
AMIGA HARDWARE REFERENCE MANUAL

TABLE OF CONTENTS

Chapter 1 INTRODUCTION

 Components of the Amiga2

 THE MC68000 AND THE AMIGA CUSTOM CHIPS.................2

 VCR AND DIRECT CAMERA INTERFACE...................5

 PERIPHERALS..5

 SYSTEM EXPANDABILITY AND ADAPTABILITY..................6

 About the Examples..7

 Some Caveats to Hardware Level Programmers9

Chapter 2 COPROCESSOR HARDWARE13

 Introduction...13

 ABOUT THIS CHAPTER....................................14

 What is a Copper Instruction?14

 The M OVE Instruction15

 The WAIT Instruction.....................................17

 HORIZONTAL BEAM POSITION..............................18

 VERTICAL BEAM POSITION18

 THE COMPARISON ENABLE BITS............................19

 Using the Copper Registers...............................20

 LOCATION REGISTERS20

 JUMP STROBE ADDRESS...................................21

 CONTROL REGISTER......................................21

 Putting Together a Copper Instruction List22

 COMPLETE SAMPLE COPPER LIST...........................24

 LOOPS AND BRANCHES25

 Starting and Stopping the Cop per25

 STARTING THE COPPER AFTER RESET.......................25

 STOPPING THE COPPER...................................26

 Advanced Topics............................27

 THE SKIP INSTRUCTION..............27

 COPPER LOOPS AND BRANCHES AND COMPARISON ENABLE.......28

 USING THE COPPER IN INTERLACED MODE30

 USING THE COPPER WITH THE BLITTER.....................31

 THE COPPER AND THE 68000..................31

 Summary of Copper Instructions32

Chapter 3 PLAYIELD HARDWARE................................33

 Introduction...33

 ABOUT THIS CHAPTER..............................34

 PLAYFIELD FEATURES34

 Forming a Basic Playfield38

 HEIGHT AND WIDTH OF THE PLAYFIELD.....................39

 BIT - PLANES AND COLOR39

 SELECTING HORIZONTAL AND VERTICAL RESOLUTION43

 ALLOCATING MEMORY FOR BIT- PLANES46

 CODING THE BIT - PLANES FOR CORRECT COLORING49

 DEFINING THE SIZE OF THE DISPLAY WINDOW50

 TELLING THE SYSTEM HOW TO FETCH AND DISPLAY DATA53

 DISPLAYING AND REDISPLAYING THE PLAYFIELD56

 ENABLING THE COLOR DISPLAY56

 BASIC PLAYFIELD SUMMARY57

 EXAMPLES OF FORMING BASIC PLAYFIELDS59

 Forming a Dual - playfield Display62

 Bit - Plane Assignment in Dual - playfield Mode62

 COLOR REGISTERS IN DUAL- PLAYFIELD MODE65

 DUAL- PLAYFIELD PRI ORITY AND CONTROL66

 ACTIVATING DUAL- PLAYFIELD MODE67

 DUAL PLAYFIELD SUMMARY67

 Bit - planes and Display Windows of All Sizes68

 WHEN THE BIG PICTURE IS LR GR THAN THE DISPLAY WINDOW .68

 MAXIMUM DISPLAY WINDOW SIZE...........................74

 Moving (Scrolling) Playfields75

 VERTICAL SCROLLING....................................75

 HORIZONTAL SCROLLING77

 SCROLLED PLAYFIELD SUMMARY80

 Advanced Topics..81

 INTERACTIONS AMONG PLAYFIELDS AND OTHER OBJECTS81

 HOLD- AND- MODIFY MODE81

 FORMING A DISPLAY WITH SEVERAL DIFFERENT PLAYFELD84

 USING AN EXTERNAL VIDEO SOURCE84

 SUMMARY OF PLAYFIELD REGISTERS84

 Summary of Color Selection87

 COLOR REGISTER CONTENTS87

 SOME SAMPLE COLOR REGISTER CONTENTS88

 COLOR SELECTION IN LOW- RESOLUTION MODE88

 COLOR SELECTION IN HOLD- AND- MODIFY MODE90

 COLOR SELECTION IN HIGH - RESOLUTION MODE90

Chapter 4 SPRITE HARDWARE93

 Introduction...93

 ABOUT THIS CHAPTER....................................94

 Formi ng a Sprite ..94

 SCREEN POSITION94

 SIZE OF SPRITES97

 SHAPE OF SPRITES97

 SPRITE COLOR..98

 DESIGNING A SPRITE...................................101

 BUILDING THE DATA STRUCTURE..........................101

 Displaying a Sprite.....................................106

 SELECTING A DMA CHANNEL AND SETTING THE POINTERS.....107

 RESETTING THE ADDRESS POINTERS107

 SPRITE DISPLAY EXAMPLE...............................108

 Moving a Sprite...110

 Creating Additional Sprites..111

 SPRITE PRIORITY......................................112

 Reusing Sprite DMA Channels113

 Overlapped Sprites......................................115

 Attached Sprites117

 Manual Mode ..120

 Sprite Hardware Details121

 Summary of Sprite Registers.............................124

 POINTERS..................................124

 CONTROL REGISTERS....................................124

 DATA REGISTERS126

 Summary of Sprite Color Registers.......................126

 INTERACTIONS AMONG SPRITES AND OTHER OBJECTS128

Chapter 5 AUDIO HARDWARE..................................129

 Introduction..129

 INTRODUCING SOUND GENERATION.........................130

 THE AMIGA SOUND HARDWARE.............................133

 Forming and Playing a Sound134

 DECIDING WHICH CHANNEL TO USE........................134

 CREATING THE WAVEFORM DATA...........................134

 TELLING THE SYSTEM ABOUT THE DATA136

 SELECTING THE VOLUME136

 SELECTING THE DATA OUTPUT RATE.......................137

 PLAYING THE WAVEFORM140

 STOPPING THE AUDIO DMA...............................141

 SUMMARY..142

 EXAMPLE..142

 Producing Complex Sounds................................143

 JOINING TONES143

 PLAYING MULTIPLE T ONES AT THE SAME TIME..............145

 MODULATING SOUND145

 Producing High - quality Sound............................148

 MAKING WAVEFORM TRANSITIONS148

 SAMPLING RATE148

 EFFICIENCY...149

 NOISE REDUCTION......................................150

 ALIASING DISTORTION150

 LOW- PASS FILTER152

 Using Direct (Non - DMA) Audio Output153

 The Equal - tempered Musical Scale........................154

 Decibel Values for Volume Ranges159

 The Audio State Machine......................160

Chapter 6 BLITTER HARDWARE................................163

 Introduction..163

 Memory Layout ..164

 DMA Channels.......................................164

 Function Generator......................................168

 DESIGNING THE LF CONTROL BYTE WITH MINTERMS..........169

 DESIGNING THE LF CONTROL BYTE WITH VENN DIAGRAMS.....172

 Shifts and Masks..173

 Descending Mode ..176

 Copying Arbitrary Regions...............................177

 Area Fill Mode..178

 Blitter Done Flag.......................................180

 MULTITASKING AND THE BLITTER181

 Interrupt Flag ...181

 Zero Flag...182

 Pipeline Register.......................................182

 Line Mode.... ...184

 REGISTER SUMMARY FOR LINE MODE.......................186

 Blitter Speed ..188

 Blitter Operations and System DMA189

 Blitter Block Diagram193

 Blitter Key Points......................................195

 EXAMPLE: ClearMem....................................195

 EXAMPLE: SimpleLine..................................197

 EXAMPLE: RotateBits.......199

Chapter 7 SYSTEM CONTROL HARDWARE201

 Introduction..201

 Video Priorities202

 FIXED SPRITE PRIORITES202

 HOW SPRITES ARE GROUPED..............................203

 UNDERSTANDING VIDEO PRIORITIES203

 SETTING THE PRIORITY CONTROL REGISTER................204

 Collision Detection207

 HOW COLLISIONS ARE DETERMINED........................207

 HOW TO INTERPRET THE COLLISION DATA208

 HOW COLLISION DETECTION IS CONTROLLED209

 Beam Position Detection............................210

 USING THE BEAM POSITION COUNTER......................210

 Interrupts ...211

 NONMASKABLE INTERRUPT212

 MASKABLE INTERRUPTS..................................212

 USER INTERFACE TO THE INTERRUPT SYSTEM212

 INTERRUPT CONTROL REGISTERS212

 SETTING AND CLEARING BITS............................213

 DMA Control ..217

 Proce ssor Access to Chip Memory.........................217

 Reset and Early Startup Operation.......................219

Chapter 8 INTERFACE HARDWARE..............................221

 Introduction..221

 Controller Port Interface...............................222

 REGISTERS USED WITH THE CONTROLLER PORT..............223

Floppy Disk Controller,.............................235

 REGISTERS USED BY THE DISK SUBSYSTEM236

 DISK INTERRUPTS244

 The Keyboard..245

 HOW THE KEYBOARD DATA IS RECEIVED....................245

 TYPE OF DATA RECEIVED................................245

 LIMITATIONS OF THE KEYBO ARD247

 Parallel Input/Output Interface.........................250

 Serial Interface250

 INTRODUCTION TO SERIAL CIRCUITRY250

 SETTING THE BAUD RATE...........250

 SETTING THE RECEIVE MODE251

 CONTENTS OF THE RECEIVE DATA REGISTER................251

 HOW OUTPUT DATA IS TRANSMITTED.......................253

 SPECIFYING THE REGISTER CONTENTS254

 Display Output Connections255

Appendix A Register Summary - Alphabetical Order............257

Appendix B Register Summary - Address Order.................281

Appendix C Custom Chip Pin Allocation List.......289

Appendix D System Memory Map..............................293

Appendix E Interfaces295

Appendix F Complex Interface Adapters.....................317

 8520 Complex Interface Adaptor (CIA) Chips..........317

 Chip Register Map.......................................319

 Register Functional Description.........................320

 I/O PORTS (PRA, PRB, DDRA, DDRB).....................320

 HANDSHAKING..320

 INTERVAL TIMERS (TIMER A, TIMER B)...................320

 INPUT MODES..322

 BIT NAMES on READ - Register...........................322

 BIT NAMES on WRITE - Register322

 Time o f Day Clock.......................................323

 BIT NAMES for WRITE TIME/ALARM or READ TIME..........323

 Serial Shift Register (SDR).............................324

 INPUT MODE ..324

 OUTPUT MODE ...324

 BIDIRECTIONAL FEATURE325

 Interrupt Control Register (ICR)325

 READ INTERRUPT CONTROL REGISTER326

 WRITE INTERRUPT CONTROL MASK326

 Control Registers327

 CONTROL REGISTER A327

 BIT MAP OF REGISTER CRA328

 BIT MAP OF REGISTER CRB329

 Port Signal Assignments.................................329

 Hardware Connection Details.............................332

 INTERFACE SIGNALS332

Appendix G AUTOCONFIG335

 Debugging AUTOCONFIG Boards.............................336

 Address Specification Table337

Appendix H Keyboard.......................................343

 Keyboard Communications...................344

 Keycodes..345

 "CAPS LOCK" Key...345

 "Out - of - Sync" Condition.................................346

 Power - Up Sequence346

 Reset Warning...348

 Hard Reset..348

 Special Codes...349

 Matrix Table ..35 0

Appendix I External Disk Connector Interface Spec.353

 General...353

 Summary Table ...354

 Signals When Driving a Disk.............................355

 Device I.D..357

Appendix J Hardware Example Include File..................359

Glossary ...365

Index ..373

 LIST OF FIGURES

Figure 1- 1 Block Diagram for the Amiga Computer Family.. 11

Figure 2- 1 Interlaced Bit - Plane in RAM..................30

Figure 3- 1 How the Video Display Picture Is Produced....34

Figure 3- 2 What Is a Pixel?.............................35

Figure 3- 3 How Bit - planes Select a Color.................37

Figure 3- 4 Significance of Bit - Plane Data in Selecting Colors. 38

Figure 3- 5 Interlacing..................................... 44

Figure 3- 6 Effect of Interlaced Mode on Edges of Objects.. 44

Figure 3- 7 Memory Organization for a Basic Bit - Plane...48

Figure 3- 8 Combining Bit - planes......................50

Figure 3- 9 Positioning the On - screen Display51

Figure 3- 10 Data Fetched for the First Line When Modulo=0 54

Figure 3- 11 Data Fetched for the Second Line When Modulo=055

Figure 3- 12 A Dual - playfield Display.....................63

Figure 3- 13 How Bit - Plan es Are Assigned to Dual Playfields. 64

Figure 3- 14 Memory Picture Larger than the Display........69

Figure 3- 15 Data Fetch for the First Line When Modulo=40..69

Figure 3- 16 Data Fetch for the Second Line When Modulo=40.70

Figu re 3- 17 Data Layout for First Line - Right Half of Big Picture..70

Figure 3- 18 Data Layout for Second Line - Right Half of Big Picture.70

Figure 3- 19 Display Window Horizontal Starting Position72

Figure 3- 20 Display Window Vertical Starting Position 72

Figure 3- 21 Display Window Horizontal Stopping Position 73

Figure 3- 22 Display Window Vertical Stopping Position74

Figure 3- 23 Vertical Scrolling....................................76

Figure 3- 24 Horizontal Scrolling78

Figure 3- 25 Memory Picture Larger than the Display Window79

Figure 3- 26 Data for Line 1 - Horizontal Scrolling79

Figure 3- 27 Data for Line 2 - Horizontal Scrolling79

Figure 4- 1 De fining Sprite On - screen Position............95

Figure 4- 2 Position of Sprites96

Figure 4- 3 Shape of Spaceship...........................97

Figure 4- 4 Sprite with Spaceship Shape Defined98

Figure 4- 5 Sprite Color Definition99

Figure 4- 6 Color Register Assignments100

Figure 4- 7 Data Structure Layout103

Figure 4- 8 Sprite Priority112

Figure 4- 9 Typical Example of Sprite Reuse113

Figure 4- 10 Typical Data Structure for Sprite Re - use 114

Figure 4- 11 Overlapping Sprites (Not Attached) 116

Figure 4- 12 Placing Sp rites Next to Each Other 117

Figure 4- 13 Sprite Control Circuitry 122

Figure 5- 1 Sine Waveform 131

Figure 5- 2 Digitized Amplitude Values 133

Fi gure 5- 3 Example Sine Wave 139

Figure 5- 4 Waveform with Multiple Cycles 149

Figure 5- 5 Frequency Doma in Plot of Low - Pass Filter 151

Figure 5- 6 Noise - free Output (No Aliasing Distortio n) 151

Figure 5- 7 Some Aliasing Distortion 152

Figure 5- 8 Audio State Diagram 162

Figure 6- 1 How Images are Stored in Memory 165

Figure 6- 2 BLTxP and BLTxMOD ca lculations 167

Figure 6- 3 Blitter Minterm Venn Diagram 172

Figure 6- 4 Extracting a Range of Columns 175

Figure 6- 5 Use of the FCI Bit - Bit Is a 0 179

Figure 6- 6 Use of the FCI Bit - Bit Is a 1 179

Figure 6- 7 Single - Point Vertex Example 180

Figure 6- 8 Octants for Line Drawing 184

Figure 6- 9 DMA Time Slot All ocation19 0

Figure 6- 10 Norma 68000 Cycle 191

Figure 6- 11 Time Slots Used by a Six Bit Plane Display 192

Figure 6- 12 Time Slots Used by a High Resolution Display 192

Figure 6- 13 Blitter Block Diagram 194

Figure 7- 1 Inter - Sprite Fixed Priorities 202

Figure 7- 2 Analogy for Video Priority 203

Figure 7- 3 Sprite playfield Priority 206

Figure 7- 4 Interrupt Priorities 216

Figure 8- 1 Controller Pl ug and Computer Connector 222

Figure 8- 2 Mouse Quadrature 224

Figure 8- 3 Joystick to Counter Connections 227

Figure 8- 4 Typical Paddle Wiring Diagram 229

Figure 8- 5 Effects of Resistance on Charging Rate 230

Figure 8- 6 Potentiometer Charging Circuit 231

Figure 8- 7 Chinon Timing Diagram 236

Figure 8- 8 Chinon Timing Diagram (cont.) 237

Figure 8- 9 The A1000 Keyboard, Showing Keycodes in Hex 249

Figure 8- 10 The A500/2000 Keyboard, Keycodes in Hex 249

Figure 8- 11 Starting Appearan ce of SERDAT and Shift Reg 254

Figure 8- 12 Ending Appearance of Shift Register........... 254

Figure G- 1 How to read the Address Specification Table 338

 LIST OF TABLES

Table 2- 1 Interrupting the 680 00........................... 31

Table 2- 2 Copper Instruction Summary 32

Table 3- 1 Colors in a Single Playfield..................... 39

Table 3- 2 Portion of the Color Table 40

Table 3- 3 Contents of the Color Registers 41

Table 3- 4 Sample Color Register Contents 41

Table 3- 5 Setting the Number of Bit - Planes................. 42

Table 3- 6 Lines in a Normal Playfield...................... 43

Table 3- 7 Playfield Memory Requirements, NTSC.............. 46

Table 3- 8 Playfield Memory Requirements, PAL 47

Table 3- 9 DIWSTRT AND DIWSTOP Summary...................... 53

Table 3- 10 Playfield 1 Color Registers - Low- resolution Mode 65

Table 3- 11 Playfield 2 Color Registers - Low- resolution Mode 65

Table 3- 12 Playfields 1 & 2 Color Registers High - res Mode. 66

Table 3- 13 Maximum Allowable Vertical Screen Video......... 74

Table 3- 14 Maximum Allowable Horizontal Screen Video 75

Table 3- 15 Color Register Contents......................... 87

Table 3- 16 Some Register Values and Resulting Colors....... 88

Table 3- 17 Low - resolution Color Selection 89

Table 3- 18 Color Selection in Hold - and- modify Mode......... 90

Table 3- 19 High - resolution Color Selection................. 91

Table 4- 1 Sprite Data Structure........................... 102

Table 4- 2 Sprite Color Registers 105

Table 4- 3 Color Registers for Sprite Pairs................ 112

Table 4- 4 Data Words for First Line of Spaceship Sprite... 118

Table 4- 5 Color Registers in Attached Sprites 119

Table 4- 6 Color Registers fo r Single Sprites.............. 127

Table 4- 7 Color Registers for Attached Sprites............ 128

Table 5- 1 Sample Audio Data Set for Channel 0 135

Table 5- 2 Volume Values 137

Table 5- 3 DMA and Audio Channel Enable Bits............... 141

Table 5- 4 Data Interpretation in Attach Mode.............. 146

Table 5- 5 Channel Attachment for Modulation............... 147

Table 5- 6 Sampling Rate and Frequency Relationship....... 153

Table 5- 7 Equal - tempered Octave for a 16 Byte Sample...... 154

Table 5- 8 Five Octave Even - tempered Scale.................. 156

Table 5- 9 Decibel Values and Volume Ranges................. 159

Table 6- 1 Table of Common Minterm Val ues................... 171

Table 6- 2 Typical Blitter Cycle Sequence................... 183

Table 6- 3 BLTCON1 Code Bits for Octant Line Drawing........ 185

Table 7- 1 Bits in BPLCON2.................................. 204

Table 7- 2 Prirty of Plyf lds Based on Values of Bits PF1P2 - PF1P0. .205

Table 7- 3 CLXDAT Bits.....................................208

Table 7- 4 CLXCON Bits20 9

Table 7- 5 Contents of the Beam Position Counter...........2 11

Table 7- 6 Contents of DMA Register........................21 8

Table 8- 1 Typical Controller Connections22 3

Table 8- 2 Determining the Direction of the Mouse..........22 6

Table 8- 3 Interpreting Data from JOY0DAT and J OY1DAT......22 8

Table 8- 4 POTGO ($DFF034) and POTINP ($DFF016) Registers..23 4

Table 8- 5 Disk Subsystem23 8

Table 8- 6 DSKLEN Register ($DFF024).......................24 0

Table 8- 7 DSKBYTR Register24 2

Table 8- 8 ADKCON and ADKCONR Register.....................24 3

Table 8- 9 SERDATR / ADKCON Registers......................25 2

Table G- 1 Address Specification Table33 8

CHAPTER 1

INTRODUCTION

The Amiga family of computers consists of several models, each of which has been
designed on the same premise to provide the user with a low cost computer that features
high cost performance. Th e Amiga does this through the use of custom silicon hardware
that yields advanced graphics and sound features.

There are three distinct models that make up the Amiga computer family: the A500,
A1000, and A2000. Though the models differ in price and featur es, they have a common
hardware nucleus that makes them software compatible with one another. This chapter
describes the Amiga's hardware components and gives a brief overview of its graphics and
sound features.

- Introduction 1 -

COMPONENTS OF THE AMIGA

These are the hardware components of the Amiga:

o Motorola MC68000 16/32 bit main processor. The Amiga also supports the 68010,
68020, and 68030 processors as an option.

o 512K byt es of internal RAM, expandable to 1 MB on the A500 and A2000.

o 256K bytes of ROM containing a real time, multitasking operating system with sound,
graphics, and animation support routines.

o Built - in 3.5 inch double sided disk drive.

o Expansion disk p ort for connecting up to three additional disk drives, which may be
either 3.5 inch or 5.25 inch, double sided.

o Fully programmable RS -232 -C serial port.

o Fully programmable parallel port .

o Two button opto -mechanical mouse.

o Two reconfigurable cont roller ports (for mice, joysticks, light pens, paddles, or custom
controllers).

o A professional keyboard with numeric keypad, 10 function keys, and cursor keys. A
variety of international keyboards are also supported.

o Ports for simultaneous composite video, and analog or digital RGB output.

o Ports for left and right stereo audio from four special purpose audio channels.

o Expansion options that allow you to add RAM, additional disk drives (floppy or hard),
peripherals, or co -processors.

THE MC6X000 AND THE AMIGA CUSTOM CHIPS
The Motorola 68000 is a 16/32 bit microprocessor. The system clock speed for NTSC
Amigaôs is 7.15909 megahertz (PAL 7.09379 MHz). These speeds may vary when using an

external system clock, such as from a genlock. The 68000 has an address space of 16
megabytes. In the Amiga, the 68000 can address over 8 megabytes of continuous random
access memory (RAM).

- 2 Introduction -

In addition to the 68000, the Amiga contains special purpose hardw are known as the
"custom chips" that greatly enhance system performance. The term "custom chips" refers
to the 3 integrated circuits which were designed specifically for the Amiga computer.
These three custom chips (called Agnus, Paula, and Denise) each co ntain the logic to

handle a specific set of tasks, such as video, sound, direct memory access (DMA),
or graphics.

Among other functions, the custom chips provide the following:

¶ Bitplane generated, high resolution graphics capable of supporting both PAL and

NTSC video standards.

o On NTSC systems the Amiga typically produces a 320 by 200 non -interlaced

or 320 by 400 interlaced display in 32 colors and a 640 by 200 non -
interlaced or 640 by 400 interlaced display in 16 colors.

o On PAL systems, the Amiga typic ally produces a 320 by 256 non -interlaced

or 320 by 512 interlaced display in 32 colors, and a 640 by 256 non -
interlaced or 640 by 512 interlaced display in 16 colors.

Additional video modes allow for the display of up to 4,096 colors on screen
simultaneo usly (hold -and -modify) or provide for larger, higher resolution displays
(overscan).

¶ A custom display co -processor that allows changes to most of the special purpose

registers in synchronization with the position of the video beam. This allows such
specia l effects as mid -screen changes to the color palette, splitting the screen into
multiple horizontal slices each having different video resolutions and color depths,
beam synchronized interrupt generation for the 68000 and more. The co -processor
can trigger many times per screen, in the middle of lines, and at the beginning or
during the blanking interval. The co -processor itself can directly affect most of the
registers in the other custom chips, freeing the 68000 for general computing tasks.

¶ 32 system col or registers, each of which contains a twelve bit number as four bits

of RED, four bits of GREEN, and four bits of BLUE intensity information. This allows
a system color palette of 4,096 different choices of color for each register.

