged must be the last board in the system (closest to the PC slots,
away fm the power supply.) Boards downstream of the board to be debugged will not be
configured by the system.

ADDRESS SPECIFICATION Table

The following Table describes the board identification information and AUTOCONFIG
registers which appear in the first $80 bytes of an AUTOCONFIG board at configuration
time.

NOTES
o Identification information is stored in the high nibbles of the even (word) addresses at
the start of an AUTOCONFIG board. For example, the first two words of a board might
contain $Cxxx 1xxx. The valid information in these first two words would be the $C high

nibble of the word at offset $00). then the $1 (high nibble of the word at offset $02).
Much of the information is interpreted by combining several nibbles, with low to high
address nibbles containing high to low order parts of the resulting value.

o All nibbles of information, except for those at offsets $00/02 and $40/42, are stored in
an inverted (one's complement) form and must be exclusive OR'd with $F before
interpreting them according to the Table below. Unused nibbles (the three other nibbles in
each word) may not be assumed to contain any particular value. All values written to the
AUTOCONFIG area, including the assigned address, are written uninverted.

o All addresses are shown here as offsets from the base address $E80000 where boards
appear at configuration time, so offset $02 is at $E80002, offset $04 at $E80004, etc.

- Appendix G 337 -

Board Offset

 ($00/02) 7 6 5 4 3 2 1 0 Description of nibbles

 R/W info ___ ___/ ___ ___/

 \/ \/

 Nibble at $E80000 Nibble at $E80002

 Figure G-1: How to read the Address Specification Table

NOTE

The bit numbering (7 6 5 4 3 2 1 0) is for use when two nibbles are to

be interpreted together as a byte. Physically, each nibble is the high

nibble of the word at its address (i.e. bits 15 14 13 12).

Figure G-1: Address Specification Table

 OFFSET: Address 1 Address 2 Description

($00/02) 7 6 5 4 3 2 1 0___Board size 000=8meg 100512k

 Read | | | | | __|__/ 001=64k 101=1meg

 Not Inverted | | | | | 010=128k 110=2meg

 | | | | | 011=256k 111=4meg

 | | | | \-------- 1 = Next card is also on this board

 | | | \----------- 1 = Optional ROM vector valid

 | | \-------------- 1 = Link into memory free list (RAM)

 | ____________

 ______________>---- Board type 00 = Reserved

 01 = Reserved

 10 = Reserved

 11 = Current type

($04/06) 7 6 5 4 3 2 1 0 Manufacturers chosen product

 Read ___ ___/ ___ ___/ number

Inverted \/ \/

 Hi nibble Lo nibble

($08/0A) 7 6 5 4 3 2 1 0 (Remember - these read inverted)

 Read | | |_|_|_|_|_|_ Reserved - Should be 0 currently

Inverted | |

 | ____________\ 0 = this board can be shut-up

 | / 1 = this board ignores shut-up

 |

 ______________\ 0 = any space OK

 / 1 = 8 Meg area preferred

- 338 Appendix G -

OFFSET: Address 1 Address 2 Description (cont.)

(SOC/OE) 7 6 5 4 3 2 1 0

 Read |_|_|_|_|_|_|_|_ Reserved - must be 0

Inverted

($10/12) 7 6 5 4 3 2 1 0 High byte of unique hardware

 Read ___ ___/ ___ ___/ manufacturer number assigned

Inverted \/ \/ to manufacturer.

 Hi nibble Lo nibble (Not developer number!)

(S14/16) 7 6 5 4 3 2 1 0 Low byte of unique hardware

Read ___ ___/ ___ ___/ manufacturer number assigned

Inverted \/ \/ to manufacturer.

 Hi nibble Lo nibble (Not developer number!)

NOTE

Manufacturer number is assigned by Commodore Amiga Technical Support in

West Chester, Pennsylvania (CATS). Contact CATS for further information.

($18/1A) 7 6 5 4 3 2 1 0 Optional aerial #, 1st byte (msb)

($1C/lE) 7 6 5 4 3 2 1 0 Optional serial #, 2nd byte

($20/22) 7 6 5 4 3 2 1 0 Optional serial #, 3rd byte

($24/26) 7 6 5 4 3 2 1 0 Optional serial #, 4th byte (lsb)

 Read

Inverted

(S28/2A) 7 6 5 4 3 2 1 0 Hi byte of optional ROM vector.

 Read ___ ___/ ___ ___/

Inverted \/ \/

 Hi nibble Lo nibble

(S2C/2E) 7 6 5 4 3 2 1 0 Lo byte of optional ROM vector.

 Read ___ ___/ ___ ___/ If the "ROM vector valid" bit

Inverted \/ \/ is set in nibble S00 at start

 Hi nibble Lo nibble of the board, this optional ROM

 vector is the offset from the

 board base to ROM driver

 structures.

(S30/32) 7 6 5 4 3 2 1 0 Read - Reserved, must be 00

 R/W Write - optional reset of

Inverted board base register to

 pre-configuration address

($34/36) 7 6 5 4 3 2 1 0 Reserved, must be 00

(S38/3A) 7 6 5 4 3 2 1 0 Reserved, must be 00

(S3C/3E) 7 6 5 4 3 2 1 0 Reserved, must be 00

Inverted

- Appendix G 339 -

OFFSET: Address 1 Address 2 Description (cont.)

(S40/42) 7 6 5 4 3 2 1 0 Write Read

 R/W | | | | | | | |

Not Inverted | | | | | | | _ Interrupt enable Interrupt enable

 | | | | | | ____ User definable Undefined

 | | | | | _______ Local reset Must be 0

 | | | | __________ User definable Undefined

 | | | _____________ User definable INT2 pending

 | | ________________ User definable INT6 pending

 | ___________________ User definable INT7 pending

 ______________________ User definable Board pull INT

NOTE

Use of the S40/42 registers is an optional feature which can be implemented

by boards which generate interrupts. They make it possible for

board-specific interrupt servers to determine if the current interrupt

is being generated by their board, or by some other hardware using the

same interrupt line.

(S44/46) 7 6 5 4 3 2 1 0 Reserved, read must be 00

 R/W Write undefined

Inverted

(S48/4A) 7 6 5 4 3 2 1 0 Base add. register, write only.

Write Only ___ ___/ ___ ___/ These bits are compared with A23

Not Inverted \/ \/ through A16 (or fewer) to determine

 Hi nibble Lo nibble the base address of the board.

($4C/4E) 7 6 5 4 3 2 1 0 Optional shut-up register.