¶ Eight reusable 16 bit wide sprites with up to 15 color choices per sprite pixel (when

sprites arc paired). A sprite is an easily movable graphics object whose display is

entirely independent of the background (called a playfield); sprites can be
displayed over or under this background. A sprite is 16 low resolution pixels wide
and an arbitrary number of lines tall. After producing the last line of a sprite on the
screen, a sprite DMA channel may be used to produce yet another sprite image
elsewhere on screen (with at least one h orizontal line between each reuse of a
sprite processor). Thus, many small sprites can be produced by simply reusing the
sprite processors appropriately.

¶ Dynamically controllable inter -object priority, with collision detection. This means

that the system can dynamically control the video priority between the sprite
objects and the bitplane backgrounds (playfields). You can control which object or
objects appear over or under the background at any time.

Additionally, you can use system hardware to detect collisions between objects and have
your program react to such collisions.

o Custom bit blitter used for high speed data movement, adap table to bitplane animation.

The blitter has been designed to efficiently retrieve data from up to three sources,
combin e the data in one of 256 different possible ways, and optionally store the combined
data in a destination area. This is one of the situations where the 68000 gives up memory
cycles to a DMA channel that can do the job more efficiently (see below). The bit blitter, in
a special mode, draws patterned lines into rectangularly organized memory regions at a
speed of about 1 million dots per second; and it can efficiently handle area fill.

o Audio consisting of four digital channels with independently programmab le volume and
sampling rate. The audio channels retrieve their control and data via direct memory
access. Once started, each channel can automatically play a specified waveform without
further processor interaction. Two channels are directed into each of t he two stereo audio
outputs. The audio channels may be linked together to provide amplitude or frequency
modulation or both forms of modulation simultaneously.

o DMA controlled floppy disk read and write on a full track basis. This means that the
built - in disk can read over 5600 bytes of data in a single disk revolution (11 sectors of
512 bytes each).

The internal memory shared by the custom chips and the 68000 CPU is also called "chip
memory". The original custom chips in the Amiga were designed to be ab le to physically
access up to 512K bytes of shared memory. The new version of the Agnus custom chip

was created which allows the graphics and audio hardware to access up to a full megabyte
of memory.

The Amiga 500 and 2000 models were designed to be able to accept the new Agnus
custom chip, called "Fat Agnus", due to its square shape. Hence, the A500 and A2000
have allocated a chip memory space of 1 MB. This entire 1 MB space is subject to the
arbitration logic that controls the CPU and custom chip accesse s. On the A1000, only the
first 512K bytes of memory space is shared, chip memory.

These custom chips and the 68000 share memory on a fully interleaved basis. Since the
68000 only needs to access the memory bus during each alternate clock cycle in order t o
run full speed, the rest of the time the memory bus is free for other activities. The custom
chips use the memory bus during these free cycles, effectively allowing the 68000 to run
at full rated speed most of the time. We say "most of the time" because there are some

occasions when the special purpose hardware steals memory cycles from the 68000, but
with good reason. Specifically, the coprocessor and the data moving DMA channel called
the blitter can each steal time from the 68000 for jobs they can do better than the 68000.
Thus, the system DMA channels are designed with maximum performance in mind. The
job to be done is performed by the most efficient hardware element available. Even when
such cycle stealing occurs, it only blocks the 68000's access to the internal, shared
memory. When using ROM or external memory, the 68000 always runs at full speed.

- 4 Introduction -

Another primary feature of the Amiga hardware is the ability to dynamically control which
part of the chip memory is used for the background display. audio, and sprites. The Amiga
is not limited to a small, specific area of RAM for a frame buffer. Instead, the system
allows display bitplanes, sprite processor control lists, coprocessor instruction l ists, or

audio channel control lists to be located anywhere within chip memory.

This same region of memory can be accessed by the bit blitter. This means, for example,
that the user can store partial images at scattered areas of chip memory and use these
images for animation effects by rapidly replacing on screen material while saving and
restoring background images. In fact, the Amiga includes firmware support for display
definition and control as well as support for animated objects embedded within playf ields.

VCR AND DIRECT CAMERA INTERFACE
In addition to the connectors for monochrome composite, and analog or digital RGB
monitors, the Amiga can be expanded to include a VCR or camera interface. This system
is capable of synchronizing with an external vid eo source and replacing the system
background color with the external image. This allows development of fully integrated
video images with computer generated graphics. Laser disk input is accepted in the same
manner.

PERIPHERALS
Floppy disk storage is pro vided by a built in, 3.5 inch floppy disk drive. Disks are 80 track,
double sided, and formatted as 11 sectors per track, 512 bytes per sector (over 900,000
bytes per disk). The disk controller can read and write 320/360K IBM PC (MS -DOS)
formatted 3.5 or 5 .25 inch disks, and 640/720K IBM PC (MS -DOS) formatted 3.5 inch

disks. External 3.5 inch or 5.25 inch disk drives can be added to the system through the
expansion connector. Circuitry for some of the peripherals resides on Paula. Other chips
handle various signals not specifically assigned to any of the custom chips, including
modem controls, disk status sensing, disk motor and stepping controls, ROM enable,
parallel input/output interface, and keyboard interface.

The Amiga includes a standard RS -232 -C ser ial port for external serial input/output
devices.

A keyboard with numeric keypad, cursor controls and 10 function keys is included in the
base system. For maximum flexibility, both key -down and key -up signals are sent. The
Amiga also supports a variety o f international keyboards. Many other types of controllers
can be attached through the two controller ports on the base unit. You can use a mouse,
joystick, keypad, track -ball, light pen, or steering wheel controller in either of the

controller ports.

- Introduction 5 -

SYSTEM EXPANDABILITY AND ADAPTABILITY
New peripheral devices may be easily added to all Amiga models. These devices are
automatically recognized and used by system software through a well defin ed, well
documented linking procedure called AUTOCONFIG.

On the A500 and A1000 models, peripheral devices can be added to the Amiga's 86 pin
expansion connector, including additional external RAM. Extra disk units may be added
from a connector at the rea r of the unit.

The A2000 model provides the user with the same features as the A500 or A1000, but
with the added convenience of simple and extensive expandability. The 86 pin, external

connector of the A1000 and A500 is not externally accessible on the A2 000. Instead, the
A2000 contains 7 internal slots that allow many types of expansion boards to be quickly
and easily added inside the machine. These expansion boards may contain coprocessors,
RAM expansion, hard disk controllers, video or I/O ports. There is also room to mount
both floppy and hard disks internally . The A2000 also supports the special Bridgeboard
coprocessor card. This provides a complete IBM PC on a card and allows the Amiga to run
MS-DOS compatible software, while simultaneously running na tive Amiga software.

- 6 Introduction -

ABOUT THE EXAMPLES

The examples in this book all demonstrate direct manipulation of the Amiga hardware.
However, as a general rule, it is not pe rmissible to directly access the hardware in the

Amiga unless your software either has full control of the system, or has arbitrated via the
OS for exclusive access to the particular parts of the hardware you wish to control.

Almost all of the hardware di scussed in this manual, most notably the Blitter, Copper,
playfield, sprite, CIA, trackdisk, and system control hardware, are in either exclusive or
arbitrated use by portions of the Amiga OS in any running Amiga system. Additional
hardware, such as the audio, parallel, and serial hardware, may be in use by applications

which have allocated their use through the system software.

Before attempting to directly manipulate any part of the hardware in the Amiga's
multitasking environment, your application must first be granted exclusive access to that
hardware by the operating system library, device, or resource which arbitrates its
ownership. The operating system functions for requesting and receiving control of parts of
the Amiga hardware are varied and are no t within the scope of this manual. Generally
such functions, when available, will be found in the library, device, or resource which
manages that portion of the Amiga hardware in the multitasking environment. The
following list will help you to find the appropriate operating system functions or
mechanisms which may exist for arbitrated access to the hardware discussed in this
manual.

 Copper, Playfield, Sprite, Blitter - graphics.library

 Audio - audio.device
 Trackdisk - trackdisk.device, disk .resource
 Serial - serial.device, misc.resource
 Parallel - parallel.device, cia.resource, misc.resource
 Gameport - input.device, gameport.device, potgo.resource
 Keyboard - input.device, keyboard.device
 System Control - graphics.lib rary, exec.library (interrupts)

Most of the e xamples in this book use the hw_ examples.i file (see Appendix J) to d efine
the chip register names. h w_examples.i uses the system include file hardware/custom.i to
define the chip structures and relative addres ses. The values defined in hardware/custom.i
and how examples.i are offsets from the base chip register address space. In general, this
base value is defined as _custom and is resolved during linking from amiga.lib. (_ciaa and
_ciab are also resolved in th is way.)

Normally, the base address is loaded into an address register and the offsets given by
hardware/custom.i and hw_examples.i are then used to address the correct register.

- Introduction 7 -

NOTE
The of fset values of the registers are the addresses that the Copper must use to talk to
the registers. For example, in assembler:

INCLUDE "exec/types.i"

INCLUDE "hardware/custom.i"

 XREF custom ; External reference

 Start: lea _custom,a0 ; Use a0 as base register

 move.w #$7FFF,intena(a0) ; Disable all interrupts

In C, you would use the structure definitions in hardware/custom.h For

example:

#include "exec/types.h"

#include "hardw are/custom.h"

extern struct Custom custom;

/* You may need to define the above external as

** extern struct Custom far custom;

** Check you compiler manual.

*/

main()

{

custom.intena = 0x7FFF; /* Disable all interrupts */

}

The Amiga hardw are include files are generally supplied with your compiler or assembler.
Listings of the hardware include files may also be found in the Addison -Wesley Amiga ROM
Kernel Manual "Includes and Autodocs". Generally, the include file label names are very
simil ar to the equivalent hardware register list names with the following typical

differences.

o Address registers which have low word and high word components are generally listed
as two word sized registers in the hardware register list, with each register n ame
containing either a suffix or embedded "L" or "H" for low and high. The include file label
for the same register will generally treat the whole register as a longword (32 bit)
register,
and therefore will not contain the "L" or "H" distinction.

o Rela ted sequential registers which are given individual names with number suffixes in
the hardware register list, are generally referenced from a single base register definition
in the include files. For example, the color registers in the hardware list (COLOR 00,
COLOR01, etc.) would be referenced from the "color" label defined in "hardware/custom.i"
(color+0, color+2, etc.).

o Examples of how to define the correct register offset can be found in the hw_examples.i
file listed in Appendix J.

- 8 Introduction -

SOME CAVEATS TO HARDWARE LEVEL PROGRAMMERS

The Amiga is available in a variety of models and configurations, and is further diversified
by a wealth of add -on expansion peripherals and processor replacements. In additi on,

even standard Amiga hardware such as the keyboard and floppy disks, are supplied by a
number of different manufacturers and may vary subtly in both their timing and in their
ability to perform outside of their specified capabilities.

The Amiga operati ng system is designed to operate the Amiga hardware within spec,
adapt to different hardware and RAM configurations, and generally provide upward
compatibility with any future hardware upgrades or "add ons " envisioned by the

designers. For maximum upward compatibility, it is strongly suggested that programmers
deal with the hardware through the commands and functions provided by the Amiga
operating system.

If you find it necessary to program the hardware directly, then it is your responsibility to
write co de which will work properly on various models and configurations. Be sure to
properly request and gain control of the hardware you are manipulating, and be especially
careful in the following areas:

Do not jump into ROM. Beware of any example code that ca lls routines in the $F80000 to
$FFFFFF range. These are ROM addresses and the ROM routines WILL move with every OS
revision. The only supported interface to system ROM code is through the provided library,
device, and resource calls.

Do not modify or depe nd on the format of any private system structures. This includes the
poking of copper lists, memory lists, and library bases.

Do not depend on any address containing any particular system structure or type of
memory. The system modules dynamically allocat e their memory space when they are
initialized. The addresses of system structures and buffers differ with every OS, every
model, and every configuration, as does the amount of free memory and system stack
usage. Remember that all data for direct custom ch ip access must be in CHIP RAM. This
includes bit images (bitplanes, sprites, etc), sound samples, trackdisk buffers, and copper
lists.

Do not write spurious data to, or interpret undefined data from currently unused bits or
addresses in the custom chip sp ace. All undefined bits must be set to zero for writes, and
ignored on reads.

Do not write data past the current end of custom chip space. Custom chips may be
extended or enhanced to provide additional registers, or to use currently undefined bits in
exis ting registers.

All custom chip registers are read only OR write only. Do not read write only registers, and
do not write to read only registers.

- Introduction 9 -

Do not read, write, or use any currently undefin ed address ranges. The current and future
usage of such areas is reserved by Commodore and is definitely subject to change.

If you are using the system libraries, devices, and resources, you must follow the defined

interface. Assembler programmers (and co mpiler writers) must enter functions through
the library base jump Table s, with arguments passed as longs and library base address in
A6. Results returned in D0 must be tested, and the contents of D0 -D1/A0 -A1 must be
assumed gone after a system call.

NOTE
The assembler TAS instruction should not be used in any Amiga program. The TAS

instruction assumes an indivisible read -modify -write but this can be defeated by system
DMA. Instead use BSET and BCLR. These instructions perform a test and set operation
whic h cannot be interrupted.

TAS is only needed for a multiple CPU system. On a single CPU system, the BSET and
BCLR instructions are identical to TAS, as the 68000 does not interrupt instructions in the
middle. BSET and BCLR first test, then set bits.

Do no t use assembler instructions which are privileged on any 68000 family processor,
most notably MOVE SR,<ea> which is privileged on the 68010/20/30. Use the Exec
function GetCC() instead of MOVE SR, or use the appropriate non -privileged instruction as
shown below:

 CPU User Mode Super Mode

 68000 MOVE SR,<ea> MOVE SR,<ea>

 68010/20/30 MOVE CCR,<ea> MOVE SR,<ea>

All addresses must be 32 bits. Do not use the upper 8 bits for other data, and do not use
signed variables or signed math for addresses. Do not execute code on your stack or use
self -modifying code since such code can be defeated by the caching capabilities of some
68xxx processors. And never use processor or clock speed dependent software loop s for
timing delays. See Appendix F for information on using an 8520 timer for delays.

NOTE
When strobing any register which responds to either a read or a write, (for example
copjmp2) be sure to use a MOVE.W #$00, not CLR.W. The CLR instruction causes a read
and a clear (two accesses) on a 68000, but only a single access on 68020 and above. This
will give different results on different processors.

If you are programming at the hardware level, you must follow hardware interfacing
specifications. All hardw are is NOT the same. Do not assume that low level hacks for
speed or copy protection will work on all drives, or all keyboards, or all systems, or future
systems. Test your software on many different systems, with different processors, OS,
hardware, and RA M configurations.

- 10 Introduction -

Figure 1-1: Block Diagram for the Amiga Computer Family.

- Introduction 11 -

- 12 Introduction -

Chapter 2

COPROCESSOR HARDWARE

INTRODUCTION
The Copper is a general purpose coprocessor that resides in one of the Amiga's custom
chips. It retrieves is instructions via direct memory acces s (DMA). The Copper can control
nearly the entire graphics system, freeing the 68000 to exe cute program logic; it can also
directly affect the contents of most of the chip control registers. It is a very powerful tool
for directing mid -screen modifications in graphics displays and for dire cting the register

changes that must occur during the vertical blanking periods. Among other things, it can
control register updates, reposition sprites, change the color palette, update the audio
channels, and control the blitter.

- Coprocessor Hardware 13 -

One of the features of the Copper is its ability to WAIT for a specific video beam position,
then MOVE data into a system register. During the WAIT period, the Copper examines the
contents of the video beam position counter directly. This means that while the Copper is
waiting for the beam to reach a specific position, it does not use the memory bus at all.

Therefore, the bus is freed for use by the other DMA channels or by the 68000 .

When the WAIT condition has been satisfied, the Copper steals memory cycles from either
the blitter or the 68000 to move the specified data into the selected special -purpose
register.

The Copper is a two -cycle processor that requests the bus only durin g odd -numbered

memory cycles. This prevents collision with audio, disk, refresh, sprites, and most low -
resolution display DMA access, all of which use only the even -numbered memory cycles.
The Copper, therefore, needs priority over only the 68000 and the b litter (the DMA
channel that handles animation, line drawing, and polygon filling).

As with all the other DMA channels in the Amiga system, the Copper can retrieve its
instructions only from the chip RAM area of system memory.

ABOUT THIS CHAPTER
In this chapter, you will learn how to use the special Copper instruction set to organize
mid -screen register value modifications and pointer register set -up during the vertical
blanking interval. The chapter shows how to organize Copper instructions into Copper
lists, how to use Copper lists in interlaced mode, and how to use the Copper with the
blitter. The Copper is discussed in this chapter in a general fashion. The chapters that deal

with playfields, sprites, audio, and the blitter contain more specific sugges tions for using
the Copper.

WHAT IS A COPPER INSTRUCTION?

As a coprocessor, the Copper adds its own instruction set to the instructions already
provided by the 68000. The Copper has only three instructions, but you can do a lot with
them:

o WAIT for a s pecific screen position specified as x and y co -ordinates.

o MOVE n immediate data value into one of the special -purpose registers.

o SKIP the next instruction if the video beam has already reached a specified screen

position.

- 14 Coprocessor Hardware -

All Copper instructions consist of two 16 -bit words in sequential memory locations. Each
time the Copper fetches an instruction, it fetches both words. The MOVE and SKIP
instructions require two memory cycles and two instruction words. Because only the odd
memory cycles are requested by the Copper, four memory cycle times are required per

instruction. The WAIT instruction requires three memory cycles and six memory cycle
times; it takes one extra memory cycle to w ake up.

Although the Copper can directly affect only machine registers, it can affect the memory
by setting up a blitter operation. More information about how to use the Copper in
controlling the blitter can be found in the sections called "C ontrol Regist er" and "Using the
Copper with the Blitter."

The WAIT and MOVE instructions are described below. The SKIP instruction is described in
the "Advanced Topics" section.

THE MOVE INSTRUCTION

The MOVE instruction transfers data from RAM to a register destinat ion. The transferred
data is contained in the second word of the MOVE instruction; the first word contains the
address of the destination register. This procedure is shown in detail in the section called
"Summary of Copper Instructions."

 FIRST INSTRUC TION WORD (IR1)

 Bit 0 Always set to 0.

 Bits 8 - 1 Register destination address (DA8 - 1).

 Bits 15 - 9 Not used, but should be set to 0.

 SECOND INSTRUCTION WORD (IR2)

 Bits 15 - 0 16 bits of data to be transferred (move d) to the register

 destination.

- Coprocessor Hardware 15 -

The Copper can store data into the following registers:

o Any register whose address is $20 or above.

o Any register whose a ddress is between $10 and $20 if the Copper danger bit is a 1. The
Copper danger bit is in the Copper's control register, COPCON, which is described in the
"Control Register" section.

o The Copper cannot write into any register whose address is lower than $10.

Appendix B contains all of the machine register addresses.

The following example MOVE instructions point bit -plane pointer 1 at $21000 and bit -
plane pointer 2 at S25000.2

 DC.W $00E0,$0002 ;Move $0002 to register $0E0 (BPL1PTH)

 DC.W $00E2,$1000 ;Move $1000 to register $0E2 (BPL1PTL)

 DC.W $00E4,$0002 ;Move $0002 to register $0E4 (BPL2PTH)

 DC.W $00E6,$5000 ;Move $5000 to register $0E6 (BPL2PTL)

Normally, the appropriate assembler ".i" files are included so that names, rather than
addresses, may be used for referencing hardware registers. It is strongly recommended
that you reference all hardware addresses via their defined names in the system include
files. This will allow you to more easily adapt your s oftware to take advantage of future
hardware or enhancements. For example:

 INCLUDE "hardware/custom.i"

 DC.W bplpt+$00,$0002 ;Move $0002 into register $0E0 (BPLlPTH)

 DC.W bplpt+$02,$1000 ;Move $1000 into register $0E2 (BPLlPTL)

 DC.W bplpt+$04,$0002 ;Move $0002 into regi3ter $0E4 (PL2PTH)

 DC.W bplpt+$06,$5000 ;Move $5000 into register $0E6 (BPL2PTL)

For use in the hardware manual examples, we have made a special include file (see
Appendix J) that defines all of the hard ware register names based off of the
"hardware/custom.i" file. This was done to make the examples easier to read from a
hardware point of view. Most of the examples in this manual are here to help explain the
hardware and are, in most cases, not useful wit hout modification and a good deal of
additional code.

 1 Hexadecimal numbers are distinguished from decimal numbers by the $ prefix.
 2 All sample code segments are in assembly language.

- 16 Coprocessor Hardware -

THE WAIT INSTRUCTION

The WAIT instruction causes the Copper to wait until the video beam counters are equal to
(or greater than) the coordinates specified in the instruction. While waiting, the Copper is

off the bus and not using memory cycles.

The fir st instruction word contains the vertical and horizontal coordinates of the beam
position. The second word contains enable bits that are used to form a "mask" that tells
the system which bits of the beam position to use in making the comparison.

 FIRST INSTRUCTION WORD (IR1)

 Bit 0 Always set to 1.

 Bits 15 - 8 Vertical beam position (called VP).

 Bits 7 - 1 Horizontal beam position (called HP).

 SECOND INSTRUCTION WORD (IR2)

 Bit 0 Always se t to 0.

 Bit 15 The blitter - finished - disable bit.

 Normally, this bit is a 1.

 (See the "Advanced Topics" section below.)

 Bits 14 - 8 Vertical position compare enable bits (called VE).

 Bits 7 - 1 Horizontal position compare enable bits (called HE).

The following example WAIT instruction waits for scan line 150 ($96) with the horizontal
position masked off.

 DC.W $9601,$FF00 ; Wait for line 150,

 ; ignore horizontal counters .

The following example WAIT instruction waits for scan line 255 and horizontal position

254. This event will never occur, so the Copper stops until the next vertical blanking
interval begins.

 DC.W $FFFF,$FF FE ; Wait for line 255,

 ; H = 254 (ends Copper list).

To understand why position VP=$FF HP=$FE will never occur, you must look at the

comparison operation of the Copper and the size restrictions of the position informat ion.
Line number 255 is a valid line to wait for, in fact it is the maximum value that will fit into
this field. Since 255 is the maximum number, the next line will wrap to zero (line 256 will
appear as a zero in the

- Coprocessor Hardware 17 -

comparison.) The line number will never be greater than $FF The horizontal position has a
maximum value of $E2. This means that the largest number that will ever appear in the
comparison is $FFE2. When waiting for $FFE2, the li ne $FF will be reached, but the
horizontal position $FE will never happen. Thus, the position will never reach $FFFE.

You may be tempted to wait for horizontal position $FE (sin ce it will never happen), and
put a smaller number into the vertical position field. This will not lead to the desired
result. The comparison operation is waiting for the beam position to become greater than
or equal to the entered position. If the vertical position is not $FF, then as soon as
the line number becomes higher than he entered number, the comparison will evaluate to
true and the wait will end.

The following notes on horizontal and vertical beam position apply to both the WAIT
instruction and o the SKIP instruction. The SKIP instruction is described below in the
"Advance d Topics" section.

HORIZONTAL BEAM POSITION
The horizontal beam position has a value of $0 to $E2. The least significant bit is not used
in the comparison, so there are 113 positions available for Copper operations. This
corresponds to 4 pixels in low res olution and 8 pixels in high resolution. Horizontal
blanking falls in the range of $0F to $35. The standard screen (320 pixels wide) has an
unused horizontal portion of $04 to $47 (during which only the background color is
displayed).

All lines are not th e same length in NTSC. Every other line is a long line (228 color clocks,

0-$E3), with the others being 227 color clocks long. In PAL, they are all 227 long. The
display sees all these lines as 227 1/2 color clocks long, while the copper sees alternating
long & short lines.

VERTICAL BEAM POSITION
The vertical beam position can be resolved to one line, with a maximum value of 255.
There are actually 262 NTSC (312 PAL) possible vertical positions. Some minor
complications can occur if you want something to happen within these last six or seven
scan lines. Because there are only eight bits of resolution for vertical beam position
(allowing 256 different positions), one of the simplest ways to handle this is shown below.

- 18 Coprocessor Hardware -

 INSTRUCTION EXPLANATION

[... other instructions ...]

WAIT for position (0,255) At this point, the vertical

 co unter appears to wrap to 0

 because the comparison works

 on the least significant bits

 of the vertical count.

WAIT fo r any horizontal position wit h Thus the total of 256+ 6 = 262

vertical position 0 through 256, covering lines of video beam travel

the last 6 lines of the scan before vertical during which Copper

blanking occurs. in structions can be executed.