Write Only ___ ___/ ___ ___/ Any write to $4C will cause

 \/ \/ board to pass CONFIG-OUT and

 _________________\ and then never respond again

 / to any address, until RESET. A

 bit in nibble $08 flags whether

 the board can be shut-up.

(S50 through S7E) Reserved, must be 00

 Inverted

Remember that an nibbles except S00/02 and $40/42 will actually appear

inverted from the values in the above Table. For example, a "must be 0"

nibble will appear as $F, and flags and hex values will also be inverted

(i.e. a value of $1 will read as $E, etc).

- 340 Appendix G -

/*

* Examine all AUTOCONFIG(tm) boards in the system

*/

include "exec/types.h"

include "libraries/configvars.h"

struct Library *OpenLibrary();

struct ConfigDev *FindConfigDev();

struct Library *ExpansionBase;

void main()

{

struct ConfigDev *myCD=0;

ExpansionBase=OpenLibrary("expansion.library",0L);

while(myCD=FindConfigDev(myCD,-1L,-1L)) /* search for any ConfigDev */

 {

 printf("\n---ConfigDev structure found at location $%1x---\n",myCD);

 /* These valuses are read directly from the board */

 printf("er Manufacturer =");

 printf("%d,",myCD->cd Rom.er Manufacturer);

 printf("S%x,",myCD->cd Rom.er Manufacturer);

 printf("(-$%4x)\n",-myCD->cd Rom.er Manufacturer);

 printf("er Product =");

 printf("%d,",myCD->cd Rom.er Product);

 printf("$%x,",myCDÑ>cd Rom.er Product);

 printf("(-$%x)\n",-myCD->cd Rom.er Product);

 printf("er Type =$%x\n",myCD->cd Rom.er Type);

 printf("er Flags =");

 printf("$%x\n",myCD->cd Rom.er Flags);

 /* These values are generated when the AUTOCONFIG(tm) software

 * relocate the board

 printf("cd BoardAddr =$%1x\n",myCD->cd BoardAddr);

 printf("cd BoardSize =$%1x (%ldK)\n",

 myCD->cd BoardSize,((ULONG)myCD->cd BoardSize)/1024);

 printf("cd Flags =$%x\n",myCD->cd Flags);

 }

CloseLibrary(ExpansionBase);

}

- Appendix G 341 –

- 342 Appendix G -

APPENDIX H

KEYBOARD

This appendix contains the keyboard interface specification for A1000, A500 and A2000.

The keyboard plugs into the Amiga computer via a cable with four primary connections.
The four wires provide 5-volt power, ground, and signals called KCLK (keyboard clock)
and KDAT keyboard data). KCLK is unidirectional and always driven by the keyboard;
KDAT is driven by both the keyboard and the computer. Both signals are open-collector,

there are pullup resistors in both the keyboard (inside the keyboard microprocessor) and
the computer.

- Appendix H 343 -

KEYBOARD COMMUNICATIONS
The keyboard transmits 8-bit data words serially to the main unit. Before the transmission
starts, both KCLK and KDAT are high. The keyboard starts the transmission by putting out
the first data bit (on KDAT), followed by a pulse on KCLK (low then high); then it puts out

the second data bit and pulses KCLK until all eight data bits have been sent. After the end
of the last KCLK pulse, the keyboard pulls KDAT high again.

When the computer has received the eighth bit, it must pulse KDAT low for at least 1
(one) microsecond, as a handshake signal to the keyboard. The handshake detection on
the keyboard end will typically use a hardware latch The keyboard must be able to detect
pulses greater than or equal to 1 microsecond. Software MUST pulse the line low for 85

microseconds to ensure compatibility with all keyboard models.

All codes transmitted to the computer are rotated one bit before transmission. The
transmitted order is therefore 6-5-4-3-2-1-0-7. The reason for this is to transmit the
up/down flag last, in order to cause a key-up code to be transmitted in case the keyboard
is forced to restore lost sync (explained in more detail below).

The KDAT line is active low; that is, a high level (+5V) is interpreted as 0, and a low level
(0V) is interpreted as 1.

 ___ ___ ___ ___ ___ ___ ___ ___ _______

KCLK _/ _/ _/ _/ _/ _/ _/ _/

KDAT _____x_____x_____x_____x_____x_____x_____x_____/

 (6) (5) (4) (3) (2) (1) (0) (7)

 First Last

 sent sent

The keyboard processor sets the KDAT line about 20 microseconds before it pulls KCLK
low. KCLK stays low for about 20 microseconds, then goes high again. The processor waits
another 20 microseconds before changing KDAT.

Therefore, the bit rate during transmission is about 60 microseconds per bit, or 17
Kbits/sec.

- 344 Appendix H -

KEYCODES
Each key has a keycode associated with it (see accompanying Table). Keycodes are
always 7 bits long. The eighth bit is a "key-up"/"key-down" flag; a 0 (high level) means
that the key was pushed down, and a 1 (low level) means the key was released (the CAPS

LOCK key is different – see below).

For example, here is a diagram of the "B" key being pushed down. The keycode for "B" is
$35=00110101; due to the rotation of the byte, the bits transmitted are 01101010.

 ___ ___ ___ ___ ___ ___ ___ ___ _______

KCLK _/ _/ _/ _/ _/ _/ _/ _/

 _______ ______ ______ ____________

KDAT __________/ ____/ ____/

 0 1 1 0 1 0 1 0

In the next example, the "B" key is released. The keycode is still $35, except that bit 7 is
set to indicate "key-up," resulting in a code of $B5 = 10110101. After rotating, the
transmission will be 01101011:

 ___ ___ ___ ___ ___ ___ ___ ___ _______

KCLK _/ _/ _/ _/ _/ _/ _/ _/

 _______ ______ ______ ______

KDAT __________/ ____/ __________/

 0 1 1 0 1 0 1 0

CAPS LOCK KEY
This key is different from all the others in that it generates a keycode only when it is
pushed down, never when it is released. However, the up/down bit is still used. When

pushing the CAPS LOCK key turns on the CAPS LOCK LED, the up/down bit will be 0;
when pushing CAPS LOCK shuts off the LED, the up/down bit will be 1.

- Appendix H 345 -

"OUT-OF-SYNC" CONDITION
Noise or other glitches may cause the keyboard to get out of sync with the computer. This
means that the keyboard is finished transmitting a code, but the computer is somewhere
in the middle of receiving it.