NOTE
The vertical is like the horizontal - as there are alternating long and short lines, there are
also long and short fields (interlace only). In NTSC, the fie lds are 262, then 263 lines and

in PAL, 312,313.

This alteration of lines & fields produces the standard NTSC 4 field repeating pattern:

 short field ending on short line
 long field ending on long line
 short field ending on long line

 long field ending on short line
 & back to the beginning...

1 horizontal count takes 1 cycle of the system clock. (Processor is twice this)

 NTSC- 3,579,545 Hz
 PAL- 3,546,895 Hz

 genlocked - basic clock frequency plus or minus about 2%.

THE COMPARISON ENABLE BITS
Bits 14 -1 are normally set to all 1s. Th e use of the comparison enable bits is described
later in the "Advanced Topics " section.

- Coprocessor Hardware 19 -

USING THE COPPER REGISTERS

There are several machine registers and strobe addresses dedicat ed to the Copper:

o Location registers

o Jump address strobes

o Control register

LOCATION REGISTERS

The Copper has two sets of location registers:

 COP1LCH High 3 bits of first Copper list address.
 COP1LCL Low 16 bits of first C opper list address.
 COP2LCH High 3 bits of second Copper list address.
 COP2LCL Low 16 bits of second Copper list address.

In accessing the hardware directly, you often have to write to a pair of registers that
contains the address of some data. The register with the lower address always has a
name ending in "H" and contains the most significant data, or high 3 bits of the address.
The register with the higher address has a name ending in "L" and contains the least
significant data, or low 15 bits of the address. Therefore, you write the 18 -bit address by
moving one long word to the register whose name ends in "H." This is because when you
write long words with the 68000, the most significant word goes in the lower addressed

word.

In the case of the Copper location registers, you write the address to COP1LCH. In the
following text, for simplicity, these addresses are referred to as COP1LC or COP2LC.

The Copper location registers contain the two indirect jump addresses used by the
Copper. The Copper fetches its instructions by using its program counter and increments
the program counter after each fetch. When a jump address strobe is written, the
corresponding location register is loaded into the Copper program counter. This causes the
Copper to jump to a new location, from which its next instruction will be fetched.
Instruction fetch continues sequentially until the Copper is interrupted by another jump
address strobe.

- 20 Coprocessor Hardw are -

NOTE
At the start of each vertical blanking interval, COP1LC is automatically used to start the
program counter. That is, no matter what the Copper is doing, when the end of vertical
blanking occurs, the Copper is automatically forced to restart its operations at the address

contained in COP1LC.

JUMP STROBE ADDRESS
When you write to a Copper strobe address, the Copper reloads its program counter from
the corresponding location register. The Copper can write its own location registers and
strobe addr esses to perform programmed jumps. For instance, you might MOVE an
indirect address into the COP2LC location register. Then, any MOVE instruction that

addresses COPJMP2 strobes this indirect address into the program counter.

There are two jump strobe addr esses:

 COPJMP1 Restart Copper from address contained in COP1LC.
 COPJMP2 Restart Copper from address contained in COP2LC.

CONTROL REGISTER
The Copper can access some special -purpose registers all of the time, some registers only
when a special control bit is set to a 1, some registers not at all. The registers that the
Copper can always affect are numbered $20 through $FF inclusive. Those it cannot affect
at all are numbered $00 to $0F inclusive. (See Appendix B for a list of registers
in address order.) The Copper control register is within this group ($00 to $0F). Thus it
takes deliberate action on the part of the 68000 to allow the Copper to write into a

specific range of the special -purpose registers.

The Copper control register, cal led COPCON, contains only one bit, bit #1. This bit, called
CDANG (for Copper Danger Bit) protects all registers numbered between $10 and $1F
inclusive. This range includes the blitter control registers. When CDANG is 0, these
registers cannot be written by the Copper. When CDANG is 1, these registers can be
written by the Copper. Preventing the Copper from accessing the blitter control registers
prevents a "runaway" Copper (caused by a poorly formed instruction list) from
accidentally affecting system mem ory.

NOTE
The CDANG bit is cleared after a reset.

- Coprocessor Hardware 21 -

PUTTING TOGETHER A COPPER INSTRUCTION LIST

The Copper instruction list contains all the register resetting done during the vertica l
blanking interval and the register modifications necessary for making mid -screen

alterations. As you are planning what will happen during each display field, you may find it
easier to think of each aspect of the display as a separate subsystem, such as p layfields,
sprites, audio, interrupts, and so on. Then you can build a separate list of things that must
be done for each sub -system individually at each video beam position.

When you have created all these intermediate lists of things to be done, you mus t merge
them together into a single instruction list to be executed by the Copper once for each

display frame. The alternative is to create this all - inclusive list directly, without the
intermediate steps.

For example, the bit -plane pointers used in playf ield displays and the sprite pointers must
be rewritten during the vertical blanking interval so the data will be properly retrieved
when the screen display starts again. This can be done with a Copper instruction list that
does the following:

 WAIT u ntil first line of the display
 MOVE data to bit -plane pointer 1
 MOVE data to bit -plane pointer 2
 MOVE data to sprite pointer 1
 and so on

As another example, the sprite DMA channels that create movable objects can be re -used
multiple ti mes during the same display field. You can change the size and shape of the
reuses of a sprite; however, every multiple reuse normally uses the same set of colors
during a full display frame.
You can change sprite colors mid -screen with a Copper instructio n list that waits until the
last line of the first use of the sprite processor and changes the colors before the first line
of the next use of the same sprite processor:

 WAIT for first line of display
 MOVE firstcolor1 to COLOR 17
 MOVE first color2 to COLOR 18
 MOVE firstcolor3 to COLOR 19
 WAIT for last line +1 of sprite's first use
 MOVE secondcolor1 to COLOR 17

 MOVE secondcolor2 to COLOR 18
 MOVE secondcolor3 to COLOR 19
 and so on

- 22 Coprocessor Hardware -

As you create Copper instruction lists, note that the final list must be in the same order as
that in which the video beam creates the display. The video beam traverses the screen
from position (0,0) in the upper left hand corner of the screen to the end of the display
(226,262) NTSC (or (226,312) PAL) in the lower right hand corner. The first 0 in (0,0)

represents the x position. The second 0 represents the y position. For example, an
instruction that does something at pos ition (0,100) should come after an instruction that
affects the display at position (0,60).

NOTE
Given the form of the WAIT instruction, you can sometimes get away with not sorting the
list in strict video beam order. The WAIT instruction causes the Coppe r to wait until the

value in the beam counter is equal to or greater than the value in the instruction.

This means, for example, if you have instructions following each other like this:

 WAIT for position (64,64)
 MOVE data
 WAIT for position (60,60)
 MOVE data

The Copper will perform both moves, even though the instructions are out of sequence.
The "greater than" specification prevents the Copper from locking up if the beam has
already passed the specified position. A side effect is that the second MOVE below will be
performed:

 WAIT for position (60,60)
 MOVE data
 WAIT for position (60,60)
 MOVE data

At the time of the second WAIT in this sequence, the beam counters will be greater than
the position shown in the instru ctions. Therefore, the second MOVE will also be performed.

Note also that the above sequence of instructions could just as easily be

 WAIT for position (60,60)
 MOVE data
 MOVE data

because multiple MOVEs can follow a single WAIT.

- Coprocessor Hardware 23 -

COMPLETE SAMPLE COPPER LIST
The following example shows a complete Copper list. This list is for two bitplanes -one at
$21000 and one at $25000. At the top of the screen, the color registers are loaded with
the following values:

 REGISTER COLOR

 COLOR00 white

 COLOR01 red

 COLOR02 green

 COLOR03 blue

At line 150 on the screen, the color registers are reloaded:

 REGISTER COLOR

 COLOR00 black

 COLOR01 yellow

 COLOR02 cyan

 COLOR03 magenta

The complete Copper list follows.

;

; Notes:

; 1. Copper lists must be in CHIP ram.

; 2. Bitplane addresses used in the example are arbitrary.

; 3. Destination register addresses in copper move instructions

; are offsets from the base address of the custom chips.

; 4. As always, hardware manual examples assume that your

; application has taken full control of the hardware,

; and is not conflicting with operating system use of

; the same hardware.

; 5. Many of the examples just pick memory addresses to

; be used. Normally you would need to allocate the

; required type of memory from the system with AllocMem()

; 6. As stated earlier, the code examples are mainly to help

; clarify the way the hardware works.

; 7. The following INCLUDEs are required by all example code

; in this chapter.

;

 INCLUDE "exec/types.i"

 INCLUDE "hardware/custom.i"

 INCLUDE "hardware/dmabits.i"

 INCLUDE "hardware/hw_examples.i"

- 24 Coprocessor Hardware -

COPPERLIST:

;

; Set up pointers to two bit planes

;

 DC.W BPL1PTH,$0002 ;Move S0002 into register $0E0 (BPL1PTH)

 DC.W BPL1PTL,$1000 ;Move $1000 into register $0E2 (BPL1PTL)

 DC.W BPL2PTH,$0002 ;Move $0002 into register $0E4 (BPL2PTH)

 DC.W BPL2PTL,$5000 ;Move $5000 into register $0E6 (BPL2PTL)

;

; Load color registers

;

 DC.W COLOR00,$0FFF ;Move white into register $180 (COLOR00

 DC.W COLOR01,$0F00 ;Move red into register $182 (COLOR01)

 DC.W COLOR02 ,$00F0 ;Move green into register $189 (COLOR02)

 DC.W COLOR03,$000F ;Move blue into register $186 (COLOR03)

;

; Specify 2 lo - res bitplanes

;

 DC.W BPLCON0,$2200 ;2 lores planes, color on

;

; Wait for line 150

;

 DC.W $96 01,$FF00 ;Wait for line 150, ignore horiz. position

;

; Change color registers mid - display

;

 DC.W COLOR00,$0000 ;Move black into register $0180 (COLOR00)

 DC.W COLOR01,$0FF0 ;Move yellow into register $0182 (COLOR01)

 DC.W COLOR02,$00FF ;Move cyan into register $0184 (COLOR02)

 DC.W COLOR03,$0F0F :Move magenta into register $0186 (COLOR03)

;

; End Copper list by waiting for the impossible

;

 DC.W $FFFF,$FFFE ;Wait for line 255, H = 254 (never happens)

For more information about color registers, see Chapter 3, "Playfield

Hardware."

LOOPS AND BRANCHES
Loops and branches in Copper lists are covered in the "Advanced Topics" section below.

STARTING AND STOPPING THE COPPER

STARTING THE CO PPER AFTER RESET
At power -on or reset time, you must initialize one of the Copper location registers
(COP1LC or COP2LC) and write to its strobe address before Copper DMA is tuned on. This
ensures a known start address and known state. Usually, COP1LC is used because this

particular register is reused during each vertical blanking time. The following sequence of
instructions shows how to

- Coprocessor Hardware 25 -

initialize a location register. It is assumed that the user has already

created the correct Copper instruction list at location "mycoplist."

;

; Install the copper list

;

 LEA CUSTOM,a1 ; a1 = address of custom chips

 LEA MYCOPLIST(pc),a0 ; Address of our copper list

 MOVE.L a0,COP1 LC(a1) ; Write whole longword address

 MOVE.W COPJMP1(a1),d0 ; Causes copper to load PC from COP1LC

;

; Then enable copper and raster dma

;

 MOVE.W #(DMAF SETCLR!DMAF_COPPER!DMAF_RASTER!DMAF_MASTER),DMACON(a1)

;

Now, if the contents of COP1LC are not changed, every time vertical blanking occurs the
Copper will restart at the same location for each subsequent video screen. This forms a
repea table loop which, if the list is correctly formulated, will cause the displayed screen to

be s tabl e.

STOPPING THE COPPER
No stop instruction is provided for the Copper. To ensure that it will stop and do nothing
until the screen display ends and the program counter starts again at the top of the
instruction list, the last instruction should be to WAIT for an event that cannot occur. A
typical instruction is to WAIT for VP = $FF and HP = $FE. An HP of greater than $E2 is not

possible. When the screen display ends and vertical blanking starts, the Copper will
automatically be pointed to the top of its in struction list, and this final WAIT instruction
never finishes.

You can also stop the Copper by disabling its ability to use DMA for retrieving instructions
or placing data. The register called DMACON controls all of the DMA channels. Bit7,
COPEN, enables Copper DMA when set to 1.

For information about controlling the DMA, see Chapter 7, "System Control Hardware."

- 26 Coprocessor Hardware -

ADVANCED TOPICS

THE SKIP INSTRUCTION

The SKIP instruction cause s the Copper to skip the next instruction if the video beam
counters are equal to or greater than the value given in the instruction.

The contents of the SKIP instructions words are shown below. They are identical to the
WAIT instruction, except that bit 0 of the second instruction word is a 1 to identify this as
a SKIP instruction.

 FIRST INSTRUCTION WORD (IR1)

 Bit 0 Always set to 1.

 Bits 15 - 8 Vertical position (called VP).

 Bits 7 - 1 Horizontal position (ca lled HP).

 Skip if the beam counter is equal to or

 greater than these combined bits

 (bits 15 through 1).

 SECOND INSTRUCTION WORD (IR2)

 Bit 0 Always set to 1.

 Bit 15 The blitter - finished - disable bit.

 (See "Using the Copper with the

 Blitter" below.)

 Bits 14 - 8 Vertical position compare enable bits (called VE).

 Bits 7 - 1 Horizontal position com pare enable bits (called HE).

The notes about horizontal and vertical beam position found in the discussion of the WAIT
instruction apply also to the SKIP instruction.

- Coprocessor Hardware 27 -

The follow ing example SKIP instruction skips the instruction following it if VP (vertical
beam position) is greater than or equal to 100 ($64).

 DC.W $6401,$FF01 ; If VP >= 100,

 ; skip next instruction (ignore HP)

COPPER LOOPS AND BRANCHES AND COMPARISON ENABLE
You can change the value in the location registers at any time and use this value to
construct loops in the instruction list. Before the next vertical blanking time, however, the
COP1LC registers must be repointed to the beginning of the appropriate Copper list. The
value in the COP1L location registers will be restored to the Copper's program counter at
the start of the vertical blanking period.

Bits 14 -1 of instruction word 2 in the WAIT and SKIP instructions specify which bits of the
horizontal and vertical position are to be used for the beam counter comparison. The
position in instruction word 1 and the compare enable bits in instruction word 2 are tested
against the actual beam counters before any further action is taken. A position bit in
instruction word 1 is used in comparing the positions with the actual beam counters if and

only if the corresponding enable bit in instruction word 2 is set to 1. If the corresponding
enable bit is 0, the comparison is always true. For instance, if you care only about the
value in the last four bits of the vertical position, you set only the last four compare
enable bits, bits (11 -8) in instruction word 2.

Not all of the bits in the beam counter may be masked. If you look at the description of
the IR2 (second instruction word) you will notice that bit 15 is the blitter - finished -disable
bit. This bit is not part of the beam counter comparison mask, it has its own meaning in
the Copper WAIT instruction. Thus, you can not mask the most significant bit in WAIT or
SKIP instructions. In most situations this limitation does not come into play, however, the
following example shows how to deal with it.

This example will instruct the Copper to issue an interrupt every 16 scan lines. It might
seem that the way to do this would be to use a mask of $0F and then compare the result

with $0F. This should compare "true" for $1F, $2F, $3F, etc. Since the test is for greater
than or equal to, this would seem to allow checking for every 16th scan line. H owever, the
highest order bit cannot be masked, so it will always appear in the comparisons. When the
Copper is waiting for $0F and the vertical position is past 128 (hex $80), this test will
always be true. In this case, the minimum value in the compariso n will be $80, which is
always greater than $0F, and the interrupt will happen on every scan line. Remember, the
Copper only checks for greater than or equal to.

In the following example, the Copper lists have been made to loop. The COP1LC and
COP2LC valu es are either set via the CPU or in the Copper list before this section of
Copper code. Also, it is assumed that you have correctly installed an interrupt server for
the Copper interrupt that will be generated every 16 lines. Note that these are non -
interl aced scan lines.

- 28 Coprocessor Hardware -

HOW IT WORKS:
Both loops are, for the most part, exactly the same. In each, the Copper waits until the
vertical position register has $?F (? is any hex digit) in it, at whic h point we issue a
Copper interrupt to the Amiga hardware. To make sure that the Copper does not loop

back before the vertical position has changed and cause another interrupt on the same
scan line, wait for the horizontal position to be $E2 alter each int errupt. Position $E2 is
horizontal position 113 for the Copper and the last real horizontal position available. This
will force the Copper to the next line before the next WAIT. The loop is executed by
writing to the COPJMP1 register. This causes the Coppe r to jump to the address that was
initialized in COP1LC.

The masking problem described above makes this code fail after vertical position 127. A
separate loop must be executed when vertical position is greater than or equal 127. When
the vertical position becomes greater than or equal to 127, the first loop instruction is
skipped, dropping the Copper into the second loop. The second loop is much the same as
the first, except that it waits for $?F with the high bit set (binary 1xxx1111). This is true
for bo th the vertical and the horizontal WAIT instructions. To cause the second loop, write
to the COPJMP2 register. The list is put into an infinite wait when VP >= 255 so that it will
end before the vertical blank. At the end of the vertical blanking period COP1LC is written
to by the operating system, causing the first loop to start up again.

NOTE
The COP1LC register is written at the end of the vertical blanking period by a graphics
interrupt handler which is in the vertical blank interrupt server chain. As long as this
server is intact, COP1LC will be correctly strobed at the end of each vertical blank.

;

; This is the data for the Copper list.

;

; It is assumed that COPPERL1 is loaded into COP1LC and

; that COPPERL2 is loaded into COP2LC by some other code .

;

COPPERL1:

 DC.W $0F01,$8F00 ; Wait for VP=0xxxllll

 DC.W INTREQ,$8010 ; Set the copper interrupt bit

 DC.W $00E3,$80FE ; Wait for Horizontal $E2

 ; This is so the line gets finished before

 ; we check if we are there (The wait above)

 DC.W $7F01,$7F01 ; Skip if VP>=127

 DC.W COPJMP1,$0 ; Force a jump to COP1LC

COPPERL2:

 DC.W $8F01,$8F00 ; Wait for Vp=1xxx1111

 DC.W INTREQ, $8010 ; Set the copper interrupt bit...

 DC.W $80E3,$80FE ; Wait for Horizontal $E2

 ; This is so the line gets finished before

 ; we check if we are there (The wait above)

 DC.W $FF01, $FE01 : Skip if VP>=255

- Coprocessor Hardware 29 -

 DC.W COPJMP2,$0 ; Force a jump to COP2LC

; Whatever cleanup copper code that might be needed here...

; Since there are 262 lines in NTSC, and we stopped at 255, there is a

; bit of time available

 DC.W $FFFF,$FFFE ; End of Copper list

USING THE COPPER IN INTERLACED MODE
An interlaced bit -plane display has twice the normal number of vertical lines on the
screen.
Whereas a normal NTSC di splay has 262 lines, an interlaced NTSC display has 524 lines.
PAL has 312 lines normally and 625 in interlaced mode. In interlaced mode, the video
beam scans the screen twice from top to bottom, displaying, in the case of NTSC, 262
lines at a time. During the first scan, the odd -numbered lines are displayed. During the
second scan, the even -numbered lines are displayed and interlaced with the odd -
numbered ones. The scanning circuitry thus treats an interlaced display as two display
fields, one containing the even -numbered lines and one containing the odd -numbered
lines. Figure 2-1 shows how an interlaced display is stored in memory.

 Odd Field Even field

 (time t) (time t+16.6ms) Data in memory

 | |

 | 1 |

 |_____________|

 | |

 _____________ _____________ | 2 |

 | | | | |_____________|

 | 1 | | 2 | | |

 |_____________| |_____________| | 3 |

 | | | | |_____________|

 | 3 | | 4 | | |

 |_____________| |_____________| | 4 |

 | | | | |_____________|

 | 5 | | 6 | | |

 |_____________| |_____________| | 5 |

 |_____________|

 | |

 | 6 |

 |_____________|

 Figure 2- 1: (Interlaced Bit - Plane in RAM)

The system retrieves data for bit -plane displays by using pointers to the starting address
of the data in memory. As you can see, the starting address for the even -numbered fields
is one line greater than the starting a ddress for the odd -numbered fields. Therefore, the
bit -plane pointer must contain a different value for alternate fields of the interlaced
display.

Simply, the organization of the data in memory matches the apparent organization on the
screen (i.e. , odd a nd even lines are interlaced together). This is accomplished by having a
separate Copper instruction list for each field to manage displaying the data.

- 30 Coprocessor Hardware -

To get the Copper to execute the correct list, you set an interrupt to the 68000 just after
the first line of the display. When the interrupt is executed, you change the contents of
the COP1LC location register to point to the second list. Then, during the vertical blanking
interval, COP1LC will be automatically reset to point to the original list.

For more information about interlaced displays, see Chapter 3, "Playfield Hardware."

USING THE COPPER WITH THE BLITTER
If the Copper is used to start up a sequence of blitter operations, it must wait for the
blitter - finished interr upt before starting another blitter operation. Changing blitter
registers while the blitter is operating causes unpredic table results. For just this purpose,

the WAIT instruction includes an additional control bit, called BFD (for blitter
finished disable) . Normally, this bit is a 1 and only the beam counter comparisons control
the WAIT.

When the BFD bit is a 0, the logic of the Copper WAIT instruction is modified. The Copper
will WAIT until the beam counter comparison is true and the blitter has finished. The
blitter has finished when the blitter - finished flag is set. This bit should be unset with
caution. It could possibly prevent some screen displays or prevent objects from being
displayed correctly.

For more information about using the blitter, see Cha pter 6, "Blitter Hardware."

THE COPPER AND THE 68000
On those occasions when the Copper's instructions do not suffice, you can interrupt the

68000 and use its instruction set instead. The 68000 can poll for interrupt flags set in the
INTREQ register by va rious devices. To interrupt the 68000, use the Copper MOVE
instruction to store a 1 into the following bits of INTREQ:

Table 2- 1: Interrupting the 68000

 BITNUMBER NAME FUNCTION

 15 SET/CLR Set/Clear control bit. Determines

 if bits written with a 1 get set

 or cleared.

 4 COPEN Co - processor interrupting 68000.

See Chapter 7, "System Control Hardware," for more information about interrupts.

- Coprocessor Hardware 31 -

SUMMARY OF COPPER INSTRUCTIONS

The Table below shows a summary of the bit positions for each of the Copper instructions.
See Appendix A for a summary of all registers.

 Table 2- 2: Copper I nstruction Summary

 Move Wait Skip

 Bit# IR1 IR2 IR1 IR2 IR1 IR2

 15 X RD15 VP7 BFD VP7 BFD

 14 X RD14 VP6 VE6 VP6 VE6

 13 X R D13 VPS VES VPS VES

 12 X RD12 VP4 VE4 VP4 VE4

 11 X RD11 VP3 VE3 VP3 VE3

 10 X RD10 VP2 VE2 VP2 VE2

 09 X RD09 VP1 VE1 VP1 VE1

 08 DA8 RD08 VP0 VE0 VP0 VE0

 07 DA7 RD07 HP8 HE8 HP8 HE8

 06 DA6 RD06 HP7 HE7 HP7 HE7

 05 DAS RD05 HP6 HE6 HP6 HE6

 04 DA4 RD04 HPS HES HPS HES

 03 DA3 RD03 HP4 HE4 HP4 HE4

 02 DA2 RD02 HP3 HE3 HP3 HE3

 01 DA1 RD01 HP2 HE2 HP2 HE2

 00 0 RD00 1 0 1 1

X = don't care , but should be a 0 for upward compatibility

IR1 = first instruction word

IR2 = second instruction word

DA = destination address

RD = RAM data to be moved to destination register

VP = vertical beam position bit

HP = horizontal beam position bit

VE = e nable comparison (mask bit)

HE = enable comparison (mask bit)

BFD = blitter - finished disable

- 32 Coprocessor Hardware -

Chapter 3

PLAYFIELD HARDWARE

INTRODUCTION
The screen display consists of two basic parts, playfields, which are sometimes called
backgrounds, and sprites, which are easily movable graphics objects. This chapter
describes how to directly access hardware registers to form playfields.

- Playfield Hardware 33 -

This chapter begins with a brief overview of playfield features, including definitions of
some fundamental terms, and continues with the following major topics:

o Forming a single "basic" playfield, which is a playfield the same size as the display

screen. This section includes concepts that are fundamental to forming any playfield.

o Forming a dual -playfield display in which one playfield is superimposed upon another.
This procedure differs from tha t of forming a basic playfield in some details.

o Forming playfields of various sizes and displaying only part of a larger playfield.

o Moving playfields by scrolling them vertically and horizontally.

o Advanced topics to help you use playfields in spec ial situations.

For information about movable sprite objects, see Chapter 4, "Sprite Hardware." There are
also movable playfield objects, which are subsections of a playfield. To move portions of a
playfield, you use a technique called playfield animation , which is described in Chapter 6,
"Blitter Hardware".

PLAYFIELD FEATURES
The Amiga produces its video displays with raster display techniques. The picture you see
on the screen is made up of a series of horizontal video lines displayed one af ter the
othe r. Each horizontal video line is made up of a series of pixels. You create a graphic
display by defining one or more bit -planes in memory and filling them with "1"s and "0"s

The combination of the "1"s and "0"s will determine the colors in your display.

Each line represents one sweep of an electron beam which is "painting" the picture as it
goes along.

 __

 | | |

 | | --- >----- >----- >----- >----- >---- >--- |

 | | ____________________________________ |

 | | ____________________________________ |

 | | ____________________________________ |

 | | __________________ |

 | | __________________ |

 | | |

 | | VIDEO PICTURE |

 | | __________________ |

 | | __________________ |

 | | ____________________________________ |

 | | ________ ____________________________ |

 | | _____________________________________ |

 | | ____________________________________ |

 \ / |__|

 Figure 3- 1: How the Video display picture is produced

VIDEO P ICTURE
The video beam produces each line by sweeping from left to right. It produces the full
screen b y sweeping the beam from the top to the bottom, one line at a time.

- 34 Playfield Hardware ï

The video beam produces about 262 video lines from t op to bottom, of which 200
normally are visible on the screen with an NTSC system. With a PAL system, the beam
produces 312 lines, of which 256 are normally visible. Each complete set of lines
(262/NTSC or 312/PAL) is called a display field. The field time , i.e. the time required for a

complete display field to be produced, is approximately 1/60th of a second for an NTSC
system and approximately 1/50th of a second for PAL. Between display fields, the video
beam traverses the lines that are not visible on th e screen and returns to the top of the
screen to produce another display field.

The display area is defined as a grid of pixels. A pixel is a single picture element, the
smallest addressable part of a screen display. The drawings below show what a pixel i s

and how pixels form displays.

 | _ |

 | |_| < ----------------------- The picture is formed from many

 | _ | elements. Each element is called

 | _|_|_ | a pixel.

 | |_|_|_| |

 | |_|_|_| < ------------- Pixels are used together to build

 |_______________________| larger graphic objects.

 ___________________________ ____________________________

 | | | |

 | | | |

 | < ------ 320 pixels ----- > | | < ------ 640 pixels ------ > |

 | | | |

 | | | |

 | | | |

 | | | |

 |___________________________| |____________________________|

 In normal resolution mode, In high resolution mode,

 320 pixels fill a horizontal 640 pixels fill a horizontal

 line. line.

 Figure 3- 2: What Is a Pixel?

The Amiga offers a choice in both hori zontal and vertical resolutions. Horizontal resolution

can be adjusted to operate in low resolution or high resolution mode. Vertical resolution
can be adjusted to operate in interlaced or non -interlaced mode.

- Play field Hardware 35 -

o In low - resolution mode, the normal playfield has a width of 320 pixels.

o High -resolution mode gives finer horizontal resolution 640 pixels in the same physical
display area.

o In non -interlaced mode, the normal NTSC playfield has a height of 200 video lines. The
normal mal PAL screen has a height of 256 video lines.

o Interlaced mode gives finer vertical resolution 400 lines in the same physical display
area in NTSC and 512 for PAL.

These modes can be combined, so you can have, f or instance, an interlaced, high -
resolution display.

Note that the dimensions referred to as "normal" in the previous paragraph are nominal
dimensions and represent the normal values you should expect to use. Actually, you can
display larger playfields; t he maximum dimensions are given in the section called "Bit -
Planes and Playfields of All Sizes." Also, the dimensions of the playfield in memory are
often larger than the playfield displayed on the screen. You choose which part of this
larger memory picture to display by specifying a different size for the display window.

A playfield taller than the screen can be scrolled, or moved smoothly, up or down. A
playfield wider than the screen can be scrolled horizontally, from left to right or right to
left. Scro lling is described in the section called "Moving (Scrolling) Playfields."

In the Amiga graphics system, you can have up to thirty - two different colors in a single
playfield, using normal display methods. You can control the color of each individual pixel
in the playfield display by setting the bit or bits that control each pixel. A display formed
in this way is called a bit -mapped display.

For instance, in a two -color display, the color of each pixel is determined by whether a
single bit is on or off. If the bit is 0, the pixel is one user -defined color, if the bit is 1, the
pixel is another color. For a four -color display, you build two bit -planes in memory. When
the playfield is displayed, the two bit -planes are overlapped, which means that each pixel
is now two bits deep. You can combine up to five bit -planes in this way. Displays made up
of three, four, or five bit -planes allow a choice of eight, sixteen, or thirty -two colors,
respectively.

The color of a pixel is always determined by the binary combin ation of the bits that define

it. When the system combines bit -planes for display, the combination of bits formed for
each pixel corresponds to the number of a color register. This method of colouring pixels
is called color indirection. The Amiga has thirt y- two color registers, each containing bits
defining a user selected color (from a total of 4,096 possible colors).

Figure 3-3 shows how the combination of up to five bit -planes forms a code that selects
which one of the thirty -two registers to use to dis play the color of a playfield pixel.

- 36 Playfield Hardware -

 | _

 | |_| Bit plane 5

 | ____________________________ __

 | | _ |0 |_ --------

 | | |_| Bit plane 4 |_|0 |_ |

 | | _________________________ |_|1 |_ \ __ See below

 | | | _ |_|1 |_ /

 | | | |_| Bit plane 3 |_|1 | |

 | | | ______________________ |__| -----

 | | | _

 | | | |_| Bit plane 2

 | | | ___________________

 | | | _

 | | | |_| Bit plane 1

 | | |

 | | ^

 | | |

 | |

 | \ -------------- One pixel

 Bits fro m plan es 5,4,3,2,1

 Color Registers

 | |

 00000 | |

 |_______________________|

 | |

 00001 | |

 |_______________________|

 | |

 00010 | |

 |_______________________|

 | |

 00011 | |

 |_______________________|

 | |

 00100 | |

 |__________________ _____|

 | |

 | | |

 | | |

 ----- | \ |/ |

 | |

 |_______________________|

 | |

 11111 | |

 |_______________________|

 Figure 3- 3: How Bit - planes s elect a Color

Values in the highest numbered bit -plane have the highest significance in the binary
number. As shown in Figure 3-4, the value in each pixel in the highest -numbered bit -
plane forms the leftmost digit of the number. The value in the next highest -numbered bit -
plane forms the next bit, and so on.

- Playfield Hardware 37 -

Sample data for 4 pixels

 a b c d

 1 1 0 0 Data in Bit - Plane 5 Most Significant

 1 0 1 0 Data in Bit - Plane 4

 1 0 0 1 Data in Bit - Plane 3

 0 1 1 1 Data in Bit - Plane 2

 0 0 1 0 Data in Bit - Plane 1 Least Significant

 a Value 6 COLOR 6

 b Value 11 COLOR 11

 c Value 18 COLOR 18

 d Value 28 COLOR 28

 Figure 34: Significance of Bit - Plane Data in Selecting Colors

You also have the ch oice of defining two separate playfields, each formed from up to three
bit planes. Each of the two playfields uses a separate set of eight different colors. This is
called dual -playfield mode.

FORMING A BASIC PLAYFIELD

To get you started, this section de scribes how to directly access hardware registers to
form a single basic playfield that is the same size as the video screen. Here, "same size"

means that the playfield is the same size as the actual display window. This will leave a
small border between t he playfield and the edge of the video screen. The playfield usually
does not extend all the way to the edge of the physical display.

To form a playfield, you need to define these characteristics:

o Height and width of the playfield and size of the displ ay window (that is, how much of
the playfield actually appears on the screen).

o Color of each pixel in the playfield.

o Horizontal resolution.

- 38 Playfield Hardware -

o Vertical resolution, or interlacin g.

o Data fetch and modulo, which tell the system how much data to put on a horizontal line
and how to fetch data from memory to the screen.

In addition, you need to allocate memory to store the playfield, set pointers to tell the
system where to find th e data in memory, and (optionally) write a Copper routine to
handle redisplay of the playfield.

HEIGHT AND WIDTH OF THE PLAYFIELD
To create playfield that is the same size as the screen, you can use a width of either 320

pixels or 640 pixels, depending up on the resolution you choose. The height is either 200
or 400 lines for NTSC, 256 or 512 lines for PAL, depending upon whether or not you
choose interlaced mode.

BIT -PLANES AND COLOR
You define playfield color by:

1. Deciding how many colors you need and how you want to color each pixel.

2. Loading the colors into the color registers.

3. Allocating memory for the number of bit -planes you need and setting a pointer to each
bit -plane.

4. Writing instructions to place a value in each bit in the bit -planes to give you the correct
color.

Table 3-1 shows how many bit -planes to use for the color selection you need.

 Number of Number of

 Colors Bit - Planes

 1- 2 1

 3- 4 2

 5- 8 3

 9- 16 4

 17- 32 5

 Table 3- 1: Colo rs in a single playfield.

- Playfield Hardware 39 -

THE COLOR TABLE
The color Table contains 32 registers, and you may load a different color into each of the
registers. Here is a condensed view of the contents of the color Table :

 Table 3- 2: Portion of the Color Table

 Register Name Contents Mean ing

 COLOR00 12 bits User - defined color for The

 background area and borders.

 COLOR01 12 bits User - defined color number 1

 (For example, the alternate color

 selection for a two - color playfield).

 COLOR02 12 bits User - defined color number 2.

 etc

 etc

 COLOR31 12 bits User - defined color number 31.

COLOR00 is always reserved for the background color. The back ground color shows in any
area on the display where there is no other object present and is also displayed outside
the defined display window, in the border area.

NOTE
If you are using the optional genlock board for video input from a camera, VCR, or lase r
disk, the background color will be replaced by the incoming video display.

Twelve bits of color selection allow you to define, for each of the 32 registers, one of
4,096 possible colors, as shown in Table 3-3.

- 40 Playfield Hardware -

 Table 3- 3: Contents of the Color Registers

 Bits

 Bits 15 - 12 Unused

 Bits 11 - 8 Red

 Bits 7 - 4 Green

 Bits 3 - 0 Blue

Table 3-4 shows some sample color register bit assignments and the resulting colors. At
the end of the chapter is a more extensive list.

 Table 3- 4: Sample Color Register Contents

 Contents of the Resulting

 Color Register Color

 $fff White

 $6fe Sky blue

 $db9 Tan

 $000 Black

Some sample instructions for loading color registers are shown below:

 LEA CUSTOM,a0 ; Get base address of custom hardware...

 MOVE.W #$FFF,COLOR00(a0) ; Load white into color register 0

 MOVE.W #$6FE,COLOR01(a0) ; Load sky blue into color register 1

NOTE
The color registers are write -only. Only by looking at the screen can you find out the
contents of each color register. As a standard practice, then, for these and certain other
write -only registers, you may wish to keep a "back -up" RAM copy. As you write to the
color register itself, you should update this RAM copy. If you do so, you will always know
the value ea ch register contains.

SELECTING THE NUMBER OF BIT -PLANES
After deciding how many colors you want and how many bit -planes are required to give
you those colors, you tell the system how many bit -planes to use.

- Playfield Hardware 41 -

You select the number of bit -planes by writing the number into the register BPLCON0 (for
Bit Plane Control Register 0) The relevant bits are bits 14, 13, and 12, named BPU2,
BPU1, and BPU0 (for "Bit Planes Used"). Table 3-5 shows t he values to write to these bits
and how the system assigns bit -plane numbers.

 Table 3- 5: Setting the Number of Bit - Planes

 Number of Name(s) of

 Value Bit - Planes Bit - Planes

 000 None *

 001 1 PLANE 1

 010 2 PLANES 1 and 2

 011 3 PLANES 1 - 3

 100 4 PLANES 1 - 4

 101 5 PLANES 1 - 5

 110 6 PLANES 1 - 6 **

 111 7 Value not used.

* Shows only a background color; no playfield is visible.

** Sixth bit - plane is used only in dual - playfield mode and in hold - and-

modify mode (described in the section called "Advanced Topics").

NOTE
The bits in the BPLCON0 register cannot be set independently. To set any one bit , you

must reload them all.

The following example shows how to tell the system to use two low - resolution bit -planes.

 MOVE.W #$2200,BPLCON0+CUSTOM ; Write to it

Because register BPLCON0 is used for setting other characteristics of the display and th e
bits are not independently , the example above also sets other parameters (all of these

parameters are described later in the chapter).

o Hold -and -modify mode is turned off.

o Single -playfield mode is set.

o Composite video color is enabled. (Not applic able in all models.)

- 42 Playfield Hardware -

o Genlock audio is disabled.

o Light pen is disabled .

o Interlaced mode is disabled.

o External resynchronization is disabled. (genlock)

SELECTING HORIZONTAL AN D VERTICAL RESOLUTION
Standard home television screens are best suited for low - resolution displays. Low -
resolution mode provides 320 pixels for each horizontal line. High - resolution monochrome

and RGB monitors can produce displays in high - resolution mode, which provides 640
pixels for each horizontal line. If you define an object in low - resolution mode and then
display it in high - resolution mode, the object will be only half as wide.

To set horizontal resolution mode, you write to bit 15, HIRES, in registe r BPLCON0:

High - resolution modewrite 1 to bit 15.
Low -resolution modewrite 0 to bit 15.

Note that in high - resolution mode, you can have up to four bit -planes in the playfield and,
therefore, up to 16 colors.

Interlaced mode allows twice as much data to be displayed in the same vertical area as in
non -interlaced mode. This is accomplished by doubling the number of lines appearing on

the video screen. The following Table shows the number of lines required to fill a normal,
non -overscan screen.

 Table 3- 6: Lines in a Normal Playfield

 NTSC PAL

 Non- interlaced 200 256

 Interlaced 400 512

In interlaced mode, the scanning circuitry vertically offsets the start of every other field by
half a sc an line.

- Playfield Hardware 43 -

line 1_________________________

 | _________________________ | \

 | _________________________ | \

 | _________ | \

 | Field 1 | \ __________________

 | _________ | \ |___|______________|___Line 1

 | _________________________ | >|___|______________|___

 | _________________________ | / | | | Line 2

 |___________________________| / | | Video display|

 / | | (400 lines) |

line 1_________________________ / | | |

 | _________________________ | |__ \ |/_____________|

 | _________________________ |

 | _________ |

 | Fie ld 2 | (same physical space as used

 | _________ | by a 200 line noninterlaced

 | _________________________ | display)

 | _________________________ |

 |___________________________|

 Figure 3- 5: Interlacing

Even though interlaced mode requires a modest amount of extra work in setting registers
(as you will see later on in this section), it provides fine tuning that is needed for certain
graphics effects. Consider the diagonal line in Figure 3-6 as it appears in non -interlaced

and interlaced modes. Interlacing eliminates much of the jaggedness or "staircasing" in
the edges of the line.

Figure 3- 6: Effect of Interlaced Mode on Edges of Objects

When you use the special blitter DMA channel to draw lines or polygons onto an interlaced
playfield, the playfield is treated as one display, rath er than as odd and even fields.
Therefore, you still get the smoother edges provided by interlacing.

- 44 Playfield Hardware -

To set interlaced or non - interlaced mode, you write to bit 2, LACE, in register BPLCON0:

 Interlaced mode write 1 to bit 2.
 Non - interlaced mode write 0 to bit 2.

As explained above in "Setting the Number of Bit -Planes," bits in BPLCON0 are not
independently set .

The following example shows how to specify high - resolution and interlaced modes.

 MOVE.W #$A204,BPLCON0+CUSTOM ; Write to it

The example above also sets the following parameters that are also controlled through
register BPLCON0:

o High - resolution mode is enabled.

o Two bit -planes are used.

o Hold -and -modify mode is disabled.

o Single -playfield mode is enabled.

o Composite video color is enabled.

o Genlock audio is disabled.

o Light pen is disabled.

o Int erlaced mode is enabled.

o External resynchronization is disabled.

The amount of memory you need to allocate for each bit -plane depends upon the
resolution modes you have selected, because high -resolution or interlaced playfields
contain more data and re quire larger bit -planes.

- Playfield Hardware 45 -

ALLOCATING MEMORY FOR BIT -PLANES
After you set the number of bit -planes and specify resolution modes, you are ready to
allocate memory. A bit -plane consists of an end - to -end sequence of words at consecutive
memory locations. When operating under the Amiga operating system, use a system call

such as AllocMem() to remove a block of memory from the free list and make it available
to the program. If the machine has been taken over, simply reserve an area of memory
for the bit -planes. Next, set the bit plane pointer registers (BPLxPTH/BPLxPTL) to point to
the starting memory address of each bitplane you are using. The starting address is the
memory word that conta ins the bits of the upper left -hand corner of the bit -plane.

Table 3-6 shows how much memory is needed for basic playfields. You may need to

balance your color and resolution requirements against the amount of available memory
you have.

 Tabl e 3- 7: Playfield Memory Requirements, NTSC

 Number of Bytes

 Picture Size Modes per Bit - Plane

 320 X 200 Low - resolution, 8,000

 non- int erlaced

 320 X 400 Low - resolution, 16,000

 interlaced

 640 X 200 High - resolution, 16,000

 non- interlaced

 640 X 400 High - resolution, 32,0 00

 interlaced

- 46 Playfield Hardware -

Table 3- 8: Playfield Memory Requirements, PAL

 Number of B ytes

 Picture Siz e Modes per Bit - Plane

 320 X 256 Low - resolution, 8,192

 non- interlaced

 320 X 512 Low - resolution, 16,384

 interlaced

 640 X 256 High - resolution, 16,384

 non- interlaced

 640 X 512 High - resolution, 32,768

 interlaced

NTSC EXAMPLE OF BIT PLANE SIZE
For example, using a normal, NTSC, low - resolution, non -interlaced display with 320 pixels

across each display line and a total of 200 display lines, each line of the bit -plane requires
40 bytes (320 bits divided by 8 bits per byte = 40). Multiply the 200 lines times 40 bytes
per line to get 8,000 bytes per bit -plane as given above.

A low - resolution, non -interlaced playfield made up of two bit -planes requires 16,000 bytes
of memory area. The memory for each bit -plane must be continuous, so you need to have
two 8,000 -byte blocks of available memory.

Figure 3-7 s hows an 8,000 -byte memory area organized as 200 lines of 40 bytes each,
providing 1 bit for each pixel position in the display plane.

- Playfield Hardware 47 -

 _____________ _____________

 | | | | | | | | _____________________ \ | | | | | | | |

 |_|_|_|_|_|_|_| / |_|_|_|_|_|_|_|

 Mem. Location N Mem. location N+38

 _____________ ____________ _

 | | | | | | | | _____________________ \ | | | | | | | |

 |_|_|_|_|_|_|_| / |_|_|_|_|_|_|_|

 Mem. Location N+40 | Mem. location N+78

 |

 |

 |

 |

 _____________ \ |/ _____________

 | | | | | | | | ___________V_________ \ | | | | | | | |

 |_|_|_|_|_|_|_| / |_|_|_|_|_|_|_|

 Mem. Location N+7960 Mem. location N+7998

 Figure 3- 7: Memory Organization for a Basic Bit - Plane

Access to bit -planes in memory is provided by two address registers, BPLxPTH and
BPLxPTL, for each bit -plane (12 registers in all). The "x" position i n the name holds the
bit -plane number; for example BPL1PTH and BPL1PTL hold the starting address of PLANE
1. Pairs of registers with names ending in PTH and PTL contain 19 -bit addresses. 68000
programmers may treat these as one 32 -bit address and write to them as one long word.

You write to the high -order word, which is the register whose name ends in "PTH."

The example below shows how to set the bit -plane pointers. Assuming two
bit -planes, one at $21000 and the other at $25000, the processor sets
BPL1PT t o $21000 and BPL2PT to $25000. Note that this is usually the
Copper's task.

;

; Since the bit plane pointer registers are mapped as a full 680x0 long -

; word data, we can store the addresses with a 32 - bit move...

;

 LEA CUSTOM,a0 ; Get base address of custom hardware...

 MOVE.L $21000,BPL1PTH(a0) ; Write bit - plane 1 pointer

 MOVE.L $25000,BPL2PTH(a0) ; Write bit - plane 2 pointer

Note that the memory requirements given here are for the playfield only. You may n eed
to allo cate additional memory for other parts of the display, sprites, audio, animation and
for your application programs. Memory allocation for other parts of the display is
discussed in the chapters describing those topics.

- 48 Playfield Hardware -

CODING THE BIT -PLANES FOR CORRECT COLORING
After you have specified the number of bit -planes and set the bit -plane pointers, you can
actually write the color register codes into the bit -planes.

A ONE-OR TWO-COLOR PLAYFIELD
For a one -color playfield, all you need do is write "0"s in all the bits of the single bit -plane
as shown in the example below. This code fills a low - resolution bit -plane with the
background color (COLOR00) by writing all "0"s into its memory area. The bit -plane starts
at $21000 and is 8,000 bytes long.

 LEA $21000,a0 ; Point at bit - plane

 MOVE.W #2000,d0 ; Write 2000 longwords = 8000 bytes

LOOP: MOVE.L #0,(a0)+ ; Write out a zero

 DBRA d0,LOOP ; Dec rement counter and loop until done

For a two -color playfield, you define a bit -plane that has "0"s where you want the
background color and "1"s where you want the color in register 1. The following example
code is identical to the last example, except the bit -plane is filled with $FF00FF00 instead
of all 0's. This will produce two colors.

 LEA $21000,a0 ; Point at bit - plane

 MOVE.W #2000,d0 ; Write 2000 longwords = 8000 bytes

LOOP: MOVE.L #$FF00FF00, (a0)+ ; Write out $ FF00FF00

 DBRA d0,LOOP ; Decrement counter & loop until done

A PLAYFIELD OF THREE OR MORE COLORS
For three or more colors, you need more than one bit -plane. The task here is to define
each bit -plane in such a way that when they are comb ined for display, each pixel contains
the correct combination of bits. This is a little more complicated than a playfield of one
bit -plane. The following examples show a four -color playfield, but the basic idea and
procedures are the same for playfields co ntaining up to 32 colors.

Figure 3-8 shows two bit -planes forming a four -color playfield:

- Playfield Hardware 49 -

Figure 3- 8: Combining Bit - planes

You place the correct "1"s and "0"s in both bit -planes to give each pixel in the picture
above the correct color.

In a single playfield you can combine up to five bit -planes in this way. Using five bit -
planes allows a choice of 32 different colors for any single pixel. The pl ayfield color
selection charts at the end of this chapter summarize the bit combinations for playfields
made from four and five bit -planes.

DEFINING THE SIZE OF THE DISPLAY WINDOW

After you have completely defined the playfield, you need to define the size of the display
window, which is the actual size of the on -screen display. Adjustment of display window
size affects the entire display area, including the border and the sprites, not just the
playfield. You cannot display objects outside of the defined display window. Also, the size
of the border around the playfield depends on the size of the display window.

The basic playfield described in this section is the same size as the screen display area
and also the same size as the display window. This is not always the case; often the
display window is smaller than the actual "big picture" of the playfield as defined in
memory (the raster). A display window that is smaller than the playfield allows you to
display some segment of a large

- 50 Playfield Hardware -

playfield or scroll the playfield through the window. You can also define display windows
larger than the basic playfield. These larger playfields and different -sized display windows
are described in The section below called "Bit -Planes and Display Windows of All Sizes."