If this happens, the keyboard will not receive its handshake pulse at the end of its
transmission. If the handshake pulse does not arrive within 143 ms of the last clock of the
transmission, the keyboard will assume that the computer is still waiting for the rest of
the transmission and is therefore out of sync. The keyboard will then attempt to restore
sync by going into "resync mode." In this mode, the keyboard clocks out a 1 and waits for
a handshake pulse. If none arrives within 143 ms, it clocks out another 1 and waits again.

This process will continue until a handshake pulse arrives.

Once sync is restored, the keyboard will have clocked a garbage character into the
computer. That is why the key-up/key-down flag is always transmitted last. Since the
keyboard clocks out 1's to restore sync, the garbage character thus transmitted will
appear as a key release, which is less dangerous than a key hit.

Whenever the keyboard detects that it has lost sync, it will assume that the computer
failed to receive the keycode that it had been trying to transmit. Since the computer is
unable to detect lost sync, it is the keyboard's responsibility to inform the computer of the
disaster. It does this by transmitting a "lost sync" code (value $F9 = 11111001) to the
computer. Then it retransmits the code that had been garbled.

NOTE

The only reason to transmit the "lost sync" code to the computer is to alert the software
that something may be screwed up. The "lost sync" code does not help the recovery
process, because the garbage keycode can't be deleted, and the correct key code could
simply be retransmitted without telling the computer that there was an error in the
previous one.

POWER-UP SEQUENCE
There are two possible ways for the keyboard to be powered up under normal
circumstances: <1> the computer can be turned on with the keyboard plugged in, or <2>
the keyboard can be plugged into an already "on" computer. The keyboard and computer
must handle either case without causing any upset.

- 346 Appendix H -

The first thing the keyboard does on power-up is to perform a self-test. This involves a
ROM checksum test, simple RAM test, and watchdog timer test. Whenever the keyboard is
powered up (or restarted - see below), it must not transmit anything until it has achieved
synchronization with the computer. The way it does this is by slowly clocking out 1 bits, as

described above, until it receives a handshake pulse.

If the keyboard is plugged in before power-up, the keyboard may continue this process for
several minutes as the computer struggles to boot up and get running. The keyboard
must continue clocking out ls for however long is necessary, until it receives its
handshake.

If the keyboard is plugged in after power-up, no more than eight clocks will be needed to
achieve sync. In this case, however, the computer may be in any state imaginable but
must not be adversely affected by the garbage character it will receive. Again, because it
receives a key release, the damage should be minimal. The keyboard driver must
anticipate this happening and handle it, as should any application that uses raw keycodes.

NOTE
The keyboard must not transmit a "lost sync" code after re-synchronizing due to a power-
up or restart; only after re-synchronizing due to a handshake time-out.

Once the keyboard and computer are in sync, the keyboard must inform the computer of
the results of the self-test. If the self-test failed for any reason, a "self test failed" code
(value $FC = 11111100) is transmitted (the keyboard does not wait for a handshake pulse
after sending the" self test failed" code). After this, the keyboard processor goes into a

loop in which it blinks the CAPS LOCK LED to inform the user of the failure. The blinks are
coded as bursts of one, two, three, or four blinks, approximately one burst per second:

 One blink ROM checksum failure.

 Two blinks RAM test failed.

 Three blinks Watchdog timer test failed.

 Four blinks A short exists between two row lines

 or one of the seven special keys (not implemented).

If the self-test succeeds, then the keyboard will proceed to transmit any keys that are
currently down. First, it sends an "initiate power-up key stream" code (value $FD =
11111101), followed by the key codes of all depressed keys (with keyup/down set to
"down" for each key). After any keys are sent (usually there won't be any at all), a
"terminate key stream" code (value $FE = 11111110) is sent. Finally, the CAPS LOCK LED
is shut off. This marks the end of the start-up sequence, and normal processing
commences.

The usual sequence of events will therefore be: power-up; synchronize; transmit "initiate
power-up key stream" ($FD); transmit "terminate key stream2 ($FE).

- Appendix H 347 -

RESET WARNING

NOTE
Available on some A1000 and A2000 keyboards. You cannot rely on this feature for all

Amiga’s.

The keyboard has the additional task of resetting the computer on the command of the
user. The user initiates Reset Warning by simultaneously pressing the CTRL key and the
two "AMIGA" keys.

The keyboard responds to this input by syncing up any pending transmit operations. The

keyboard then sends a "reset warning" to the Amiga. This action alerts the Amiga
software to finish up any pending operations (such as disk DMA) and prepare for reset.

A specific sequence of operations ensure that the Amiga is in a state where it can respond
to the reset warning. The keyboard sends two actual "reset warning" keycodes. The Amiga
must handshake to the first code like any normal keystroke, else the keyboard goes
directly to Hard Reset. On the second "reset warning" code the Amiga must drive KDAT
low within 250 milliseconds, else the keyboard goes directly to Hard Reset. If the all the
tests are passed, the Amiga has 10 full seconds to do emergency processing. When the
Amiga pulls KDAT high again, the keyboard finally asserts hard reset.

If the Amiga fails to pull KDAT high within 10 seconds, Hard Reset is asserted anyway.

HARD RESET

NOTE
This happens after Reset Warning. Valid for all keyboards except the Amiga 500.

The keyboard Hard Resets the Amiga by pulling KCLK low and starting a 500 millisecond
timer. When one or more of the keys is released AND 500 milliseconds have passed, the
keyboard will release KCLK. 500 milliseconds is the minimum time KCLK must be held low.
The maximum KCLK time depends on how long the user holds the three keys down.

NOTE
Circuitry on the Amiga motherboard detects the 500 millisecond KCLK pulse.

- 348 Appendix H -

After releasing KCLK, the keyboard jumps to its start-up code (internal RESET). This will
initialize the keyboard in the same way as cold power-on.

NOTE

The keyboard must resend the "powerup key stream"!

SPECIAL CODES
The special codes that the keyboard uses to communicate with the main unit are
summarized here.

NOTE

The special codes are 8-bit numbers; there is no up/down flag associated with them.

However, the transmission bit order is the same as previously described.

CODE NAME MEANING

78 Reset warning. CTRL-AMIGA, AMIGA has been hit -

 computer will be reset in 10 seconds. (see text)

F9 Last key code bad, next code i9 the same code

 retransmitted (used when keyboard and main unit

 get out of sync).