You determine the size of the display window by specifying the vertical and horizontal
positions at which the window starts and stops and writing these positions to the display
window registers. The re solution of vertical start and stop is one scan line. The resolution
of horizontal start and stop is one low - resolution pixel. Each position on the screen defines
the horizontal and vertical position of some pixel, and this position is specified by the x
and y coordinates of the pixel. This document shows the x and y coordinates in this form:
(x,y). Although the coordinates begin at (0,0) in the upper left -hand corner of the screen,

the first horizontal position normally used is $81 and the first vertical position is $2C. The
horizontal and vertical starting positions are the same both for NTSC and for PAL.

The hardware allows you to specify a starting position before ($81,$2C), but part of the
display may not be visible. The difference between the absolute starting position of (0,0)
and the normal starling position of ($81,$2C) is the result of the way many video display
monitors are designed. To overcome the distortion that can occur at the extreme edges of
the screen, the scanning beam sweeps over a large r area than the front face of the screen
can display. A starting position of ($81,$2C) centers a normal size display, leaving a
borde r of eight low - resolution pixel around The display window. Figure 3-9 shows the
relationship between the normal display wi ndow, the visible screen area, and the area
actually covered by the scanning beam.

 (0,0)

 / ($81,$2C)

 /______/____________________________

 | ___/__________________________ |

 | | /_________ ________________ | \ |

 | | | / \ | | \ |

 | | |< -- | ------- 320----------- >| | \

 | | | | | | | \

 | | | |200 | | | \ Visible screen

 | | | | | | | boundaries

 | | | | | | |

 | | |___ \ /_____________________| | |

 | |__ \ ________________________/__| |

 |______ \ _____________________ /______|

 \ /

 \ _____Display _____/

 window starting &

 stopping positions

 Figure 3- 9: Positioning the On - screen Display

- 51 Play field Hardware -

SETTING THE DISPLAY WINDOW STARTING POSITION
A horizontal starting position of approximately $81 and a vertical starting position of
approximately $2C centers the display on most standard television screens. If you select
high - resolution m ode (640 pixels horizontally) or interlaced mode (400 lines NTSC, 512

PAL) the starting position does not change. The starting position is always interpreted in
low - resolution, non - interlaced mode. In other words, you select a starting position that
repres ents the correct coordinates in low - resolution, non -interlaced mode.

The register DIWSTRT (for "Display Window Start") controls the display window starting
position. This register contains both the horizontal and vertical components of the display
window starting positions, known respectively as HSTART and VSTART. The following

example sets DIWSTRT for a basic playfield. You write $2C for VSTART and $81 for
HSTART.

 LEA CUSTOM,a0 ; Get base address of custom hardware...

 MOVE.W #$2C81,DIWSTRT(a0) ; Display window start register...

SETTING THE DISPLAY WINDOW STOPPING POSITION
You also need to set the display window stopping position, which is the lower right -hand
corner of the display window. If you select high - resolution or int erlaced mode, the
stopping position does not change. Like the starting position, it is interpreted in low -
resolution, non -interlaced mode.

The register DIWSTOP (for Display Window Stop) controls the display window stopping
position. This register contains both the horizontal and vertical components of the display

window stopping positions, known respectively as HSTOP and VSTOP. The instructions
below show how to set HSTOP and VSTOP for the basic playfield, assuming a starting
position of ($81,$2C). Note th at the HSTOP value you write is the actual value minus 256
($100). The HSTOP position is restricted to the right -hand side of the screen. The normal
HSTOP value is ($1C1) but is written as ($Cl). HSTOP is the same both for NTSC and for
PAL.

The VSTOP posi tion is restricted to the lower half of the screen. This is accomplished in
the hardware by forcing the MSB of the stop position to be the complement of the next
MSB. This allows for a VSTOP position greater than 256 ($100) using only 8 bits.
Normally, the VSTOP is set to ($F4) for NTSC, ($2C) for PAL.

 The normal NTSC DIWSTRT is ($2C81).
 The normal NTSC DIWSTOP is ($F4C1).

 The normal PAL DIWSTRT is ($2C81).
 The normal PAL DIWSTOP is ($2CC1).

- 52 Play field Hardware -

The following example sets DIWSTOP for a basic playfield to $F4 for the vertical position
and $C1 for the horizontal position.

 LEA CUSTOM,a0 ; Get base address of custom hardware...

 MOVE.W #$F4C1,DIWSTOP(a0) ; Display window stop register...

 Table 3- 9: DIWSTRT AND DIWSTOP Summary.

 - Nominal Values - - Possible Values -

 NTSC PAL MIN MAX

 DIWSTRT:

 VSTART $2C $2C $00 $FF

 HSTART $81 $81 $00 $FF

 DIWSTOP:

 VSTOP $F4 $2C (=$12C) $80 $7F (=$17F)

 HSTOP $C1 $C1 $00 (=$100) $FF (=$1FF)

TELLING THE SYSTEM HOW TO FETCH AND DISPLAY DATA
After defining the size and p osition of the display window, you need to give the system the
on screen location for data fetched from memory. To do this, you describe the horizontal
positions where each line starts and stops and write these positions to the data - fetch
registers. The da ta - fetch registers have a four -pixel resolution (unlike the display window
registers, which have a one -pixel resolution). Each position specified is four pixels from
the last one. Pixel 0 is position 0; pixel 4 is position 1, and so on.

The data -fetch sta rt and display window starting positions interact with each other. It is
recommended that data - fetch start values be restricted to a programming resolution of 16
pixels (8 clocks in low - resolution mode, 4 clocks in high - resolution mode). The hardware
requi res some time after the first data fetch before it can actually display the data. As a
result, there is a difference between the value of window start and data - fetch start of 4.5
color clocks.

 The normal low - resolution DDFSTRT is ($0038).
 The norm al high - resolution DDFSTRT is ($003C).

Recall that the hardware resolution of display window start and stop is twice the hardware
resolution of data fetch:

 $81

 --- - 8.5=$38

 2

 $81

 --- - 4.5=$3c

 2

- Playfield Hardware 53 -

The relationship between data - fetch start and stop is;

 DDFSTRT = DDFSTOP -(8*(word count -1))for low resolution

 DDFSTRT = DDFSTOP -(4*(word count -2))for high resolution

The normal low - resolution DDFSTOP is ($00D0). The normal high - resolution DDFSTOP is
($00D4)

The following example sets data -fetch start to $0038 and data - fetch stop to $00D0 for a
basic playfield.

 LEA CUSTOM,a0 ; Point to base hardware address

 MOVE.W #$0038,DDFSTRT(a0) ; Write to DDFSTRT

 MOVE.W #$00D0,DDFSTOP(a0) ; Write to DDFSTOP

You also need to tell the system exactly which bytes in memory belong on each horizontal
line of the display. To do this, you specify the modulo value. Modulo refers to the number
of bytes in memory between the last word on one horizontal line and the beginning of the
first word on the next line. Thus, the modulo enables the system to convert bit -plane data
stored in linear form (each data byte at a sequentially increasing memory address) into
rectangular form (one "line" of sequential data followed by another line). For the basic
playfield, where the playfield in memory is the same size as the display window, the
modulo is zero because the memory ar ea contains exactly the same number of bytes as
you want to display on the screen. Figure s 3 -10 and 3 -11 show the basic bit -plane layout

in memory and how to make sure the correct data is retrieved.

The bit -plane address pointers (BPLxPTH and BPLxPTL) are used by the system to fetch
the data to the screen. These pointers are dynamic; once the data fetch begins, the
pointers are continuously incremented to point to the next word to be fetched (data is
fetched two bytes at a time). When the end -of - line cond ition is reached (defined by the
data - fetch register, DDFSTOP) the modulo is added to the bit -plane pointers, adjusting
the pointer to the first word to be fetched for the next horizontal line.

Data for Line 1:

Location: START START+2 START+4 START+38

 Leftmost Next Word Next Word Last Display

 Display Word Word

 ^

Screen data fetch stops (DDFSTOP) for |

each horizontal line after the last word < ---------------------- |

on the line has been fetched.

Figure 3- 10: Data Fetched for the First Line When Modulo = 0

- 54 Playfiel d Hardware -

After the first line is fetched, the bit -plane pointers BPLxPTH and BPLxPTL contain the
value START+40. The modulo (in this case, 0) is added to the current value of the pointer,
so when the pointer begins the data fetch for the next line, it fetches the data you want
on that line. The data for the next line begins at memory location START+40.

Data for Line 2:

Location: START+40 START+42 START+44 START+78

 Leftmost Next Word Next Word Las t Display

 Display Word Word

 Figure 3- 11: Data Fetched for the Second Line When Modulo = 0

Note that the pointers always contain an even number, because data is fetched from the
display a word at a t ime.

There are two modulo registers, BPL1MOD for the odd -numbered bit -planes and BPL2MOD
for the even -numbered bit -planes. This allows for differing modules for each playfield in
dual -playfield mode. For normal applications, both BPL1MOD and BPL2MOD will be the
same.

The following example sets the modulo to 0 for a low - resolution playfield with one bit -
plane. The bit -plane is odd -numbered.

 MOVE.W #0,BPL1MOD+CUSTOM ; Set modulo to 0

DATA FETCH IN HIGH -RESOLUTION MODE
When you are using high - resol ution mode to display the basic playfield, you need to fetch
80 bytes for each line, instead of 40.

MODULO IN INTERLACED MODE
For interla ced mode, you must redefine the modulo, because interlaced mode uses two
separate scanningôs of the video screen for a single display of the playfield. During the

first scanning, the odd -numbered lines are fetched to the screen; and during the second
scanning, the even -numbered lines are fetched.

- Playfield Hardware 55 -

The bit -planes for a full -screen -sized, interlaced display are 400 NTSC (512 PAL), rather
than 200 NTSC (256 PAL), lines long. Assuming that the playfield in memory is the normal
320 pixels wide, data for the interlaced picture begins at the following locat ions (these are
all byte addresses):

 Line 1 START
 Line 2 START+40
 Line 3 START+80
 Line 4 START+120

and so on. Therefore, you use a modulo of 40 to skip the lines in the other field. For odd

fields, the bit -plane pointers b egin at START. For even fields, the bit -plane pointers begin
at START+40

You can use the Copper to handle resetting of the bit -plane pointers for interlaced
displays.

DISPLAYING AND REDISPLAYING THE PLAYFIELD
You start playfield display by making certain that The bit -plane pointers are set and bit -
plane DMA is turned on. You turn on bit -plane DMA by writing a 1 to bit BPLEN in the
DMACON (for DMA control) register. See Chapter 7, "System Control Hardware," for
instructions on setting this register.

Each time The playfield is redisplayed, you have to reset the bit -plane pointers. Resetting
is necessary because the pointers have been incremented to point to each successive

word in memory and must be repointed to the first word for the next display. You writ e
Copper instructions to handle the redisplay or perform this operation as part of a vertical
blanking task.

ENABLING THE COLOR DISPLAY
The stock A1000 has a color composite output and requires bit 9 set in BPLCON0 to create
a color composite display sign al. Without the addition of specialized hardware, the A500
and A2000 cannot generate color composite output.

NOTE
The color burst enable does not affect the RGB video signal. RGB video is correctly
generated regardless of the output of the composite video signal.

- 56 Playfield Hardware -

BASIC PLAYFIELD SUMMARY
The steps for defining a basic playfield are summarized below:

1. Define Playfield Characteristics

 a. Specify height in lines:

 o For NTSC:

 * 200 for non -interlaced mode.

 * 400 for interlaced mode.

 o For PAL:

 * 256 for non -interlaced mode.

 * 512 for interlaced mode.

 b. Specify width in pixels:

 o 320 for low - resolution mode.

 o 640 f or high - resolution mode.

 c. Specify color for each pixel:

 o Load desired colors in color table registers.

 o Define color of each pixel in terms of the binary value that points
 at the desired color register.

 o Build bit -planes.

 o Set bit -plane registers.

 * Bits 12 -14 in BPLCON0 - number of bit -planes (BPU2 - BPU0).

 * BPLxPTH - pointer to bit -plane starting position in memory
 (written as a long word).

- 57 Playfield Hardware -

 d. Specify resolution:

 o Low resolution:

 * 320 pixels in each horizontal line.

 * Clear bit 15 in register BPLCON0 (HIRES).

 o High resolution:

 * 640 pixels in each horizontal line.

 * Set bit 15 in register BPLCON0 (HIRES).

 e. Specify interlaced or non -interlaced mode:

 o Interlaced mode:

 * 400 vertical lines for NTSC, 512 for PAL.

 * Set bit 2 in register BPLCON0 (LACE).

 o Non -interlaced mode:

 * 200 vertical lines for NTSC, 256 for PAL.

 * Clear bit 2 in BPLCON0 (LACE).

2. Allocate Memory. To calculate data -bytes in the total bit -planes, use the following
formula: Bytes per line * lines in playfield * number of bit -planes

3. Define Size of Display Window.

 o Write start position of display window in DIWSTRT:

 * Horizontal position in bits 0 through 7 (low -order bits).

 * Vertical position in bits 8 through 15 (high -order bits).

 o Write stop position of display window in DIWSTOP:

 * Horizontal position in bits 0 through 7.

 * Vertical position in bits 8 through 15.

- Playfield Hardware 58 -

4. Define Data Fetch. Set regist ers DDFSTRT and DDFSTOP:

 o For DDFSTRT, use the horizontal position as shown in "Setting the
 Display Window Starting Position."

 o For DDFSTOP, use the horizontal position as shown in "Setting the
 Display Window Stopping Positi on."

5. Define Modulo. Set registers BPL1MOD and BPL2MOD. Set modulo to 0 for non -
interlaced, 40 for interlaced.

6. Write Copper Instructions To Handle Redisplay.

7. Enable Color Display. For the A1000: set bit 9 in BPLCON0 to enable the color display
on a composite video monitor. RGB video is not affected. Only the A1000 has color
composite video output, other machines cannot enable this feature using standard
hardware.

EXAMPLES OF FORMING BASIC PLAYFIELDS
The following examples show how to set the reg isters and write the coprocessor lists for
two different playfields.

The first example sets up a 320 x 200 playfield with one bit -plane, which is located at
$21000. Also, a Copper list is set up at $20000.

This example relies on the include file "hw exam ples.i", which is found in Appendix J.

 LEA CUSTOM,a0 ; a0 points at custom chip

 MOVE.W #$1200,BPLCON0(a0) ; One bit - plane, enable composite color

 MOVE.W #0,BPLCON1(a0) ; Set horizontal scroll value to 0

 MOVE.W #0,BPL1MOD(a0) ; Set modulo to 0 for all odd bit - planes

 MOVE.W #$0038,DDFSTRT(a0) ; Set data - fetch start to $38

 MOVE.W #$00D0,DDFSTOP(a0) ; Set data - fetch stop to $D0

 MOVE.W #$2C81,DIWSTRT(a0) ; Set DIWSTRT to $ 2C81

 MOVE.W #$F4C1,DIWSTOP(a0) ; Set DIWSTOP to $F4Cl

 MOVE.W #$0F00,COLOR00(a0) ; Set background color to red

 MOVE.W #$0FF0,COLOR01(a0) ; Set color register 1 to yellow

;

; Fill bit - plane with $FF00FF00 to produce stripes

;

 MOVE.L #$21000,a1 ; Point at beginning of bit - plane

 MOVE.L #$FF00FF00,d0 ; We will write $FF00FF00 long words

 MOVE.W #2000,d1 ; 2000 long words = 8000 bytes

;

LOOP:

 MOVE.L d0,(a1)+ ; Wr ite a long word

 DBRA d1,LOOP ; Decrement counter and loop until done

;

; Set up Copper list at $20000

;

 MOVE.L #$20000,a1 ; Point at Copper list destination

 LEA COPPERL(pc).a2 ; Point a2 at Copper l ist data

- Playfield Hardware 59 -

CLOOP:

 MOVE.L (a2),(a1)+ ; Move a word

 CMPI.L #$FFFFFFFE,(a2)+ ; Check for last longword of Copper list

 BNE CLOOP ; Loop until entire copper list i9 moved

;

; Point Copper at Copper list

;

 MOVE.L #$20000,COP1LCH(a0) ; Write to Copper location register

 MOVE.W COPJMP1(a0),d0 ; Force copper to $20000

;

; Start DMA

;

 MOVE.W #(DMAF_SETCLR!DMAF_COPPER!DMAF_RASTER!DMAF_MASTER),DMACON(a0)

 ; Enable bit - plane and Copper DMA

 BRA ; Go do next task

;

; This is the data for the Copper list.

;

COPPERL:

 DC.W BPL1PTH,$0002 ; Move $0002 to addre ss $0E0 (BPL1PTH)

 DC.W BPL1PTL,$1000 ; Move $1000 to address $0E2 (BPL1PTL)

 DC.W $FFFF,$FFFE ; End of Copper list

The second example sets up a high - resolution, interlaced display with one bitplane. This
example also rel ies on the include file "hw_examples.i", which is found in Appendix J.

 LEA CUSTOM,a0 ; Address of custom chips

 MOVE.W #$9204,BPLCON0(a0) ; Hires, one bit - plane, interlaced

 MOVE.W #0,BPLCON1(a0) ; Horizontal sc roll value 0

 MOVE.W #80,BPL1MOD(a0) ; Modulo = 80 for odd bit - planes

 MOVE.W #80,BPL2MOD(a0) ; Ditto for even bit - planes

 MOVE.W #$003C,DDFSTRT(a0) ; Set data - fetch start for hires

 MOVE.W #$00D4,DDFSTOP(a0) ; Set data - fetch stop

 MOVE.W #$2C81,DIWSTRT(a0) ; Set display window start

 MOVE.W #$F4C1,DIWSTOP(a0) ; Set display window stop

;

; Set up color registers

;

 MOVE.W #$000F,COLOR00(a0) ; Background color = blue

 MOVE.W #$0FFF,COLOR01(a0) ; Foreground color = white

;Set up bit - plane at S20000

 LEA $20000,a1 ; Point a1 at bit - plane

 LEA CHARLIST(pc),a2 ; a2 points at character data

 MOVE.W #400,d1 ; Write 400 lines of dat a

 MOVE.W #20,d0 ; Write 20 long words per line

L1:

 MOVE.L (a2),(a1)+ ; Write a long word

 DBRA d0,L1 ; Decrement counter and loop until full

 MOVE.W #20,d0 ; Reset long w ord counter

 ADDQ.L #4,a2 ; Point at next word in char list

 CMPI.L #$FFFFFFFF,(a2) ; End of char list?

 BNE L2

 LEA CHARLIST(pc),a2 ; Yes, reset a2 to beginning of list

L2:

 DBRA d1,L1 ; Decrement line counter and loop until

 ; done

;

; Start DMA

;

 MOVE.W #(DMAF_SETCLR!DMAF_RASTER!DMAF_MASTER),DMACON(a0)

 ; Enable bit - plane DMA only, no Copper

; Because this examp le has no Copper list, it sits in a

; loop waiting for the vertical blanking interval. When it

; comes, you check the LOF (long frame bit in VPOSR. If

; LOF = 0, this is a short frame and the bit - plane pointers

; are set to point to S20050. If LOF = 1, t hen this is a

; long frame and the bit - plane pointers are set to point to

; $20000. This keeps the long and short frames in the

; right relationship to each other.

VLOOP:

 MOVE.W INTREQR(a0),d0 ; Read interrupt requests

 AND.W #$0020,d0 ; Mask off all but vertical blank

 BEQ VLOOP ; Loop until vertical blank comes

 MOVE.W #$0020,INTREQ(a0) ; Reset vertical interrupt

 MOVE.W VPOSR(a0),d0 ; Read LOF bit into d0 bit 15

 BPL VL1 ; If LOF = 0, jump

 MOVE.L #$20000,BPL1PTH(a0) ; LOF = 1, point to $20000

 BRA VLOOP ; Back to top

VL1:

 MOVE.L #$20050,BPL1PTH(a0) ; LOF = 0, point to $20050

 BRA VLOOP ; Back to top

;

; Character list

;

CHARLIST:

 DC.L $18FC3DF0,$3C6666D8,$3C66C0CC,$667CC0CC

 DC.L $7E66C0CC,$C36666D8,$C3FC3DF0,$00000000

 DC.L $FFFFFFFF

- 61 Playfield Hardware -

FORMING A DUAL -PLAYFIELD DISPLAY
For more flexibility in designing your background display, you can specify two playfields
instead of one. In dual -playfield mode, one playfield is displayed directly in front of the
other. For example, a computer game display might have some action going on in one

playfield in the back -ground, while the other playfield is showing a control panel in the
foreground. You can then change either the foreground or the background without having
to redesign the entire display. You can also move the two playfields independently.

A dual -playfield display is similar to a single -playfield display, differing only in these
aspects:

o Each playfield in a dual display is formed from one, two or three bit planes.

o The colors in each playfie ld (up to seven plus transparent) are taken from different sets
of color registers.

o You must set a bit to activate dual -playfield mode.

Figure 3-12 shows a dual -playfield display.

In Figure 3-12, one of the colors in each playfield is "transparent" (c olor 0 in playfield 1
and color 8 in playfield 2). You can use transparency to allow selected features of the
background playfield to show through.

In dual -playfield mode, each playfield is formed from up to three bitplanes. Color registers

0 through 7 ar e assigned to playfield 1, depending upon how many bit -planes you use.
Color registers 8 through 15 are assigned to playfield 2.

BIT -PLANE ASSIGNMENT IN DUAL -PLAYFIELD MODE

The three odd -numbered bit -planes (1, 3, and 5) are grouped together by the hardw are
and may be used in playfield 1. Likewise, the three even -numbered bit -planes (2, 4, and
6) are grouped together and may be used in playfield 2. The bit -planes are assigned
alternately to each playfield, as shown in Figure 3-13.

NOTE
In high - resolution mode, you can have up to two bit -planes in each playfield, bit -planes 1
and 3 in playfield 1 and bit -planes 2 and 4 in playfield 2.

- 62 Playfield Hardware -

Figure 3- 12: A dual Playfield display.

- Playfield Hardware 63 -

 Number of Bitplanes

 "turned on" Playfield 1* Playfield 2*

 0 None None

 1 |1 |

 |__________|

 __________ __________

 2 |1 | |2 |

 |__________| |__________ |

 __________ __________

 3 |1 ________|_ |2 |

 |_|3 | |__________|

 |__________|

 __________ __________

 4 |1 ________|_ |2 ________|_

 |_|3 | |_|4 |

 |__________| |__________|

 __________ __________

 5 |1 ________|_ |2 ________|_

 |_|3 ________|_ |_|4 |

 |_|5 | |__________|

 |__________|

 __________ _____ _____

 6 |1 ________|_ |2 ________|_

 |_|3 ________|_ |_|4 ________|_

 |_|5 | |_|6 |

 |__________| |__________|

 *NOTE: Either playfield may be placed "in front of" or

 "behind" the other using the "swap - bit"

 Figure 3- 13: How Bitplanes are assigned to duel playfields.

- 64 Playfield Hardware -

COLOR REGISTERS IN DUAL -PLAYFIELD MODE
When you are using dual playfields, the hardware interprets color numbers for playfield 1
from the bit combinations of bit -planes 1, 3, and 5. Bits from PLANE 5 have the highest
significance and form the most significant d igit of the color register number. Bits from

PLANE O have the lowest significance. These bit combinations select the first eight color
registers from the color palette as shown in Table 3-10.

 Table 3- 10: Playfield 1 Color Registers Low - resolution Mode

 PLAYFIELD 1

 Bit Color

 Combination Selected

 000 Transparent mode

 001 COLOR1

 010 COLOR2

 011 COLOR3

 100 COLOR4

 101 COLORS

 110 COLOR6

 111 COLOR7

The hardware interprets color numbers for playfield 2 from the bit combinations of bit -
planes 2, 4, and 6. Bits from PLANE 6 have the highest significance. Bits from P LANE 2
have the lowest significance. These bit combinations select the color registers from the
second eight colors in the color Table as shown in Table 3-11.

 Table 3 Playfield 2 Color Registers Low - resolution Mode

 PLAYFIELD 2

 Bit Color

 Combination Selected

 000 Transparent mode

 001 COLOR09

 010 COLOR10

 011 COLOR11

 100 COLOR12

 101 COLOR13

 110 COLOR14

 111 COLOR15

- Playfield Hardware 65 -

Combination 000 selects transparent mode, to show the color of whatever object (the
other playfield, a sprite, or the background color) may be "behind" the playfield.