FA Keyboard output buffer overflow

FB Unused (was controller failure)

FC Keyboard self test failed

FD Initiate power-up key stream (keys pressed at powerup)

FE Terminate power-up key stream

FF Unused (was interrupt)

- Appendix H 349 -

MATRIX Table

 Row 5 Row 4 Row 3 Row 2 Row 1 Row 0

Column (Bit 7) (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2)

 +-------+-------+-------+-------+-------+-------+

 15 |(spare)|(spare)|(spare)|(spare)|(spare)|(spare)|

(PD.7)| | | | | | |

 | (0E) | (1C) | (2C) | (47) | (48) | (49) |

 +-------+-------+-------+-------+-------+-------+

 14 | * |<SHIFT>| CAPS | TAB | - | ESC |

(PD.6)|note 1 |note 2 | LOCK | | ' | |

 | (5D) | (30) | (62) | (42) | (00) | (45) |

 +-------+-------+-------+-------+-------+-------+

 13 | + | Z | A | Q | ! | (|

(PD.5)|note 1 | | | | 1 |note 1 |

 | (5E) | (31) | (20) | (10) | (01) | (5A) |

 +-------+-------+-------+-------+-------+-------+

 12 | 9 | X | S | W | @ | f1 |

(PD.4)|note 3 | | | | 2 | |

 | (3F) | (32) | (21) | (11) | (02) | (50) |

 +-------+-------+-------+-------+-------+-------+

 11 | 6 | C | D | E | # | f2 |

(PD.3)|note 3 | | | | 3 | |

 | (2F) | (33) | (22) | (12) | (03) | (51) |

 +-------+-------+-------+-------+-------+-------+

 10 | 3 | V | F | R | $ | f3 |

(PD.2)|note 3 | | | | 4 | |

 | (1F) | (34) | (23) | (13) | (04) | (52) |

 +-------+-------+-------+-------+-------+-------+

 9 | . | B | G | T | % | f4 |

(PD.1)|note 3 | | | | 5 | |

 | (3C) | (35) | (24) | (14) | (05) | (53) |

 +-------+-------+-------+-------+-------+-------+

 8 | 8 | N | H | Y | - | f5 |

(PD.0)|note 3 | | | | 6 | |

 | (3E) | (36) | (25) | (15) | (06) | (54) |

 +-------+-------+-------+-------+-------+-------+

 7 | 5 | M | J | U | & |) |

(PC.7)|note 3 | | | | 7 |note 1 |

 | (2E) | (37) | (26) | (16) | (07) | (5B |

 +-------+-------+-------+-------+-------+-------+

 6 | 2 | < | K | I | * | f6 |

(PC.6)|note 3 | , | | | 8 | |

 | (1E) | (38) | (27) | (17) | (08) | (55) |

 +-------+-------+-------+-------+-------+-------+

 5 | ENTER | > | L | O | (| / |

(PC.5)|note 3 | . | | | 9 |note 1 |

 | (43) | (39) | (28) | (18) | (09) | (5C) |

 +-------+-------+-------+-------+-------+-------+

- 350 Appendix H -

 Row 5 Row 4 Row 3 Row 2 Row 1 Row 0

Column (Bit 7) (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2)

 +-------+-------+-------+-------+-------+-------+

 4 | 7 | ? | : | P |) | f7 |

(PC.4)|note 3 | / | ; | | O | |

 | (3D) | (3A) | (29) | (19) | 0A) | (56) |

 +-------+-------+-------+-------+-------+-------+

 3 | 4 |(spare)| " | { | _ | f8 |

(PC.3)|note 3 | | ' | [| - | |

 | (2D) | (3B) | (2A) | (1A) | (0B) | (57) |

 +-------+-------+-------+-------+-------+-------+

 2 | 1 | SPACE | <RET> | } | + | f9 |

(PC.2)|note 3 | BAR |note 2 |] | = | |

 | (1D) | (40) | (2B) | (1B) | (0C) | (58) |

 +-------+-------+-------+-------+-------+-------+

 1 | 0 | BACK | DEL |RETURN | | | f10 |

(PC.1)|note 3 |SPACE | | | \ | |

 | (0F) | (41) | (46) | (44) | (0D) | (59) |

 +-------+-------+-------+-------+-------+-------+

 0 | - | CURS | CURS | CURS | CURS | HELP |

(PC.0)|note 3 | DOWN | RIGHT | LEFT | UP | |

 | (4A) | (4D) | (4E) | (4F) | (4C) | (5F) |

 +-------+-------+-------+-------+-------+-------+

note 1: A500 and A2000 keyboards only (numeric pad)

note 2: International keyboards only (these keys are cutouts of the

 larger key on the US ASCII version.) The key that generates

 $30 is cut out of the left shift key. Key S2B is cut out of

 return. These keys are labelled with country-specific markings.

note 3: Numeric pad.

The following Table shows which keys are independently readable. These

keys never generate ghosts or phantoms.

 (Bit 6) (Bit 5) (Bit 4) (Bit 3) (Bit 2) (Bit 1) (Bit 0)

 +-------+-------+-------+-------+-------+-------+-------+

 | LEFT | LEFT | LEFT | CTRL | RIGHT | RIGHT | RIGHT |

 | AMIGA | ALT | SHIFT | | AMIGA | ALT | SHIFT |

 | (66) | (64) | (60) | (63) | (67) | (65) | (61) |

 +-------+-------+-------+-------+-------+-------+-------+

- Appendix H 351 -

- 352 Appendix H -

APPENDIX I

EXTERNAL DISK CONNECTOR INTERFACE SPECIFICATION

GENERAL
The 23-pin female connector at the rear of the main computer unit is used to interface to
and control devices that generate and receive MFM data. This interface can be reached
either as a resource or under the control of a driver. The following pages describe the
interface in both cases.

- Appendix I 353 -

SUMMARY Table

Pin # Name Note

1 RDY- I/O ID and ready

2 DKRD- I MFM input

3 GRND G -

4 GRND G -

5 GRND G -

6 GRND G -

7 GRND G -

8 MTRXD- 0 Motor control.

9 SEL2B- 0* Select drive 2

10 DRESB- 0 Reset

11 CHNG- I/O Msk changed

12 +5v PWR 540 mA average 870 mA surge

13 SIDEB- 0 Side 1 if low

14 WRPRO- I/O Write protect

15 TK0- I/O Track 0

16 DKWEB- O Write gate

17 DKWDB- O Write data

18 STEPB- O Step

19 DIRB O Direction (high is out)

20 SEL3B- O* Select drive 3

21 SELlB- O* Select drive 1

22 INDEX- I/OO Index

23 +12v PWR 120 mA average 370 mA surge

KEY TO CLASS:

G ground, note connector shield grounded.

I input pulled up to 5v by 1K ohm.

I/O input in driver, but bidirectional input (1k pullup)

O output pulled though 1K to 5v

O* output, separates resources.

PWR available for external use, but currently used up by external drive.

- 354 Appendix I -

SIGNALS WHEN DRIVING A DISK

The following describes the interface under driver control.

SEL1B-, SEL2B-, SEL3B-

 Select lines for the three external disk drives active low.

TK

 A selected drive pulls this signal low whenever its read-write head

is on track 00.

RDY-

 When a disk drive's motor is on, this line indicates the selected

disk is installed and rotating at speed. The driver ignores this signal.

When the motor is off this is used as a ID data line. See below.

WPRO- (Pin #14)

 A selected drive pulls this signal low whenever it has a write-

protected diskette installed.

INDEX- (Pin #22)

 A selected drive pulses this signal low once for each revolution of

its motor.

SIDEB- (Pin #13)

 The system drives this signal to all disk drives-low for side 1, high

for side 0.

STEPB- (Pin #18)

 Pulsed to step the selected drive's head.

DIRB (Pin #19)

 The system drives this signal high or low to tell the selected drive

which way to step when the STEPB- pulse arrives. Low means step in (to

higher-numbered track); high means step out.

DKRD- (Pin #2)

 A selected drive will put out read data on this line.

DKWDB- (Pin #17)

 The system drives write data to all disks via this signal. The data

is only written when DKWEB- is active (low). Data is written only to

selected drives.

- Appendix I 355 -

DKWEB- (Pin #16)

 This signal causes a selected drive to start writing data (provided

by DKWDB-) onto the disk.

CHNG- (Pin #11)

 A selected drive will drive this signal low whenever its internal

"disk change" latch is set.

This latch is set when the drive is first powered on, or whenever there

is no diskette in the drive. To reset the latch, the system must select

the drive, and step the head. Of course, the latch will not reset if

there is no diskette installed.

MTRXD- (Pin #8)

 This is the motor control line for all four disk drives. When the

system wants to turn on a disk drive motor, it first deselects the drive

(if selected), pulls MTRXD- low, and selects the drive. To turn the motor

off, the system deselects the drive, pulls MTRXD- high, and selects the

drive. The system will always set MTRXD- at least 1.4 microseconds before

it selects the drive, and will not change MTRXD- for at least 1.4

microseconds after selecting the drive. An external drives must have

logic equivalent to a D flip-flop, whose D input is the MTRXD signal, and

whose clock input is activated by the off-to-on (high-to-low) transition

of its SELxB- signal. As noted above, both the setup and hold times of

MTRXD-with respect to SELxB- will always be at least 1.4 microseconds.

The output of this flip-flop controls the disk drive motor. Thus, the

system can control all four motors using only one signal on the cable

(MIRXD-).

DRESB- (Pin #10)

 This signal is a buffered version of the system reset signal. Three

things can make it go active low):

o System power-up (DRESB- will go low for approximately one second);

o System CPU executes a RESET instruction (DRESB- will go low for

approximately 17 microseconds);

o Hard reset from keyboard (lasts as long as keyboard reset is held

down).

External disk drives should respond to DRESB- by shuffling off their motor

flip-flops and write protecting themselves.

A level of 3.75v or below on the 5v+ requires external disks to write-

protect and reset the motor on line.

- 356 Appendix I -

Device I.D.

 This interface supports a method of establishing the type of disk(s)

attached. The I.D. sequence is as follows.

 1. Drive MTRXD- low.

 2. Drive SELxB- low

 3. Drive SELxB- high.

 4. Drive MTRXD- high.

 5. Drive SELxB- low

 6. Drive SELxB- high.

 7. Drive SELxB- low

 8. Read and save state of RDY.

 9. Drive SELxB- high.

Repeat steps 6 to 9, 15 times more.

Convert the 16 values of RDY- into a 16-bit word. The most significant

bit is the first value and so on. This 16-bit quantity is the device I.D.

The following I.D.s are defined:

0000 0000 0000 0000 Reserved

1111 1111 1111 1111 Amiga standard 3.25

1010 1010 1010 1010 Reserved

0101 0101 0101 0101 48 TPI double-density, double-sided

1000 0000 0000 0000 Reserved

0111 1111 1111 1111 Reserved

0000 1111 xxxx xxxx Available for users

1111 0000 xxxx xxxx Extension reserved

xxxx 0000 0000 0000 Reserved

xxxx 1111 1111 1111 Reserved

0011 0011 0011 0011 Reserved

1100 1100 1100 1100 Reserved

- Appendix I 357 –

- 358 Appendix I -

APPENDIX J

HARDWARE EXAMPLE INCLUDE FILE

This appendix contains an include file that maps the hardware register names, given in
Appendix A and Appendix B, to names that can be resolved by the standard include files.
Use of these names in code sections of this manual places the emphasis on what the code
is doing, rather than getting bogged down in include file names.

All code examples in this manual reference the names given in this file.

- Appendix J 359 -

 IFND HARDWARE_HW_EXAMPLES_I

HARDWARE_HW_EXAMPLES_I SET 1

**

**

**

** Filename: hardware/hw_examples.i

** $Release: 1.3 $

**

** (C) Copyright 1985,1986,1987,1988,1989 Commodore-Amiga, Inc.

** All Rights Reserved

**

**

**

 IFND HARDWARE_CUSTOM_I

 INCLUDE "hardware/custom.i"

 ENDC

**

*

* This include file is designed to be used in conjunction with the hardware

* manual examples. This file defines the register names based on the

* hardware/custom.i definition file. There is no C-Language version of

* this file.

**

*

* This instruction for the copper will cause it to

* wait forever since the wait command described in it

* will never happen.