Table 3-12 shows the color registers for high - resolution, dual -playfield mode.

 Table 3- 12: Playfields 1 and 2 Color Registers - High - resolution Mode

 PLAYFIELD 1

 Bit Color

 Combination Selected

 00 Transparent mode

 01 COLOR1

 10 COLOR2

 11 COLOR3

 PLAYFIELD 2

 Bit Color

 Combination Selected

 00 Transparent mode

 01 COLOR09

 10 COLOR10

 11 COLOR11

DUAL-PLAYFIELD PRIORITY AND CONTROL
Either playfield 1 or 2 may have priority; that is, either one may be displayed in front of
the oth er. Playfield 1 normally has priority. The bit known as PF2PRI (bit 6) in register
BPLCON2 is used to control priority. When PF2PRI = 1, playfield 2 has priority over
playfield 1. When PF2PRI = 0, playfield 1 has priority.

You can also control the relativ e priority of playfields and sprites. Chapter 7, "System

Control Hardware" shows you how to control the priority of these objects.

You can control the two playfields separately as follows:

o They can have different -sized representations in memory, and di fferent portions of each
one can be selected for display.

o They can be scrolled separately.

- 66 Playfield Hardware -

NOTE
You must take special care when scrolling one playfield and holding the other stationar y.
When you are scrolling low - resolution playfields, you must fetch one word more than the
width of the playfield you are trying to scroll (two words more in high - resolution mode) in

order to provide some data to display, when the actual scrolling takes p lace. Only one
data - fetch start register and one data -fetch stop register are available, and these are
shared by both playfields. If you want to scroll one playfield and hold the other, you must
adjust the data - fetch start and data - fetch stop to handle the playfield being scrolled.
Then, you must adjust the modulo and the bit -plane pointers of the playfield that is not
being scrolled to maintain its position on the display. In low - resolution mode, you adjust
the pointers by -2 and the modulo by -2. In high - resolution mode, you adjust the pointers

by -4 and the modulo by -4.

ACTIVATING DUAL PLAY -FIELD MODE
Writing a 1 to bit 10 (called DBLPF) of the bit -plane control register BPLCON0 selects dual -
playfield mode. Selecting dual -playfield mode changes both the way the hardware groups
the bit -planes for color interpretation all odd -numbered bit -planes are grouped together
and all even -numbered bit -planes are grouped together, and the way hardware can move
the bit -planes on the screen.

DUAL PLAYFIELD SUMMARY
The steps for defining dual playfields are almost the same as those for defining the basic
playfield. Only in the following steps does the dual -playfield creation process differ from
that used for the basic playfield.

o Loading colors into the registers. Ke ep in mind that color registers 0 -7 are used by
playfield 1 and registers 8 through 15 are used by playfield 2 (if there are three bit -planes
in each playfield).

o Building bit -planes. Recall that playfield 1 is formed from PLANES 1, 3, and 5 and
playfiel d 2 from PLANES 2, 4, and 6.

o Setting the modulo registers. Write the modulo to both BPLlMOD and BPL2MOD as you
will be using both odd - and even -numbered bit -planes.

These steps are added:

o Defining priority. If you want playfield 2 to have priority, set bit 6 (PF2PRI) in BPLCON2
to 1.

o Activating dual -playfield mode. Set bit 10 (DBLPF) in BPLCON0 to 1.

- Playfield Hardware 67 -

BIT -PLANES AND DISPLAY WINDOWS OF ALL SIZES

You have seen how to form single and dual playfields in which the playfield in memory is
the same size as the display window. This section shows you how to define and use a

playfield whose big picture in memory is larger than the display window, how to define
display windows that are larger or smaller than the normal playfield size, and how to
move the display window in the big picture.

WHEN THE BIG PICTURE IS LARGER THAN THE DISPLAY WINDOW
If you design a memory picture larger than the display window, you must choose which
part of it to dis play. Displaying a portion of a larger playfield differs in the following ways

from displaying the basic playfields described up to now:

o If the big picture in memory is larger than the display window, you must respecify the
modules . The modulo must be s ome value other than 0.

o You must allocate more memory for the larger memory picture.

SPECIFYING THE MODULO
For a memory picture wider than the display window, you need to respecify the modulo so
that the correct data words are fetched for each line of the display. As an example,
assume the display window is the standard 320 pixels wide, so 40 bytes are to be
displayed on each line. The big picture in memory, however, is exactly twice as wide as
the display window, or 80 bytes wide. Also, assume that you wish to display the left half
of the big picture. Figure 3-14 shows the relationship between the big picture and the

picture to be displayed.

- 68 Playfield Hardware -

 START START+78

 | Width of the Bit - Plane Defined in RAM |

 | | |

 | Width of defined | |

 | screen on which | |

 | bit - plane data is | |

 | to appear | |

 | | |

Figure 3- 14: Memory Picture Larger than the Display

Because 40 bytes are to be fetched for each line, the data fetch for line 1 is as shown in
Figur e 3-15.

Data for Line 1:

Location: START START+2 START+4 START+38

 Leftmost Next Word Next Word Last Display

 Display Word Word

 ^

Screen data fetch stops (DDFSTOP) for |

each horizontal line after the last word ----------------------- |

on the line has been fetched.

Figure 3- 15: Data Fetch for the First Line When Modulo = 40

At this point, BPLxPTH and BPLxPTL contain the value START+40. The modulo, which is
40, is added to the current value of the pointer so that when it begins the data fetch for
the next line, it fetches the data you intend for that line. The d ata fetch for line 2 is shown
in Figure 3-16.

- Playfield Hardware 69 -

Data for Line 2:

Location: START+80 START+82 START+84... START+118

 Leftmost Next Word Next W ord Last Display

 Display Word Word

Figure 3- 16: Data Fetch for the Second Line When Modulo = 40

To display the right half of the big picture, you set up a vertical blanking routine to start
the bit -plane pointers at location START+40 rather than START with the modulo remaining
at 40. The data layout is shown in Figure s 3-17 and 3 -18.

Data for Line 1:

Location START+40 START+42 START - 44... START+78

 Leftmost Next Wo rd Next Word Last Display

 Display Word Word

 Figure 3- 17: Data Layout for First Line Right Half of Big Picture

Now, the bit -plane pointers contain the value START+80. The modulo (40) is added to the
pointers so that when they begin the data fetch for the second line, the correct data is
fetched .

Data for Line 2:

Location: START+120 START+122 START+124... START+158

 Leftmost Next Word Next Word Last Display

 Display Word Word

 Figure 3- 18: Data Layout for Second Line Right Half of Big Picture

Remember, in high - resolution mode, you need to fetch twice as many bytes as in low -

resolution mode. For a normal -sized display, you fetch 80 bytes for each horizontal line
instead of 40.

- 70 Playfield Hardware -

SPECIFYING THE DATA FETCH
The data -fetch registers specify the beginning and end positions for data placement on
each horizontal line of the display. You specify data fetch in the same way as shown in the
section called "Forming a Basic Playfield."

MEMORY ALLOCATION
For larger memory pictures, you need to allocate more memory. Here is a formula for
calculating me mory requirements in general:

bytes per line * lines in playfield * # of bit -planes

Thus, if the wide playfield described in this section is formed from two bit -planes, it
requires:

80 * 200 * 2 = 32,000 bytes of memory

Recall that this is the memory r equirement for the playfield alone. You need more memory
for any sprites, animation, audio, or application programs you are using.

SELECTING THE DISPLAY WINDOW STARTING POSITION
The display window starting position is the horizontal and vertical co-ordina tes of the
upper left -hand corner of the display window. One register, DIWSTRT, holds both the
horizontal and vertical coordinates, known as HSTART and VSTART. The eight bits
allocated to HSTART are assigned to the first 256 positions, counting from the le ftmost
possible position. Thus, you can start the display window at any pixel position within this

range.

- Playfield Hardware 71 -

FULL SCREEN AREA

 0 255 361

 | | |

 | HSTART of DISPLAY | |

 | WINDOW occurs in | |

 | this region. | |

 | | |

 Figure 3- 19: Display Window Horizontal Starting Positio n

The eight bits allocated to VSTART are assigned to the first 256 positions counting down
from the top of the display.

FULL SCREEN AREA

 --- 0

 | ^ |

 | | |

 | Vstart of display window |

 | occurs in this region |

 | __v_| ___255

 | (NTSC)____________262

 | |

 Figure 3- 20: Display Window Vertical Starting Position

Recall that you select the values for the starting position as if the display were in low -
resolution, non - interlaced mode. Keep in mind, though, that for interlaced mode the
display window should be an even number of lines in height to allow for equal -sized odd
and even fields.

To set the display window starting position, write the value for HSTART into bits 0 through
7 and the value for VSTART into bits 8 through 15 of DIWSTRT.

- 72 Playfield Hard ware -

SELECTING THE STOPPING POSITION
The stopping position for the display window is the horizontal and vertical coordinates of
the lower right -hand corner of the display window. One register, DIWSTOP, contains both
coordinates, known as HSTOP and VSTOP .

See the notes in the "Forming a Basic Playfield" section for instructions on setting these
registers.

FULL SCREEN AREA

 0 255 361

 --

 | | |

 | | HSTOP of DISPLAY |

 | | WINDOW occurs in |

 | | this region. |

 | | |

 --

Figure 3- 21: Display Window Horizontal Stopping Position

Select a value that represents the correct position in low - resolutio n, non - interlaced mode.

- Playfield Hardware 73 -

FULL SCREEN AREA
 --- 0

 | |

 | _________________________________|___128

 | Vstop of display |

 | window occurs in |

 | the region. | (NTSC)______|___2 62

 | | |

 | | |

 Figure 3- 22: Display Window Vertical Stopping Position

To set the display window stopping position, write HSTOP into bits 0 through 7 and VSTOP
into bits 8 through 15 of DIWSTOP.

MAXIMUM DISPLAY WINDOW SIZE
The maximum size of a playfield display is determined by the maximum number of lines
and the maximum n umber of columns. Vertically, the restrictions are simple. No data can
be displayed in the vertical blanking area. The following Table shows the allowable vertical
display area.

 Table 3- 13: Maximum Allowable Vertical Screen Video

 Vertical Blank NTSC PAL

 Start 0 0

 Stop $15 (21) $1D (29)

 NTSC NTSC PAL PAL

 Normal Interlaced Normal Interlaced

 Displayable lines

 of screen video 241 483 283 567

 =525 - (21*2) =625 - (29*2)

Horizontally, the situation is similar. Strictly speaking, the hardware se ts a rightmost limit
to DDFSTOP of ($D8) and a leftmost limit to DDFSTRT of ($18). This gives a maximum of
25 words fetched in low - resolution mode. In high - resolution mode the maximum here is
49 words,

- 74 Pla yfield Hardware -

because the rightmost limit remains ($D8) and only one word is fetched at this limit.
However, horizontal blanking actually limits the displayable video to 368 low - resolution
pixels (23 words). These numbers are the same both for NTSC an d for PAL. In addition, it
should be noted that using a data - fetch start earlier than ($38) will disable some sprites.

 Table 3- 14: Maximum Allowable Horizontal Screen Video

 LoRes HiRes

 DDFSTRT (standard) $ 0038 $003C

 DDFSTOP (standard) $00D0 $00d4

 DDFSTRT (hw limits) $0018 $0018

 DDFSTOP (hw limits) $00D8 $00D8

 max words fetched 25 49

 max display pixels 368 (low res)

MOVING (SCROLLING) PLAYFIELDS

If you want a background display that moves, you can design a playfield larger than the
display window and scroll it. If you are using dual playfields, you can scroll them
separately.

In vertical scrolling, the playfield appear s to move smoothly up or down on the screen. All
you need do for vertical scrolling is progressively increase or decrease the starting address
for the bit -plane pointers by the size of a horizontal line in the playfield. This has the
effect of showing a lo wer or higher part of the picture each field time.

In horizontal scrolling the playfield appears to move from right - to - left or left - to - right on
the screen. Horizontal scrolling works differently from vertical scrolling you must arrange
to fetch one more w ord of data for each display line and delay the display of this data.

For either type of scrolling, resetting of pointers or data - fetch registers can be handled by
the Copper during the vertical blanking interval.

VERTICAL SCROLLING
You can scroll a play field upward or downward in the window. Each time you display the
playfield, the bit -plane pointers start at a progressively higher or lower place in the big
picture in memory. As the value of the pointer increases, more of the lower part of the
picture is shown and the picture appears to scroll upward. As the value of the pointer
decreases, more of the upper part

- Playfield Hardware 75 -

is shown and the picture scrolls downward. On an NTSC system, with a display that has
200 vertical lines, each step can be as little as 1/200th of the screen. In interlaced mode
each step could be 1/400th of the screen if clever manipulation of the pointers is used,
but it is recommended that scrolling be done two lines at a time t o maintain the odd/even

field relationship. Using a PAL system with 256 lines on the display, the step can be
1/256th of a screen, or 1/512th of a screen in interlace.

Figure 3- 23: Vertical Scrolling

To set up a pl ayfield for vertical scrolling you need to form bit -planes tall enough to allow
for the amount of scrolling you want, write software to calculate the bit -plane pointers for
the scrolling you want, and allow for the Copper to use the resultant pointers.

Assume you wish to scroll a playfield upward one line at a time. To accomplish this, before
each field is displayed, the bit -plane pointers have to increase by enough to ensure that
the pointers begin one line lower each time. For a normal -sized, low - resolut ion display in

which the modulo is 0, the pointers would be incremented by 40 bytes each time.

- 76 Playfield Hardware -

HORIZONTAL SCROLLING
You can scroll playfields horizontally from left to right or right to left on the screen. You
cont rol the speed of scrolling by specifying the amount of delay in pixels. Delay means
that an extra word of data is fetched but not immediately displayed. The extra word is

placed just to the left of the window's leftmost edge and before normal data fetch. A s the
display shifts to the right, the bits in this extra word appear on -screen at the left -hand
side of the window as bits on the right -hand side disappear off -screen. For each pixel of
delay, the on -screen data shifts one pixel to the right each display field. The greater the
delay, the greater the speed of scrolling. You can have up to 15 pixels of delay. In high -
resolution mode, scrolling is in increments of 2 pixels. Figure 3-24 shows how the delay
and extra data fetch combine to cause the scrolling e ffect.

To set up a playfield for horizontal scrolling, you need to;

o Define bit -planes wide enough to allow for the scrolling you need.

o Set the data - fetch registers to correctly place each horizontal line, including the extra
word, on the screen.

o Set the delay bits.

o Set the modulo so that the bit -plane pointers begin at the correct word for each line.

o Write Copper instructions to handle the changes during the vertical blanking interval.

SPECIFYING DATA FETCH IN HORIZONTAL SCROLLING
The norma l data - fetch start for non -scrolled displays is ($38). If horizontal scrolling is
desired, then the data fetch must start one word sooner (DDFSTRT = $0030).
Incidentally, is will disable sprite 7. DDFSTOP remains unchanged. Remember that the
settings of th e data -fetch registers affect both playfields.

SPECIFYING THE MODULO IN HORIZONTAL SCROLLING
As always, the modulo is two counts less than the difference between the address of the
next word you want to fetch and the address of the last word that was fetc hed. As an
example for horizontal scrolling, let us assume a 40 -byte display in an 80 -byte "big
picture." Because horizontal scrolling requires a data fetch of two extra bytes, the data for
each line will be 42 bytes long.

- Playfield hardware 77 -

Figure 3- 24: Horizontal Scrolling

- 78 playfield hardware -

 START START+38 START+78

 __

 | | |

 | Display | |

 | window | |

 | width | |

 | | |

 | | |

 | | |

 | < --------- Memory Picture Width ----------- > |

 |______________________|_______________________|

Figure 3- 25: Memory Picture Larger Than the Display Window

Data for Line 1:

 Location: START START+2 START+4... START+40

 Leftmost Next Word Next Word Last Display

 display word word

Figure 3- 26: Data for Line 1 - Horizontal Scrolling

At this point, the bit -plane pointers cont ain the value START+42. Adding the modulo of 38

gives the correct starting point for the next line.

Data for Line 2:

 Location: START+80 START+82 START+84 START+120

 Leftmost Next Word Next Word Last Display

 Display Word word

Figure 3- 27: Data for Line 2 Horizontal Scrolling

In the BPLxMOD registers you set the modulo for each bit -plane used.

- Playfield Hardware 79 -

SPECIFYING AMO UNT OF DELAY
The amount of delay in horizontal scrolling is controlled by bits 7 -0 in BPLCON1. You set
the delay separately for each playfield; bits 3 -0 for playfield 1 (bit -planes 1, 3, and 5) and
bits 7 -4 for playfield 2 (bit -planes 2, 4, and 6).

NOTE
Always set all six bits, even if you have only one playfield. Set 3 -0 and 7-4 to the same
value if you are using only one playfield.

The following example sets the horizontal scroll delay to 7 for both playfields.

 MOVE.W #$77,BPLCON1+CUSTOM

SCROLLED PLAYFIELD SUMMARY
The steps for defining a scrolled playfield are the same as those for defining the basic
playfield, except for the following steps:

o Defining the data fetch. Fetch one extra word per horizontal line and start it 16 pixels
before the nor mal (unscrolled) data - fetch start.

o Defining the modulo. The modulo is two counts less than when there is no scrolling.

These steps are added:

o For vertical scrolling, reset the bit -plane pointers for the amount of the scrolling

increment. Reset BPLxP TH and BPLxPTL during the vertical blanking interval.

o For horizontal scrolling, specify the delay. Set bits 7 -0 in BPLCON1 for 0 to 15 bits of
delay.

- 80 Playfield Hardware -

ADVANCED TOPICS

This section describes features that are used less often or are optional.

INTERACTIONS AMONG PLAYFIELDS AND OTHER OBJECTS
Playfields share the display with sprites. Chapter 7, "System Control Hardware," shows
how playfields can be given different video display priorities relative to the sprites and
how playfields can collide with (overlap) the sprites or each other.

HOLD-AND-MODIFY MODE
This is a special mode that allows you to produce up to 4,096 colors on the screen at the

same time. Normally, as each value formed by the combination of bit -planes is selected,
the data contained in the selected color register is loaded into the color output circuit for
the pixel being written on the screen. Therefore, each pixel is colored by the contents of
the selected color register.

In hold -and -modify mode, however, the value in the color output circuitry is held, and one
of the three components of the color (red, green, or blue) is modified by bits coming from
certain preselected bit -planes. After modification, the pixel is written to the screen.

The hold -and -modify mode allows very fine g radients of color or shading to be produced
on the screen. For example, you might draw a set of 16 vases, each a different color,
using all 16 colors in the color palette. Then, for each case, you use hold -and -modify to
very finely shade or highlight or add a completely different color to each of the vases.
Note that a particular hold -and -modify pixel can only change one of the three color values

at a time. Thus, the effect has a limited control.

In hold and modify mode, you use all six bit -planes. Planes 5 and 6 are used to modify the
way bits from planes 1 - 4 are treated, as follows:

o If the 6 -5 bit combination from planes 6 and 5 for any given pixel is 00, normal color
selection proc edure is followed. Thus, the bit combinations from planes 4 -1, in that order
of significance, are used to choose one of 16 color registers (registers 0 - 15).

o If only five bit -planes are used, the data from the sixth plane is automatically supplied
with the value as 0.

o If the 6 -5 bit combination is 01, the color of the pixel immediately to the left of this pixel
is duplicated and then modified. The bit -combinations from planes 4 -1 are used to replace

the four "blue" bits in the corresponding color reg ister.

- Playfield Hardware 81 -

o If the 6 -5 bit combination is 10, the color of the pixel immediately to the left of this pixel
is duplicated and then modified. The bit -combinations from planes 4 -1 are used to
replace the four "red" bits.

o If the 6 -5 bit combination is 11, the color of the pixel immediately to the left of this pixel
is duplicated and then modified. The bit -combinations from planes 4 -1 are used to
replace the four "green" bits.

Using hold -and-modify mode, it is possible to get by with defining only one color register,
which is COLOR0, the color of the background. You treat the entire screen as a
modification of that original color, according to the scheme above.

Bit 11 of register BPLCON0 se lects hold -and -modify mode. The following bits in BPLCON0
must be set for hold -and -modify mode to be active:

o Bit HOMOD, bit 11, is 1.

o Bit DBLPF, bit 10, is 0 (single -playfield mode specified).

o Bit HIRES, bit 15, is 0 (low - resolution mode specified).

o Bits BPU2, BPUI, and BPU0 - bits 14, 13, and 12, are 101 or 110 (five or six bit -planes
active).

The following example code generates a six -bit -plane display with hold -and -modify mode

turned on. All 32 color registers are loaded with black to prove that the colors are being
generated by hold -and -modify. The equates are the usual and are not repeated here.

; First, set up the control registers.

;

 LEA CUSTOM,a0 ; Point a0 at custom chips

 MOVE.W #$6A00,BPLCON0(a0) ; Si x bit - planes, hold - and- modify mode

 MOVE.W #0,BPLCON1(a0) ; Horizontal scroll = 0

 MOVE.W #0,BPL1MOD(a0) ; Modulo for odd bit - planes = 0

 MOVE.W #0,BPL2MOD(a0) ; Ditto for even bit - planes

 MOVE.W #$0038,DDFSTRT(a0) ; Set data - fetch start

 MOVE.W #$00D0,DDFSTOP(a0) ; Set data - fetch stop

 MOVE.W #$2C81,DIWSTRT(a0) ; Set display window start

 MOVE.W #$F4C1,DIWSTOP(a0) ; Set display window stop

;

;Set all color registers = black t o pro ve that hold - and- modify mode is ;

; working

;

 MOVE.W #32,d0 ; Initialize counter

 LEA CUSTOM+COLOR00,a1 ; Point al at first color register

CREGLOOP:

 MOVE.W #$0000,(a1)+ ; Write black to a color reg ister

 DBRA d0,CREGLOOP ; Decrement counter and loop till done

;

; Fill six bit - planes with an easily recognizable pattern.

;

; NOTE: This is just for example use. Normally these bit planes would

; need to be allocated from the sys tem MEMF_CHIP memory pool.

;

- 82 Playfield Hardware -

 MOVE.W #2000,d0 ; 2000 longwords per bit - plane

 MOVE.L #$21000,a1 ; Point a1 at bit - plane 1

 MOVE.L #$23000,a2 ; Poin t a2 at bit - plane 2

 MOVE.L #$25000,a3 ; Point a3 at bit - plane 3

 MOVE.L #$27000,a4 ; Point a4 at bit - plane 4

 MOVE.L #$29000,a5 ; Point a5 at bit - plane 5

 MOVE.L #$2B000,a6 ; Point a6 at bit - plane 6

FPLLOOP:

 MOVE.L #$55555555,(a1)+ ; Fill bit - plane 1 with $55555555

 MOVE.L #$33333333,(a2)+ ; Fill bit - plane 2 with $33333333

 MOVE.L #$0F0F0F0F,(a3)+ ; Fill bit - plane 3 with $0F0F0F0F

 MOVE.L #$00FF00FF,(a 4)+ ; Fill bit - plane 4 with $00FF00FF

 MOVE.L #$CF3CF3CF,(a5)+ ; Fill bit - plane 5 with $CF3CF3CF

 MOVE.L #$3CF3CF3C,(a6)+ ; Fill bit - plane 6 with $3CF3CF3C

 DBRA d0,FPLLOOP ; Decrement counter & loop till don e

;

; Set up a Copper list at $20000.

;

; NOTE: As with the bit planes, the copper list location should be allocated

; from the system MEMF_CHIP memory pool.

;

 MOVE.L #$20000,a1 ; Point al at Copper list dest

 LEA COPPERL(pc), a2 ; Point a2 at Copper list image

CLOOP:

 MOVE.L (a2),(a1)+ ; Move a long word

 CMPI.L #$FFFFFFFE,(a2)+ ; Check for end of Copper list

 BNE CLOOP ; Loop until entire Cop list moved

;

;Point Co pper at Copper list

;

 MOVE.L #$20000,COP1LCH(a0) ; Load Copper jump register

 MOVE.W COPJMP1(a0),d0 ; Force load into Copper P.C.

;

; Start DMA.

;

 MOVE.W #$8380,DMACON(a0) ; Enable bit - plane and Copper DMA

 BRAnext stuff to do

;

; Copper list for six bit - planes. Bit - plane 1 is at $21000; 2 is at $23000;

; 3 is at $25000; 4 is at $27000; 5 is at $29000; 6 is at $2B000.

;

; NOTE: These bit - plane addresses are for example purposes only.

; See note above.

;

COPPERL:

 DC.W BPL1PTH,$0002 ; Bit - plane 1 pointer = $21000

 DC.W BPL1PTL,$1000

 DC.W BPL2PTH,$0002 ; Bit - plane 2 pointer = $23000

 DC.W BPL2PTL,$3000

 DC.W BPL3PTH,$0002 ; Bit - plane 3 pointer = $25000

 DC.W BPL3PTL,$5000

 DC.W BPL4PTH,$0002 ; Bit - plane 4 pointer = $27000

 DC.W BPL4PTL,$7000

 DC.W BPL5PTH,$0002 ; Bit - plane 5 pointer = $29000

 DC.W BPL5PTL,$9000

 DC.W BPL6PTH,$0002 ; Bit - plane 6 pointer = $2B000

 DC.W BPL6PTL,$B000

 DC.W $FFFF,$FFFE ; Wait or the impossible, i.e., quit

- Playfield Hardware 83 -

FORMING A DISPLAY WITH SEVERAL DIFFERENT PLAYFIELDS
The graphics library provides the ability to split the scree n into several "ViewPorts", each
with its own colors and resolutions. See the Amiga ROM Kernel Manual for more
information.

USING AN EXTERNAL VIDEO SOURCE
An optional board that provides genlock is available for the Amiga. Genlock allows you to
bring in y our graphics display from an external video source (such as a VCR, camera, or
laser disk player). When you use genlock, the background color is replaced by the display
from this external video source. For more information, see the instructions furnished wi th
the optional board.

SUMMARY OF PLAYFIELD REGISTERS
This section summarizes the registers used in this chapter and the meaning of their bit
settings. The color registers are summarized in the next section. See Appendix A for a
summary of all registers.

BPLCON0 - Bit Plane Control

NOTE

Bits in this register cannot be independently set.

 Bit 0 - unused

 Bit 1 - ERSY (external synchronization enable)

 1 = External synchronization enabled (allows genlock synchronization

 to occu r)

 0 = External synchronization disabled

 Bit 2 - LACE (interlace enable)

 1 = interlaced mode enabled

 0 = non - interlaced mode enabled

 Bit 3 - LPEN (light pen enable)

 Bits 4 - 7 not used (make 0)

- 84 Playfield Hardware -

 Bit 8 - GAUD (genlock audio enable)

 1 = Genlock audio enabled

 0 = Genlock audio disabled (in blanking periods, this bit goes out

 on the pixel switch

 Bit 9 - COLOR ON (c olor enable)

 1 = composite video color - burst enabled

 0 = composite video color - burst disabled

 Bit 10 - DBLPF (double - playfield enable)

 1 = dual playfields enabled

 0 = single playfield enabled

 Bit 11 - HOMOD (hold - and- modify enable)

 1 = hold - and- modify enabled

 0 = hold - and- modify disabled

 Bits 14, 13,12 - BPU2, BPU1, BPU0

 Number of bit - planes used.

 000 = only a background color

 001 = 1 bit - plane, PLANE 1

 010 = 2 bit - planes, PLANES 1 and 2

 011 = 3 bit - planes, PLANES 1 - 3

 100 = 4 bit - planes, PLANES 1 - 4

 101 = 5 bit - planes, PLANES 1 - 5

 110 = 6 bit - planes, PLANES 1 - 6

 111 not used

 Bit 15 - HIRES (high - resolution enable)

 1 = high - resolution mode

 0 = low - resolution mode

BPLCON1 - Bit - plane Control

 Bits 3 - 0 - PF1H(3 - 0)

 Playfield 1 delay

 Bits 7 - 4 - PF2H(3 - 0)

 Playfield 2 delay

 Bits 15 - 8 not used

- Playfield Hardware 85 -

BPLCON2 - Bit - plane Control

 Bit 6 - PF2PRI

 1 = Playfield 2 has priority

 0 = Playfield 1 has priority

 Bits 0 - 5 Playfield sprite priority

 Bits 7 - 15 not used

DDFSTRT - Data - fetch Start

 (Beginning position for data fetch)

 Bits 15 - 8 - not used

 Bits 7 - 2 - pixel position H8 - H3

 Bits 1 - 0 only respected in HiRes Mode.

 Bits 1 - 0 - not used

DDFSTOP - Data - fetch Stop

 (Ending position for data fetch)

 Bits 15 - 8 - not used

 Bits 7 - 2 - pixel position H8 - H3

 Bit H3 only respected in HiRes Mode.

 Bits 1 - 0 - not used

BPLxPTH - Bit - plane Pointer

 (Bit - plane pointer high word, where x is the bit - plane number)

BPLxPTL - Bit - plane Pointer

 (Bit - plane pointer low word, where x is the bit - plane number)

DIWSTRT - Display Window Start

 (Starting vertical and horizontal coordinates)

 Bits 15 - 8 - VSTART (V7 - V0)

 Bits 7 - 0 - HSTART (H7- H0)

- 86 Playfield Hardware -

DIWSTOP - Display Win dow Stop

 (Ending vertical and horizontal coordinates)

 Bits 15 - 8 - VSTOP (V7 - V0)

 Bits 7 - 0 - HSTOP (H7- H0)

BPL1MOD - Bit - plane Modulo

 (Odd - numbered bit - planes, playfield 1)

BPL2MOD - Bit - plane Modulo

 (Even - numbered bit - planes, playfield 2)

SUMMARY OF COLOR SELECTION

This section contains summaries of playfield color selection including color register
contents, example colors, and the differences in color selection in high - resolution and low -
resolution modes.

COLOR REGISTER CONTENTS
Table 3-15 shows the contents of each color register. All color registers are write -only.

 Table 3- 15: Colo r register contents

 Bits Contents

 15- 12 (Unused - set to 0)

 11- 8 Red

 7- 4 Green

 3- 0 Blue

- Playfield Hardware 87 -

SOME SAMPLE COLOR REGISTER CONTENTS
Table 3-16 shows a variety of colors and the hexadecimal values to load into the color
registers for these colors .

Table 3- 16: Some Register Values and Resulting Colors

 Value Color Value Color

 $FFF White $1FB Light aqua

 $D00 Brick red $6FE Sky blue

 $F00 Red $6CE Lig ht blue

 $F80 Red - orange $00F Blue

 $F90 Orange $61F Bright blue

 $FB0 Golden orange $06D Dark blue

 $FD0 Cadmium yellow $91F Purple

 $FF0 Lemon yellow $ClF Viol et

 $BF0 Lime green $FlF Magenta

 $8E0 Light green $FAC Pink

 $0F0 Green $DB9 Tan

 $2C0 Dark green $C80 Brown

 $0B1 Forest green $A87 Dark brown

 $0BB Blue green $CCC Light grey

 $0DB Aqua $999 Medium grey

 $000 Black

COLOR SELECTION IN LOW -RESOLUTION MODE
Table 3-17 shows playfield color selection in low - resolution mode. If the bit combinations

from the playfields are as shown, the color is taken from the color register number
indicated.

- 88 Playfield Hardware -

Table 3- 17: Low - resolution Color Selection

 Singe Playfield Dual Playfields

 Normal Mode Hold - and- modify Mode Color Register

 (Bit - planes 5,4,3,2,1) (Bit - planes 4,3,2,1) Number

 Playfield 1

 Bit - planes 5,3,1

 00000 0000 000 0 *

 00001 0001 001 1

 00010 0010 010 2

 00011 0011 011 3

 00100 0100 100 4

 00101 0101 101 5

 00110 0100 11 0 6

 00111 0111 111 7

 Playfield 2

 Bit - planes 6,4,2

 01000 1000 000 * * 8

 01001 1001 001 9

 01010 1010 010 10

 01011 1011 011 11

 01100 1100 100 12

 01101 1101 101 13

 01110 1110 110 14

 01111 1111 111 15

 10000 | | 16

 10001 | | 17

 10010 | | 18

 10011 | | 19

 10100 NOT NOT 20

 10101 USED USED 21

 10110 IN IN 22

 10111 THIS THIS 23

 11000 MODE MODE 24

 11001 | | 25

 11010 | | 26

 11011 | | 27

 11100 | | 28

 11101 | | 29

 11110 | | 30

 11111 | | 31

* Color register 0 always defines the background color.

** Selects "transparent" mode instead of selecting color register 8.

- Playfield Hardware 89 -

COLOR SELECTION IN HOLD -AND-MODIFY MODE
In hold -and -modify mode, the color register contents are changed as shown in Table 3-
18. This mode is in effect only if bit 10 of BPLCON0 = 1.

 Table 3- 18: Color Selection in Hold - and- modify Mode

 Bitplane 6 Bitplane 5 Result

 0 0 Normal operation (use color register itself)

 0 1 Hold green and red B = Bit - plane 4 - 1 contents

 0 Hold green and blue R = Bit - pla ne 4 - 1 contents

 Hold blue and red G = Bit - plane 4 - 1 contents

COLOR SELECTION IN HIGH -RESOLUTION MODE
Table 3-19 shows playfield color selection in high - resolution mode. If the bit -combinations
from the playfields are as sho wn, the color is taken from the color register number
indicated.

- 90 Playfield Hardware -

 Table 3- 19 High - resolution Color Selection

 Single Du al Color

 Playfield Playfields Register

 Bit - planes 4,3,2,1 Number

 Playfield 1

 Bit - planes 3, 1

 0000 00 * 0 **

 0001 01 1

 0010 10 2

 0011 11 3

 0100 | 4

 0101 NOT USED 5

 0110 IN THIS MODE 6

 0111 | 7

 Playfield 2

 Bit - planes 4.2

 1000 00 * 8

 1001 01 9

 1010 10 10

 1011 11 11

 1100 | 12

 1101 NOT USED 13

 1110 IN THIS MODE 14

 1111 | 15

* Selects "transparent" mode.

* * Color register 0 always defines the background color.

- Playfield Hardware 91 -

- 92 Playfield Hardware -

CHAPTER 4

SPRITE HARDWARE

INTRODUCTION

Sprites are hardware objects that are created and moved independently of the playfield
display and independently of each other. Together with playf ields, sprites form the
graphics display of the Amiga. You can create more complex animation effects by using
the blitter, which is described in the chapter called "Blitter Hardware." Sprites are

produced on -screen by eight special -purpose sprite DMA chann els. Basic sprites are 16
pixels wide and any number of lines high . You can choose from three colors for a sprite's
pixels, and a pixel may also be transparent,

Showing any object behind the sprite. For larger or more complex objects, or for more
color ch oices, you can combine sprites.

- Sprite Hardware 93 -

Sprite DMA channels can be reused several times within the same display field. Thus, you
are not limited to having only eight sprit es on the screen at the same time.

ABOUT THIS CHAPTER

This chapter discusses the following topics:

o Defining the size, shape, color, and screen position of sprites.

o Displaying and moving sprites.

o Combining sprites for more complex images, addition al width, or additional colors.

o Reusing a sprite DMA channel multiple times within a display field to create more than
eight sprites on the screen at one time.

FORMING A SPRITE

To form a sprite, you must first define it and then create a formal data structure in
memory. You define a sprite by specifying its characteristics:

o On -screen width of up to 16 pixels.

o Unlimited height.

o Any shape.

o A combination of three colors, plus transparent.

o Any position on the screen.

SCREEN POSITION
A sprit e's screen position is defined as a set of X,Y coordinates. Position (0,0), where X =
0 and Y = 0, is the upper left -hand corner of the display. You define a sprite's location by
specifying the coordinates of its upper left -hand pixel. Sprite position is a lways defined as
though the display modes were low - resolution and non -interlaced. The X,Y coordinate
system and definition of a sprite's position are graphically represented in Figure 4-1.
Notice that because of display overscan, position (0,0) (that is, X = 0, Y = 0) is not
normally in a viewable region of the screen.

- 94 Sprite Hardware -

 (0,0)

 \ Visible screen area

 \ _______________________ /

 | | /

 | ____________|____________/

 | | Y |

 | | | |

 | | |______ |

 | ------- X-------- | / \ | |

 | | |__ \ /__| |

 | | |

 | | |

 Figure 4- 1: (Defining Sprite On - screen Position)

The amount of viewable area is also affected by the size of the playfield display wind ow
(defined by the values in DDFSTRT, DDFSTOP, DIWSTRT, DIWSTOP, etc.). See the
"Playfield Hardware" chapter for more information about overscan and display windows.

HORIZONTAL POSITION
A sprite's horizontal position (X value) can be at any pixel on the s creen from 0 to 447. To
be visible, however, an object must be within the boundaries of the playfield display
window. In the examples in this chapter, a window with horizontal positions from pixel 64
to pixel 383 is used (that is, each line is 320 pixels l ong). Larger or smaller windows can
be defined as required, but it is recommended that you read the "Playfield Hardware"

chapter before attempting to do so. A larger area is actually scanned by the video beam
but is not usually visible on the screen.

If you specify an X value for a sprite that takes it outside the display window, then part or
all of the sprite may not appear on the screen. This is sometimes desirable; such a sprite
is said to be "clipped. "

To make a sprite appear in its correct on -scree n horizontal position in the display window,
simply add its left offset to the desired X value. In the example given above, this would
involve adding 64 to the X value. For example, to make the upper leftmost pixel of a
sprite appear at a position 94 pixel s from the left edge of the screen, you would perform
this calculation:

Desired X position + horizontal -offset of display window = 94 + 64 = 158

- Sprite Hardware 95 -

Thus, 158 becomes the X value, which will be written into the data structure.

NOTE
The X position represents the location of the very first (leftmost) pixel in the full 16 -bit -

wide sprite. This is always the case, even if the leftmost pixels are specified as
transparent and do not appear on the screen.

If the sprite shown in Figure 4-2 were located at an X value of 158, the actual image
would begin on -screen four pixels later at 162. The first four pixels in this sprite are
transparent and allow the background to show through.

Figure 4- 2: (Position of Sprites)

VERTICAL POSITION
You can select any position from line 0 to line 262 for the topmost edge of the sprite. In
the examples in this chapter, an NTSC window with vertical positions from line 44 to line
243 is used. This allows the normal display height of 200 lines in non -interlaced mode. If
you specify a vertical position (Y value) of less than 44 (i.e. , above the top of the display
window) the top edge of the sprite may not appear on screen.

To make a sprite appear in its correct on -screen vertical position, add the Y value to the
desired position. Using the above numbers, add 44 to the desired Y position. For example,
to make the upper leftmost pixel appear 25 lines below the top edge of the screen,
perform this calcu lation:

Desired Y position + vertical -offset of the display window = 25 + 44 = 69

Thus, 69 is the Y value you will write into the data structure.

 - 96 Sprite Hardware -

CLIPPED SPRITES
As noted above, sprites will be pa rtially or totally clipped if they pass across or beyond the
boundaries of the display window. The values of 64 (horizontal) and 44 (vertical) are
"normal" for a centred display on a standard NTSC video monitor. See Chapter 3,

"Playfield Hardware", for mor e information on display offsets. Information on PAL displays
will be found there. If you choose other values to establish your display window, your
sprites will be clipped accordingly.

SIZE OF SPRITES
Sprites are 16 pixels wide and can be almost any heig ht you wish... as short as one line or
taller than the screen. You would probably move a very tall sprite vertically to display a

portion of it at a time.

Sprite size is based on a pixel that is 1/320th of a screen's width, 1/200th of a NTSC
screen's heig ht, or 1/256 of a PAL screen's height. This pixel size corresponds to the low -
resolution and non -interlaced modes of the normal full -size playfield. Sprites, however,
are independent of playfield modes of display, so changing the resolution or interlace
mo de of the playfield has no effect on the size or resolution of a sprite.

SHAPE OF SPRITES
A sprite can have any shape that will fit within the 16 -pixel width. You define a sprite's
shape by specifying which pixels actually appear in each of the sprite's l ocations. For
example, Figure s 4 -3 and 4 -4 show a spaceship whose shape is marked by Xs. The first
Figure shows only the spaceship as you might sketch it out on graph paper. The second
Figure shows the spaceship within the 16 -pixel width. The 0s around the spaceship mark

the part of the sprite not covered by the spaceship and transparent when displayed.

 x x

 x x x x x

 x x x x x x x x x x

 x x x x x x x x x x

 x x x x x x

 x x

 Figure 4- 3: Shape of Spaceship

- Sprite Hardware 97 -

 o o o o x x o o o o o o o o o o

 o o x x x x x x o o o o o o o o

 x x x x x x x x x x o o o o o o

 x x x x x x x x x x o o o o o o

 o o x x x x x x o o o o o o o o

 o o o o x x o o o o o o o o o o

 Figure 4- 4: Sprite with Spaceship Shape Defined

In this example, the widest part of the shape is ten pixels and the shape is shifted to the
left of the sprite. Whenev er the shape is narrower than the sprite, you can control which
part of the sprite is used to define the shape. This particular shape could also start at any
of the pixels from 2 -7 instead of pixel 1.

SPRITE COLOR
When sprites are used individually (that is, not "attached" as described under "Attached
Sprites" later), each pixel can be one of three colors or transparent. Colors are selected in
much the same manner as playfield colors.

Figure 4-5 shows how the color of each pixel in a sprite is determined.

- 98 Sprite Hardware -

Figure 4- 5: (Sprite Color Definition)

The 0s and 1s in the two data words that define each line of a sprite in the data structure
form a binary number. This binary number points to one of the four color registers
assigned to that particular sprite DMA channel. The eight sprites use system color
registers 16 - 31. For purposes of color selection, the eight sprites are organized into pairs
and each pair uses four of t he color registers as shown in Figure 4-6.

NOTE
The color value of the first register in each group of four registers is ignored by sprites.
When the sprite bits select this register, the "transparent" value is used.

- Sprite Hardware 99 -

Codes 01,10,or 11 select one of three possible registers from the normal color register
from the normal color register group, from which the actual color data is taken.

 COLOR REGISTER SET

 __ | Unused | 16

 | 00 |_________________________| \

 Sprite 0 or 1 | 01 |_________________________| \

 | 10 |_________________________| \

 |__ 11 |_________________________| \

 __ | Unused | 20 \

 | 00 |_________________________| \ \

 Sprite 2 or 3 | 01 |_________________________| \ \

 | 10 |_________________________| \ \

 |__ 11 |_________________________| \ \

 __ | Unused | 24 --------- > Yields

 | 00 |_________________________| / / Trans -

 Sprite 4 or 5 | 01 |_________________________| / / parent

 | 10 |_________________________| / /

 |__ 11 |_________________________| / /

 __ | Unused | 28 /

 | 00 |_________________________| /

 Sprite 6 or 7 | 01 |_________________________| /

 | 10 |_________________________| /

 |__ 11 |_________________________| 31 /

 Figure 4- 6: (Color Register Assignments)

If you require certain colors in a sprite, you will want to load the sprite's color registers
with those colors. The "Playfield Hardware" cha pter contains instructions on loading color
registers.

The binary number 00 is special in this color scheme. A pixel whose value is 00 becomes

transparent and shows the color of any other sprite or playfield that has lower video
priority. An object with l ow priority appears "behind" an object with higher priority. Each
sprite has a fixed video priority with respect to all the other sprites. You can vary the
priority between sprites and playfields. (See Chapter 7, "System Control Hardware," for
more informa tion about sprite priority.)

- 100 Sprite Hardware -

DESIGNING A SPRITE
For design purposes, it is convenient to lay out the sprite on paper first. You can show
the desired colors as numbers from 0 to 3. For example, the spaceship shown above
might look like this:

 0000122332210000

 0001223333221000

 0012223333222100

 0001223333221000

 0000122332210000

The next step is to convert the numbers 0 -3 into binary numbers, which w ill be used to

build the color descriptor words of the sprite data structure. The section below shows how
to do this.

BUILDING THE DATA STRUCTURE
After defining the sprite, you need to build its data structure, which is a series of 16 -bit
words in a conti guous memory area. Some of the words contain position and control
information and some contain color descriptions. To create a sprite's data structure, you

need to:

o Write the horizontal and vertical position of the sprite into the first control word.

o Write the vertical stopping position into the second control word.

o Translate the decimal color numbers 0 - 3 in your sprite grid picture into binary color

numbers. Use the binary values to build color descriptor (data) words and write these
words into the data structure.

o Write the control words that indicate the end of the sprite data structure.

NOTE
Sprite data, like all other data accessed by the custom chips, must be loaded into Chip

RAM. Be sure all of your sprite data structures are word aligne d in Chip Memory.

Table 4-1 shows a sprite data structure with the memory location and function of each
word:

- Sprite Hardware 101 -

 Table 4- 1: Sprite Data Structure

 Memory

 Location 16 - bit Word Function

 N Sprite control word 1 Vertical and horizontal start

 position

 N+1 Sprite control word 2 Vertical stop position

 N+2 Color d escriptor low word Color bits for line 1

 N+3 Color descriptor high word Color bits for line 1

 N+4 Color descriptor low word Color bits for line 2

 N+5 Color descriptor high word Color bits for line 2

 .

 .

 .

 End- of - data words Two words indicating

 the next usage of this sprite

All memory addresses for sprites are word addresses. You will need enough contiguous
memory to provide room for two words for the control information, two words for each
horizontal line in the sprite, and two end -of -data words.

Because this data structure must be accessible by the special -purpose chips, you must
ensure that this data is located within chip memory.

Figure 4-7 shows how the data structure relates to the sprite.

- 102 Sprite Hardware -

Figure 4- 7 PART ONE: (Data Str ucture Layout)

Figure 4- 7 PART TWO: (Data Structure Layout)

 /| \ <------------- 16 Bits ----------- >

 | _________________________________ ---- \ _ Each group of words

 | | | | / defines one vertical

 | | VSTART, HSTART | | / usage of a sprite.

 | |________________________________ _| | / Contains starting

 | | |/ location & physical

 I | VSTOP, control bits | | appearance of this

 N |_________________________________| | sprite image.

 C _____ ____________________________ ___|___

 R | | | |

 E | Low word of data, line 1 | | |

 A |_________________________________| | |

 S | | | | \

 I | High word of data, line 1 | | | \

 N |_________________________________| | | \ _ Pairs of words

 G _____ | | containing color

 _____ Data describing central | | information for

 A _____ lines of this sprite. | | pixel lines.

 D _________________________________ | |

 D | | | |

 R | low word of data, last line | | |

 E |__________________ _______________| | |

 S | | | |

 S | High word of data, last line | | |

 E |_________________________________|___|___|

 S ____|

 __________________ _______________

 | | | \

 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \

 | |_________________________________| \ _ Last word pair contains

 | _________________________________ all zeros if this sprite

 | | | processor is to be used

 | | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | only once vertically in

 \ |/ |_________________________________| the display frame.

 V

- Sprite Hardware 103 -

SPRITE CONTROL WORD 1: SPRxPOS
This word contains the vertical (VSTART) and horizontal (HSTART) starting position for the
sprite. This is where the topmost line of the sprite will be positioned.

 Bits 15 - 8 contain the low 8 bits of VSTART

 Bits 7 - 0 contain the high 8 bits of HSTART

SPRITE CONTROL WORD 2: SPRxCTL
This word contains the vertical stopping position of t he sprite on the screen (i.e., the line
AFTER the last displayed row of the sprite). It also contains some data having to do with
sprite attachment, which is described later on.

 SPRxCTL

 Bits 15 - 8 The low eight bits of VSTOP

 Bit 7 (Used in attachment)

 Bits 6 - 3 Unused (make zero)

 Bit 2 The VSTART high bit

 Bit 1 The VSTOP high bit

 Bit 0 The HSTART low bit

The value (VSTOP - VSTART) defines how many scan lines high the sprite will
be when it is displayed.

SPRITE COLOR DESCRIPTOR WORDS
It takes two color descriptor words to describe each horizontal lin e of a sprite; the high -

order word and the low -order word. To calculate how many color descriptor words you
need, multiply the height of the sprite in lines by 2. The bits in the high -order color
descriptor word contribute the left most digit of the binary color selector number for each
pixel; the low -order word contributes the rightmost digit.