*

COPPER_HALT equ $FFFFFFFE

*

**

*

* This is the offset in the 680x0 address space to the custom chip registers

* It is the same as custom when linking with AMIGA.lib

*

CUSTOM equ $DFF000

*

* Various control registers

*

DMACONR equ dmaconr ; Just capitalization

VPOSR equ vposr ; " "

VHPOSR equ vhpor ; " "

JOY0DAT equ joy0dat ; " "

JOY1DAT equ joy1dat ; " "

CLXDAT equ clxdat ; " "

ADKCONR equ adkconr ; " "

POT0DAT equ pot0dat ; " "

POT1DAT equ pot1dat ; " "

POTINP equ potinp ; " "

SERDATR equ serdatr ; " "

INTENAR equ intenar ; " "

INTREQR equ intreqr ; " "

REFPTR equ refptr ; " "

VPOSW equ vposw ; " "

VHPOSW equ vhposw ; " "

SERDAT equ serdat ; " "

SERPER equ serper ; " "

POTGO equ potgo ; " "

JOYTEST equ joyteat ; " "

STREQU equ strequ ; " "

STRVBL equ strvbl ; " "

STRHOR equ atrhor ; " "

STRLONG equ atrlong ; " "

DIWSTRT equ diwatrt ; " "

DIWSTOP equ diwatop ; " "

DDFSTRT equ ddfatrt ; " "

DDFSTOP equ ddfatop ; " "

DMACON equ dmacon ; " "

INTENA equ intena ; " "

INTREQ equ intreq ; " "

*

* Disk control registers

*

DSKBYTR equ dakbytr ; Juat capitalization

DSKPT equ dakpt ; " "

DSKPTH equ dakpt

DSKPTL equ dakpt+$02

DSKLEN equ daklen ; " "

DSKDAT equ dakdat ; " "

DSKSYNC equ dakaync ; " "

*

* Blitter registers

*

BLTCON0 equ bltcon0 ; Just capitalization

BLTCON1 equ bltcon1 ; " "

BLTAFWM equ bltafwm ; " "

BLTALWM equ bltalwm

BLTCPT equ bltcpt ; " "

BLTCPTH equ bltcpt

BLTCPTL equ bltcpt+$02

BLTBPT equ bltbpt ; " "

BLTBPTH equ bltbpt

BLTBPTL equ bltbpt+$02

BLTAPT equ bltapt ; " "

BLTAPTH equ bltapt

BLTAPTL equ bltapt+$02

BLTDPT equ bltdpt ; " "

BLTDPTH equ bltdpt

BLTDPTL equ bltdpt+$02

BLTSIZE equ bltaize ; " "

BLTCMOD equ bltcmod ; " "

BLTBMOD equ bltbmod ; " "

BLTAMOD equ bltamod ; " "

BLTDMOD equ bltdmod ; " "

BLTCDAT equ bltcdat ; " "

BLTBDAT equ bltbdat ; " "

BLTADAT equ bltadat ; " "

BLTDDAT equ bltddat ; " "

*

* Copper control registers

COPCON equ copcon ; Just capitalization

COPINS equ copina ; " "

COPJMP1 equ copjmp1 ; " "

COPJMP2 equ copjmp2 ; " "

COP1LC equ cop1lc ; " "

COP1LCH equ cop1lc

COP1LCL equ cop1lc+$02

COP2LC equ cop2lc ; " "

COP2LCH equ cop2lc

COP2LCL equ cop2lc+$02

*

* Audio channels registers

*

ADKCON equ adkcon ; Just capitalization

AUD0LC equ aud0

AUD0LCH equ aud0

AUD0LCL equ aud0+$02

AUD0LEN equ aud0+$04

AUD0PER equ aud0+$06

AUD0VOL equ aud0+$08

AUD0DAT equ aud0+$0A

AUD1LC equ aud1

AUD1LCH equ aud1

AUD1LCL equ aud1+$02

AUD1LEN equ aud1+$04

AUD1PER equ aud1+$06

AUD1VOL equ aud1+$08

AUD1DAT equ aud1+$0A

AUD2LC equ aud2

AUD2LCH equ aud2

AUD2LCL equ aud2+$02

AUD2LEN equ aud2+$04

AUD2PER equ aud2+$06

AUD2VOL equ aud2+$08

AUD2DAT equ aud2+$0A

AUD3LC equ aud3

AUD3LCH equ aud3

AUD3LCL equ aud3+$02

AUD3LEN equ aud3+$04

AUD3PER equ aud3+$06

AUD3VOL equ aud3+$08

AUD3DAT equ aud3+$0A

*

* The bitplane registers

*

BPLlPT equ bplpt+$00

BPLlPTH equ bplpt+$00

BPLlPTL equ bplpt+$02

BPL2PT equ bplpt+$04

BPL2PTH equ bplpt+$04

BPL2PTL equ bplpt+$06

BPL3PT equ bplpt+$08

BPL3PTH equ bplpt+$08

BPL3PTL equ bplpt+$0A

BPL4PT equ bplpt+$0C

BPL4PTH equ bplpt+$0C

BPL4PTL equ bplpt+$0E

BPLSPT equ bplpt+$10

BPL5PTH equ bplpt+$10

BPL5PTL equ bplpt+$12

BPL6PT equ bplpt+$14

BPL6PTH equ bplpt+$14

BPL6PTL equ bplpt+$16

BPLCON0 equ bplcon0 ; Juat capitalization

BPLCON1 equ bplcon1 ; " "

BPLCON2 equ bplcon2 ; " "

BPL1MOD equ bpl1mod ; " "

BPL2MOD equ bpl2mod

DPL1DATA equ bpldat+$00

DPL2DATA equ bpldat+$02

DPL3DATA equ bpldat+$04

DPL4DATA equ bpldat+$06

DPL5DATA equ bpldat+$08

DPL6DATA equ bpldat+$0A

*

* Sprite control registers

*

SPR0PT equ Sprpt+$00

SPR0PTH equ SPR0PT+$00

SPR0PTL equ SPR0PT+$02

SPR1PT equ sprpt+$04

SPR1PTH equ SPR1PT+$00

SPR1PTL equ SPR1PT+$02

SPR2PT equ sprpt+$08

SPR2PTH equ SPR2PT+$00

SPR2PTL equ SPR2PT+S02

SPR3PT equ sprpt+$0C

SPR3PTH equ SPR3PT+$00

SPR3PTL equ SPR3PT+$02

SPR4PT equ sprpt+$10

SPR4PTH equ SPR4PT+$00

SPR4PTL equ SPR4PT+$02

SPR5PT equ sprpt+$14

SPRSPTH equ SPRSPT+$00

SPRSPTL equ SPRSPT+$02

SPR6PT equ sprpt+$18

SPR6PTH equ SPR6PT+$00

SPR6PTL equ SPR6PT+$02

SPR7PT equ sprpt+$1C

SPR7PTH equ SPR7PT+$00

SPR7PTL equ SPR7PT+$02

;

; Note: SPRxDATB is defined as being +$06 from SPRxPOS.

: sd_datab should be defined as $06, however, in the 1.3 assembler

; include file hardware/custom.i it is incorrectly defined as $08.

SPR0POS equ spr+$00

SPR0CTL equ SPR0POS+sd_ct1

SPR0DATA equ SPR0POS+sd dataa

SPR0DATB equ SPR0POS+$06 ; should use sd datab ...

SPR1POS equ spr+$08

SPR1CTL equ SPR1POS+sd_ctl

SPR1DATA equ SPR1POS+sd_dataa

SPR1DATB equ SPR1P05+$06 ; should use sd datab ...

SPR2POS equ spr+$10

SPR2CTL equ SPR2POS+sd_ctl

SPR2DATA equ SPR2POS+sd_dataa

SPR2DATB equ SPR2POS+$06 ; should use sd datab ...

SPR3POS equ spr+$18

SPR3CTL equ SPR3POS+sd ctl

SPR3DATA equ SPR3POS+sd dataa

SPR3DATB equ SPR3P05+$06 ; should use sd datab ...

SPR4POS equ spr+$20

SPR4CTL equ SPR4POS+sd ctl

SPR4DATA equ SPR4POS+sd dataa

SPR4DATB equ SPR4P05+$06 ; should use sd datab ...

SPR5POS equ spr+$28

SPR5CTL equ SPR5POS+ad_ctl

SPR5DATA equ SPR5POS+Ad_dataa

SPR5DATB equ SPR5P05+$06 ; should use ad_datab

SPR6POS equ spr+$30

SPR6CTL equ SPR6POS+ad_ctl

SPR6DATA equ SPR6POS+sd_dataa

SPR6DATB equ SPR6P05+$06 ; should use sd_datab

SPR7POS equ spr+$38

SPR7CTL equ SPR7POS+sd_ctl

SPR7DATA equ SPR7POS+sd_dataa

SPR7DATB equ SPR7P05+$06 ; should use ad_datab

*

* Color registers...

*

COLOR00 equ color+$00

COLOR01 equ color+$02

COLOR02 equ color+$04

COLOR03 equ color+$06

COLOR04 equ color+$08

COLOR05 equ color+$0A

COLOR06 equ color+$0C

COLOR07 equ color+$0E

COLOR08 equ color+$10

COLOR09 equ color+$12

COLOR10 equ color+$14

COLOR11 equ color+$16

COLOR12 equ color+$18

COLOR13 equ color+$1A

COLOR14 equ color+$1C

COLOR15 equ color+$1E

COLOR16 equ color+$20

COLOR17 equ color+$22

COLOR18 equ color+$24

COLOR19 equ color+$26

COLOR20 equ color+$28

COLOR21 equ color+$2A

COLOR22 equ color+$2C

COLOR23 equ color+$2E

COLOR24 equ color+$30

COLOR25 equ color+$32

COLOR26 equ color+$34

COLOR27 equ color+$36

COLOR28 equ color+$38

COLOR29 equ color+$3A

COLOR30 equ color+$3C

COLOR31 equ color+$3E

ENDC ; HARDWARE_HW_EXAMPLES_I

GLOSSARY

AGNUS

One of the three main Amiga custom chips. Contains the blitter, copper, and DMA
circuitry.

ALIASING DISTORTION
A side effect of sound sampling, where two additional frequencies are produced, distorting
the sound output.

ALT KEYS
Two keys on the keyboard to the left and right of the Amiga keys.

AMIGA KEYS
Two keys on the keyboard to the left and right of the space bar.

AMIGADOS
The Amiga operating system.

AMPLITUDE
The voltage or current output expressed as volume from a sound speaker.

AMPLITUDE MODULATION
A means of increasing audio effects by using one audio channel to alter the amplitude of

another.

ATTACH MODE
In sprites, a mode in which a sprite uses two DMA channels for additional colors. In sound
production, combining two audio channels for frequency/amplitude modulation or for
stereo sound.

AUTOMATIC MODE
In sprite display, the normal mode in which the sprite DMA channel, once it starts up,
automatically retrieves and displays all of the data for a sprite. In audio, the normal mode
in which the system retrieves sound data automatically through DMA.

BARREL SHIFTER
Blitter circuit that allows movement of images on pixel boundaries.

BAUD RATE
Rate of data transmission through a serial port.

BEAM COUNTERS
Registers that keep track of the position of the video beam.

BIT-MAP
The complete definition of a display in memory, consisting of one or more bit-planes and
information about how to organize the rectangular display.

- Glossary 365 -

BITPLANE
A contiguous series of display memory words, treated as if it were a rectangular shape.

BIT-PLANE ANIMATION

A means of animating the display by moving around blocks of playfield data with the
blitter.

BLANKING INTERVAL
Time period when the video beam is outside the display area.

BLITTER

DMA channel used for data copying and line drawing.

CHIP MEMORY
Memory accessible to the Amiga custom chips. On the current generation of machines,
this section of memory starting at address (See Fast Memory.)

CLEAR
Giving a bit the value of 0.

CLI
See command line interface.

CLIPPING
When a portion of a sprite is outside the display window and thus is not visible.

COLLISION
A means of detecting when sprites, playfields, or playfield objects attempt to overlap in
the same pixel position or attempt to cross some pre-defined boundary.

COLOR DESCRIPTOR WORDS
Pairs of words that define each line of a sprite.

COLOR INDIRECTION
The method used by Amiga for colouring individual pixels in which the binary number
formed from all the bits that define a given pixel refers to one of the 32 color registers.

COLOR PALETTE
See Color Table.

COLOR REGISTER
One of 32 hardware registers containing colors that you can define.

COLOR Table
The set of 32 color registers.

COMMAND LINE INTERFACE
The command line interface to system commands and utilities.

COMPOSITE VIDEO
A video signal, transmitted over a single coaxial cable, which includes both picture and
sync information.

CONTROLLER
Hardware device, such as mouse or light pen, used to move the pointer or furnish some
other input to the system.

COORDINATES
A pair of numbers shown in the form (x,y), where x is an offset from the left side of the
display or display window and y is an offset from the top.

COPPER
Display-synchronized coprocessor that resides on one of the Amiga custom chips and
directs the graphics display.

COPROCESSOR
Processor that adds its instruction set to that of the main processor.

CURSOR KEYS
Keys for moving something on the screen.

DATA FETCH
The number of words fetched for each line of the display.

DELAY
In playfield horizontal scrolling, specifies how many pixels the picture will shift for each
display field. Delay controls the speed of scrolling.

DENISE
One of the three main Amiga custom chips. Contains the circuitry for the color palette,
sprites, and video output.

DEPTH
Number of bit-planes in a display.

DIGITAL-TO-ANALOG CONVERTER
A device that converts a binary quantity to an analog level.

DIRECT MEMORY ACCESS
An arrangement whereby intelligent devices can read or write memory directly, without
having to interrupt the processor.

DISPLAY FIELD
One complete scanning of the video beam from top to bottom of the video display screen.

DISPLAY MODE

One of the basic types of display; for example, high or low resolution, interlaced or non-
interlaced, single or dual playfield.

DISPLAY TIME
The amount of time to produce one display field, approximately 1/60th of a second.

DISPLAY WINDOW
The portion of the bit-map selected for display. Also, the actual size of the on-screen
display.

DMA
See direct memory access.

DUAL-PLAYFIELD MODE

A display mode that allows you to manage two separate display memories, giving you two
separately controllable displays at the same time.

- Glossary 367 -

EQUAL-TEMPERED SCALE
A musical scale where each note is the 12th root of 2 above the note below it.

EXEC

Low-level primitives that support the AmigaDOS operating system.

FAST MEMORY
Memory not accessible by the custom chips. Care must be taken to present only chip
memory address to the custom chips. See Chip Memory.

FONT

A set of letters, numbers, and symbols sharing the same size and design.

FREQUENCY
The number of times per second a waveform repeats.

FREQUENCY MODULATION
A means of changing sound quality by using one audio channel to affect the period of the
waveform produced by another channel. Frequency modulation increases or decreases the
pitch of the sound.

GENLOCK
An optional feature that allows you to bring in a graphics display from an external video
source.

HIGH RESOLUTION
A horizontal display mode in which 640 pixels are displayed across a horizontal line in a
normal-sized display.

HOLD-AND-MODIFY
A display mode that gives you extended color selection up to 4,096 colors on the screen at
one time.

INTERLACED MODE
A vertical display mode where 400 lines are displayed from top to bottom of the video
display in a normal-size display.

JOYSTICK
A controller device that freely rotates and swings from left to right, pivoting from the

bottom of the shaft; used to position something on the screen.

LIGHT PEN
A controller device consisting of a stylus and Tablet used for drawing something on the
screen.

LOW RESOLUTION
A horizontal display mode in which 320 pixels are displayed across a horizontal line in a
normal-sized display.

MANUAL MODE
Non-DMA output. In sprite display, a mode in which each line of a sprite is written in a
separate operation. In audio output, a mode in which audio data words are written one at
a time to the output.

- 368 Glossary -

MIDI
A standardized musical instrument interface used by many musical instruments.

MICROSECOND (US)

One millionth of second (1/1,000,000).

MILLISECOND (MS)
One thousandth of second (1/1,000).

MINTERM
One of eight possible logical combinations of data bits from three different data sources.

MODULO
A number defining which data in memory belongs on each horizontal line of the display.
Refers to the number of bytes in memory between the last word on one horizontal line
and the beginning of the first word on the next line.

MOUSE
A controller device that can be rolled around to move something on the screen; also has
buttons to give other forms of input.

MULTITASKING
A system in which many tasks can be operating at the same time, with no task forced to
be aware of any other task.

NANOSECOND (NS)
One billionth of a second (1/1,000,000,000).

NON-INTERLACED MODE
A display mode in which 200 lines are displayed from top to bottom of the video display in
a normal-sized display.

NTSC
National Television Standards Committee specification for composite video. The base
Amiga crystal frequency for NTSC is 28.63636 Mhz.

OVERSCAN
Area scanned by the video beam but not visible on the video display screen.

PADDLE CONTROLLER
A game controller that uses a potentiometer (variable resistor) to position objects on the
screen.

PAL
A European television standard similar to (but incompatible with) NTSC. Stands for "Phase
Alternate Line." The base Amiga crystal frequency for PAL is 28.37516 Mhz.

PARALLEL PORT
A connector on the back of the Amiga that is used to attach parallel printers and other
parallel add-ons.

PAULA
One of the three main Amiga custom chips. Contains audio, disk, and interrupt circuitry.

 - Glossary 369 -

PITCH
The quality of a sound expressed as its highness or lowness.

PIXEL

One of the small elements that makes up the video display. The smallest addressable
element in the video display.

PLAYFIELD
One of the basic elements in Amiga graphics; background for all other display elements.

PLAYFIELD OBJECT

Subsection of a playfield that is used in playfield animation.

PLAYFIELD ANIMATION
See bit-plane animation.

POINTER REGISTER
Register that is continuously incremented to point to a series of memory locations.

POLARITY
True or false state of a bit.

POTENTIOMETER
An electrical analog device used to adjust some variable value.

PRIMITIVES
Amiga graphics, text, and animation library functions.

QUANTIZATION NOISE
Audio noise introduced by round-off errors when you are trying to reproduce a signal by
approximation.

RAM
Random access (volatile) memory.

RASTER
The area in memory that completely defines a bit-map display.

READ-ONLY

Describes a register or memory area that can be read but not written.

RESOLUTION
On a video display, the number of pixels that can be displayed in the horizontal and
vertical directions.

ROM
See read-only memory.

SAMPLE
One of the segments of the time axis of a waveform.

SAMPLING RATE
The number of samples played per second.

SAMPLING PERIOD
The value that determines how many clock cycles it takes to play one data sample.

SCROLLING
Moving a playfield smoothly in a vertical or horizontal direction.

SERIAL PORT

A connector on the back of the Amiga used to attach modems and other serial add-ons.

SET
Giving a bit the value of 1.

SHARED MEMORY
The RAM used in the Amiga for both display memory and executing programs.

SPRITE
Easily movable graphics object that is produced by one of the eight sprite DMA channels
and is independent of the playfield display.

STROBE ADDRESS
An address you put out to the bus in order to cause some other action to take place; the
actual data written or read is ignored.

TASK
Operating system module or application program. Each task appears to have full control
over its own virtual 68000 machine.

TIMBRE

Tone quality of a sound.

TRACKBALL
A controller device that you spin with your hand to move something on the screen; may
have buttons for other forms of input.

TRANSPARENT
A special color register definition that allows a background color to show through. Used in
dual-playfield mode.

UART
The circuit that controls the serial link to peripheral devices, short for Universal
Asynchronous Receiver/Transmitter.

VIDEO PRIORITY
Defines which objects (playfields and sprites) are shown in the foreground and which
objects are shown in the background. Higher-priority objects appear in front of lower-
priority objects.

VIDEO DISPLAY
Everything that appears on the screen of a video monitor or television.

WRITE-ONLY
Describes a register that can be written to but cannot be read.

- Glossary 371 -