- 104 Sprite Hardware -

To form the color descriptor words, you first need to form a picture of the sprite, s howing
the color of each pixel as a number from 0 - 3. Each number represents one of the colors
in the sprite's color registers. For example, here is the spaceship sprite again:

 0000122332210000

 0001223333221000

 0012223333222100

 0001223333221000

 0000122332210000

Next, you translate each of the numbers in this picture into a binary number. The first line
in binary is shown below. The binary numbers are represented vertically with the low digit

in the top line and the high digit right below it. This is how the two color descriptor words
for each sprite line are written in memory.

 0000100110010000 < --- LowSpriteWord

 0000011111100000 < --- HighSpriteWord

The first line above becomes the color descriptor lo w word for line 1 of the sprite. The
second line becomes the color descriptor high word. In this fashion, you translate each
line in the sprite into binary 0s and 1s. See Figure 4-7. Each of the binary numbers
formed by the combination of the two data wor ds for each line refers to a specific color
register in that particular sprite channel's segment of the color Table . Sprite channel 0, for
example, takes its colors from registers 17 - 19. The binary numbers corresponding to the
color reg isters for sprite DMA channel 0 are shown in Table 4-2.

 Table 4- 2: Sprite Color Registers

 BINARY NUMBER COLOR REGISTER NUMBER

 00 Transparent

 01 17

 10 18

 11 19

Recall that b inary 00 always means transparent and never refers to a color except
background.

END-OF-DATA WORDS
When the vertical position of the beam counter is equal to the VSTOP value in the sprite
control words, the next two words fetched from the sprite data stru cture are written into
the sprite control registers instead of being sent to the color registers. These two words
are interpreted by the

- Sprite Hardware 105 -

hardware in the same manner as the original words th at were first loaded into the control
registers. If the VSTART value contained in these words is lower than the current beam
position, this sprite will not be reused in this display field. For consistency, the value 0
should be used for both words when end ing the usage of a sprite. Sprite reuse is

discussed later.

The following data structure is for the spaceship sprite. It will be located at V = 65 and H
= 128 on the normally visible part of the screen.

SPRITE:

 DC.W $6D60, $7200 ;VSTART, HSTART , VSTOP

 DC.W $0990, $07E0 ;First pair of descriptor words

 DC.W $13C8, $0FF0

 DC.W $23C4, $1FF8

 DC.W $13C8, $0FF0

 DC.W $0990, $07E0

 DC.W $0000, $0000 ;End of sprite data

DISPLAYING A SPRITE

After building the dat a structure, you need to tell the system to display it. This section
describes the display of sprites in "automatic" mode. In this mode, once the sprite DMA
channel begins to retrieve and display the data, the display continues until the VSTOP
position is reached. Manual mode is described later on in this chapter.

The following steps are used in displaying the sprite:

1. Decide which of the eight sprite DMA channels to use (making certain that the chosen
channel is available).

2. Set the sprite pointers to tell the system where to find the sprite data.

3. Turn on sprite direct memory access if it is not already on.

4. For each subsequent display field, during the vertical blanking interval, rewrite the
sprite pointers.

CAUTION
If sprite DMA is turned off while a sprite is being displayed (that is, after VSTART but
before VSTOP), the system will continue to display the line of sprite data that was most
recently fetched. This causes a vertical bar to appear on the screen. It is recommended
that sprite DMA be turned off only during vertical blanking or during some portion of the
display where you are sure that no sprite is being displayed.

- 106 Sprite hardware -

SELECTING A DMA CHANNEL AND SETTING THE POINTERS
In d eciding which DMA channel to use, you should take into consideration the colors
assigned to the sprite and the sprite's video priority.

The sprite DMA channel uses two pointers to read in sprite data and control words. During
the vertical blanking interva l before the first display of the sprite, you need to write the
sprite's memory address into these pointers. The pointers for each sprite are called
SPRxPTH and SPRxPTL, where "x" is the number of the sprite DMA channel. S PRxPTH
contains the high three bit s of the memory address of th e first word in ,the sprite and
SPRxPTL contains the low sixteen bits. The least significan t bit of SPRxPTL is ignored, as
sprite data must be word aligned. Thus, only fifteen bits of SPRxPTL are used. As usual,

you can write a long word into SPRxPTH.

In the following example the processor initializes the data pointers for sprite 0. Normally,
this is done by the Copper. The sprite is at address $20000.

 MOVE.L #$20000,SPR0PTH+CUSTOM ;Write S20000 to sprite 0 pointer...

These pointers are dynamic; they are incremented by the sprite DMA channel to point first
to the control words, then to the data words, and finally to the end -of -data words. After
reading in the sprite control information and storing it in other registers, th ey proceed to
read in the color descriptor words. The color descriptor words are stored in sprite data
registers, which are used by the sprite DMA channel to display the data on screen. For
more information about how the sprite DMA channels handle the disp lay, see the
"Hardware Details" section below.

RESETTING THE ADDRESS POINTERS
For one single display field, the system will automatically read the data structure and
produce the sprite on -screen in the colors that are specified in the sprite's color regis ters.
If you want the sprite to be displayed in subsequent display fields, you must rewrite the
contents of the sprite pointers during each vertical blanking interval. This is necessary
because during the display field, the pointers are incremented to poin t to the data which is

being fetched as the screen display progresses.

The rewrite becomes part of the vertical blanking routine, which can be handled by
instructions in the Copper lists.

- Sprite Hardware 107 -

SPRITE DISPLAY EXAMPLE
This example displays the spaceship sprite at location V = 65, H = 128. Remember to
include the file "hw_examples.i", located in Appendix J.

; First, we set up a single bit - plane.

;

 LEA CUSTOM,a0 ; Point a0 at custom chips

 MOVE.W #$1200,BPLCON0(a0) ; 1 bit - plane color is on

 MOVE.W #$0000,BPL1MOD(a0) ; Modulo = 0

 MOVE.W #$0000,BPLCON1(a0) ; Horizontal scroll value = 0

 MOVE.W #$0024,BPLCON2(a0) ; Sprites have priority over playfields

 MOVE.W #$0038,DDFSTRT(a0) ; Set data - fetch alert

 MOVE.W #$00D0,DDFSTOP(a0) ; Set data - fetch stop

; Display window definitions.

 MOVE.W #$2C81,DIWSTRT(a0) ; Set display window start

 ; Vertical start in high byte.

 ; Horizontal start * 2 in low byte.

 MOVE.W #$F4C1,DIWSTOP(a0) ; Set display window stop

 ; Vertical stop in high byte.

 ; Horizontal stop * 2 in low byte.

;

; Set up color registers.

;

 MOVE.W #$0008,COLOR00(a0) ; Background color = dark blue

 MOVE.W #$0000,COLOR01(a0) ; Foreground color = black

 MOVE.W #$0FF0,COLOR17(a0) ; Colo r 17 = yellow

 MOVE.W #$00FF,COLOR18(a0) ; Color 18 = cyan

 MOVE.W #$0FOF,COLORl9(a0) ; Color 19 = magenta

;

; Move Copper list to $20000.

;

 MOVE.L #$20000,a1 ; Point A1 at Copper list destination

 LEA COPPERL(pc),a 2 ; Point A2 at Copper list source

CLOOP:

 MOVE.L (a2),(a1)+ ; Move a long word

 CMP.L #$FFFFFFFE,(a2)+ ; Check for end of list

 BNE CLOOP ; Loop until entire list is moved

;

; Move sprite t o $25000.

;

 MOVE.L #$25000,a1 ; Point A1 at sprite destination

 LEA SPRITE(pc),a2 ; Point A2 at sprite source

SPRLOOP:

 MOVE.L (a2),(a1)+ ; Move a long word

 CMP.L #$00000000,(a2)+ ; Check fo r end of sprite

 BNE SPRLOOP ; Loop until entire sprite is moved

;

; Now we write a dummy sprite to $30000, since all eight sprites are

; activated

; at the same time and we're only going to use one. The remaining sprites

; will po int to this dummy sprite data.

;

 MOVE.L #$00000000,$30000 ; Write it

;

; Point Copper at Copper list.

- 108 Sprite Hardware -

;

 MOVE.L #$20000,COP1LC(a0)

;

; Fill bit - plane with $FFFFFFFF.

;

 MOVE.L #$21000,a1 ; Point A1 at bit - plane

 MOVE.W #l999,d0 ; 2000 - 1(for dbf) long words = 8000 bytes

FLOOP

 MOVE.L #$FFFFFFFF,(al)+ ; Move a long word of $FFFFFFFF

 DBF d0,FLOOP ; Decrement, repeat until false.

;

; Start DMA.

;

 MOVE.W d0,COPJMP1(a0) ; Force load into Copper

 ; program counter

 MOVE.W #$83A0,DMACON(a0) ; Bit - plane, Copper, and sprite DMA

 RTS ; ..return to rest of program

;

; This is a Copper list for one bit - plane, and 8 sprites.

; The bit - plane lives at $21000.

; Sprite 0 lives at $25000; all others live at $30000 (the dummy sprite).

;

COPPERL:

 DC.W BPL1PTH,$0002 ; Bit plane 1 pointer = $21000

 DC.W BPL1PTL,$1000

 DC.W SPR0PTH,$0002 ; Sprite 0 pointer = $25000

 DC.W SPR0PTL,$5000

 DC.W SPR1PTH,$0003 ; Sprite 1 pointer = $30000

 DC.W SPR1PTL,$0000

 DC.W SPR2PTH,$0003 ; Sprite 2 pointer = $30000

 DC.W SPR2P TL,$0000

 DC.W SPR3PTH,$0003 ; Sprite 3 pointer = $30000

 DC.W SPR3PTL,$0000

 DC.W SPR4PTH,$0003 ; Sprite 4 pointerÑ$30000

 DC.W SPR4PTL,$0000

 DC.W SPR5PTH,$0003 ; Sprite 5 pointer = $30000

 DC.W SPR5PTL,$0000

 DC.W SPR6PTH,$0003 ; Sprite 6 pointer - S30000

 DC.W SPR6PTL,$0000

 DC.W SPR7PTH,$0003 ; Sprite 7 pointer = $30000

 DC.W SPR7PTL,$0000

 DC.W $FFFF,$FFFE ; End of Copper list

;

; Spri te data for spaceship sprite. It appears on the screen at V - 65 and

; H - 128.

;

SPRITE:

 DC.W $6D60,$7200 ; VSTART, HSTART, VSTOP

 DC.W $0990,$07E0 ; First pair of descriptor words

 DC.W $13C8,$0FF0

 DC.W $23C4,$1F F8

 DC.W $13C8,$0FF0

 DC.W $0990,$07E0

 DC.W $0000,$0000 ; End of sprite data

- Sprite Hardware 109 -

MOVING A SPRITE

A sprite generated in automatic mode can be moved by specifying a different position in
the data structure. For each display field, the data is reread and the sprite redrawn.

Therefore, if you change the position data before the sprite is redrawn, it will appear in a
new position and will seem to be moving.

You must take care that you are not moving the sprite (that is, changing control word
data) at the same time that the system is using that data to find out where to display the
object. If you do so, the system might find the start position for one field and the stop
position for the following field as it retrieves data for display. This would cause a "glitch"

and would mess up the screen. Therefore, you should change the content of the control
words only during a time when the system is not trying to read them. Usually, the vertic al
blanking period is a safe time, so moving the sprites becomes part of the vertical blanking
tasks and is handled by the Copper as shown in the example below.

As sprites move about on the screen, they can collide with each other or with either of the
tw o playfields. You can use the hardware to detect these collisions and exploit this
capability for special effects. In addition, you can use collision detection to keep a moving
object within specified on -screen boundaries. Collision Detec tion is described in Chapter 7,
"System Control Hardware. "

In this example of moving a sprite, the spaceship is bounced around on the screen,
changing direction whenever it reaches an edge.

The sprite position data, containing VSTART and HSTART, lives in memory at $25000.
VSTOP is located at $25002. You write to these locations to move the sprite. Once during
each frame, VSTART is incremented (or decremented) by 1 and HSTART by 2. Then a new
VSTOP is calculated, which will be the new VSTART+6.

 MOVE.B #151,d0 ; Initialize horizontal count

 MOVE.B #194,d1 ; Initialize vertical count

 MOVE.B #64,d2 ; Initialize horizontal position

 MOVE.B #44,d3 ; Initialize vertical position

 MOVE.B #1,d4 ; Initialize horizonta l increment value

 MOVE.B #1,d5 ; Initialize vertical increment value

;

; Here we wait for the start of the screen updating.

; This ensures a glitch - free display.

;

 LEA CUSTOM,a0 ; Set custom chip base pointer

VLOOP:

 MOVE.B VHPOSR(a0),d6 ; Read Vertical beam position.

; Only insert the following line if you are using a PAL machine.

; CMP.B #$20,d6 ; Compare with end of PAL screen.

 BNE.S VLOOP ; Loop if not end of screen.

; Alternatively you ca n use the following code:

; VLOOP:

- 110 Sprite Hardware -

; MOVE.W INTREQR(a0),d6 ; Read interrupt request word

; AND.W #$0020,d6 ; Mask off all but vertical blank bit

; BEQ VLOOP ; Loop unt il bit is a 1

; MOVE.W #$0020,INTREQ(a0) ; Vertical bit is on, so reset it

;Please note that this will only work if you have turned OFF the Vertical

;blanking interrupt enable (not recommended for long periods).

 ADD.B d4,d2 ; Increment h orizontal value

 SUBQ.B #1,d0 ; Decrement horizontal counter

 BNE L1

 MOVE.B #151,d0 ; Count exhausted, reset to 151

 EOR.B #$FE,d4 ; Negate the increment value

L1:

 MOVE.B d2,$25001 ; Write new HSTART value to sprite

 ADD.B d5,d3 ; Increment vertical value

 SBQ.B #1,d1 ; Decrement vertical counter

 BNE L2

 MOVE.B #194,d1 ; Count exhausted, reset to 194

 EOR.B #$FE,d5 ; Negate the increment valu e

L2:

 MOVE.B d3,$25000 ; Write new VSTART value to sprite

 MOVE.B d3,d6 ; Must now calculate new VSTOP

 ADD.B #6,d6 ; VSTOP always VSTART+6 for spaceship

 MOVE.B d6,$25002 ; Write new VSTOP to sprite

 BRA VLOOP ; Loop forever

CREATING ADDITIONAL SPRITES

To use additional sprites, you must create a data structure for each one and arrange the
display as shown in the previous section, naming the pointers SPR1PTH and SPR1PTL for
sprite DMA ch annel 1, SPR2PTH and SPR2PTL for sprite DMA channel 2, and so on.

NOTE
When you enable sprite DMA for one sprite, you enable DMA for all the sprites and place
them all in automatic mode. Thus, you do not need to repeat this step when using
additional spri te DMA channels.

Once the sprite DMA channels are enabled, all eight sprite pointers must be initialized to
either a real sprite or a safe null sprite. An uninitialized sprite could cause spurious sprite

video to appear.

Remember that some sprites can be come unusable when additional DMA cycles are
allocated to displaying the screen, for example when an extra wide display or horizontal
scrolling is enabled (see Figure 6-9: DMA Time Slot Allocation).

Also, recall that each pair of sprites takes its color f rom different color registers, as shown
in Table 4-3.

- Sprite hardware 111 -

 Table 4- 3: Color Registers for Sprite Pairs

 SPRITE NUMBERS COLOUR REGISTERS

 0 and 1 17 - 19

 2 and 3 21- 23

 4 and 5 25 - 27

 6 and 7 29 - 31

NOTE
Some sprites become unusable when additional DMA cycles are allocated to displaying the
screen, e.g. when enabling an extra wide display or horizontal scrolling. (See Figure 6
DMA Time Slot Allocation.)ÿ

SPRITE PRIORITY
When you have more Than one sprite on the screen, you may need to take into
consideration their relative video priority, that is, which sprite appears in front of or
behind another. Each sprite has a fixed video pr iority with respect to all the others. The
lowest numbered sprite has the highest priority and appears in front of all other sprites;
the highest numbered sprite has the lowest priority. This is illustrated in Figure 4-8.

NOTE
See Chapter 7, "System Contr ol Hardware", for more information on sprite priorities.

 __|_ 7|

 __|_ 6|__|

 __|_ 5|__|

 __|_ 4|__|

 __|_ 3|__|

 __|_ 2|__|

 __|_ 1|__|

 | 0|__|

 |____|

 Figure 4- 8: (Sprite Priority)

- 112 Sprite Hardware -

REUSING SPRITE DMA CHANNELS

Each of the eight sprite DMA channels can produce m ore than one independently
controllable image. There may be times when you want more than eight objects, or you

may be left with fewer than eight objects because you have attached some of the sprites
to produce more colors or larger objects or overlapped some to produce more complex
images. You can reuse each sprite DMA channel several times within the same display
field, as shown in Figure 4-9.

Figure 4- 9: (Typical Example of Sprite Reuse)

In single -sprite usage, two all -zero words are placed at the en d of the data structure to
stop the DMA channel from retrieving any more data for that particular sprite during that
display fiel d. To reuse a DMA channel, you replace this pair of zero words with another
complete sprite data structure, which describes the reuse of the DMA channel at a position
lower on the screen than the first use . You place the two all -zero words at the end, of the

data structure that contains the information for all usages of the DMA channel. For
example, Figure 4-10 shows the data stru cture that describes the picture above.

- Sprite Hardware 113 -

 SPRITE DISPLAY LIST

 ------ \ _ Data describing

 ________________________________ | / the 1st vertical

 Increasing |________________________________| | / usage of this

 RAM |________________________________| |/ sprite.

 memory ________________________________ |

 addres ses |________________________________| |

 |________________________________| |

 | _________ |

 | _________ |

 | _________ |

 | ________________________________ |

 | |________________________________| |

 | |________________________________| |

 | ----- /

 |

 | ----- \ _ Data describing

 | ________________________________ | / the 2nd vertical

 | |________________________________| | / usage of this

 | |________________________________| |/ sprite. Contents

 | ________________________________ | of vertical start

 | |________________________________| | word must be at

 | |________________________________| | least one video

 | _________ | line below actual

 | _________ | end of preceding

 | _________ | usage.

 \ |/ ________________________________ |

 V |____________________________ ____| |

 |________________________________| | \

 | \

 ----- / \ _ End - of - data words

 ending the usage

 of this sprite.

 Figure 4- 10: (Typical Data Structure for Sprite Re - use)

The only restrictions on the reuse of sprites during a single display field is that the bottom
line of one u sage of a sprite must be separated from the top line of the next usage by at
least one horizontal scan line. This restriction is necessary because only two DMA cycles
per horizontal scan line are allotted to each of the eight channels. The sprite channel
needs the time during the blank line to fetch the control word describing the next usage of
the sprite.

- 114 Sprite Hardware -

The following example displays the spaceship sp rite and then redisplays it as a differ ent
object . Only the sprite data list is affected, so only the data list is shown here. However,
the sprite looks best with the color registers set as shown in the
 xample.

 LEA CUSTOM,a0

 MOVE.W #$0F00,COLOR17(a0) ; Color 17 red

 MOVE.W #$0FF0,COLOR18(a0) ; Color 18 yellow

 MOVE.W #$0FFF,COLORl9(a0) ; Color 19 white

SPRITE:

 DC.W $6D60,$7200

 DC.W $0990,$07E0

 DC.W $13C8,$0FF0

 DC.W $23C4,$1FF8

 DC.W $13C8,$0FF0

 DC.W $0990,$07E0

 DC.W $8080 ,$8D00 ; VSTART, HSTART, VSTOP for new sprite

 DC.W $1818,$0000

 DC.W $7E7E,$0000

 DC.W $7FFE,$0000

 DC.W $FFFF,$2000

 DC.W $FFFF,$2000

 DC.W $FFFF,$3000

 DC.W $FFFF,$3000

 DC.W $7FFE,$1800

 DC.W $7 FFE,$0C00

 DC.W $3FFC,$0000

 DC.W $0FF0,$0000

 DC.W $03C0,$0000

 DC.W $0180,$ÿ0000

 DC.W $0000,$0000 ; End of sprite data

OVERLAPPED SPRITES

For more complex or larger moving objects, you can overlap sprites. Overlap ping simply
mean that the sprites have the same or relatively close screen positions. A relatively close
screen position can result in an object that is wider than 16 pixels.
The built - in sprite video priority ensures that one sprite appears to be behind t he other
when sprites are overlapped . The priority circuitry gives the lowest -numbered sprite the
highest priority and the highest numbered sprite the lowest priority. Therefore , when
designing displays with overlapped sprites, make sure the "foreground" s prite has a lower

number than the "background" sprite. In Figure 4-11, for example, the cage should be
generated by a lower -numbered sprite DMA channel than the monkey.

- Sprite Hardware 115 -

Figure 4- 11: overlap ping Sprites (Not attached)

You can create a wider sprite display by placing two sprites next to each other. For
instance, Figure 4-12 shows the spaceship sprite and how it can be made twice as large
by using two sprites placed next to each other.

- 116 Sprite Hardware -

 (128,65)

 o_____________________

 | _| |_ |

 | _| |_ |

 | |_ _| |

 | |_ _| |

 |______|________|_____|

 (128,65) (144,65)

 o_____________________o_____________________

 | | | | |

 | __| | |__ |

 | | | | |

 | __| | |__ |

 | | | | |

 | |__ | __| |

 | | | | |

 | |__ | __| |

 | | | | |

 |_________|___________|__________|__________|

 Sprite 0 Sprite 1

 Figure 4- 12: Placing Sprites Next to Each Other

ATTACHED SPRITES

You can create sprites that have fifteen possible color choices (plus transparent) instead
of three (plus transparent), by "attaching" two sprites. To create attached sprites, you
must:

o Use two channels per sprite, creating two sprites of the same size and located at the
same position.

o Set a bit called ATTACH in the second sprite control word.

The fifteen colors are selected from the full range of color registers available to sprites -
registers 17 through 31. T he extra color choices are possible because each pixel contains
four bits instead of only two as in the normal, unattached sprite. Each sprite in the
attached pair contributes two bits to the binary color selector number. For example, if you
are using spri te DMA channels 0 and 1, the high - and low -order color descriptor words for
line 1 in both data structures are combined into line 1 of the attached object.

- Sprite Hardware 117 -

Sprites can be attached in the fol lowing combinations:

 Sprite 1 to sprite 0
 Sprite 3 to sprite 2

 Sprite 5 to sprite 4
 Sprite 7 to sprite 6

Any or all of these attachments can be active during the same displayfield. As an example,
assume that you wish to have more colors i n the spaceship sprite and you are using sprite
DMA channels 0 and 1. There are five colors plus transparent in this sprite.

 0000154444510000

 0001564444651000

 0015676446765100

 0001564444651000

 0000154444510000

The first line in this s prite requires the four data words shown in Table 4-4 to form the
correct binary color selector numbers.

Table 4- 4: Data Words for First Line of Spaceship Sprite

 PIXEL NUMBER

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

--

Line 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Line 2 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

Line 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Line 4 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0

The highest numbered sprite (number 1, in this example) contributes the highest order
bits (left -most) in the binary number. The high -order d ata word in each sprite contributes
the leftmost digit. Therefore, the lines above are written to the sprite data structures as
follows:

 Line 1 Sprite 1 high -order word for sprite line 1
 Line 2 Sprite 1 low -order word for sprite line 1
 Line 3 Sprite 0 high -order word for sprite line 1
 Line 4 Sprite 0 low -order word for sprite line 1

See Figure 4-7 for the order these words are stored in memory. Remember that this data
is contained in two sprite structures.

- 118 Sprite Hardware -

The binary numbers 0 through 15 select registers 17 through 31 as shown in Table 4-5.

 Table 4- 5: Color Registers in Attached Sprites

 Decimal Binary ColorRegister

 Number Number Number

 0 0000 16 *

 1 0001 17

 2 0010 18

 3 0011 19

 4 0100 20

 5 0101 21

 6 0110 22

 7 0111 23

 8 1000 24

 9 1001 25

 10 1010 26

 11 1011 27

 12 1100 28

 13 1101 29

 14 lll0 30

 15 1111 31

* Unuse d; yields transparent pixel.

Attachment is in effect only when the ATTACH bit, bit 7 in sprite control

word 2, is set to 1 in the data structure for the odd - numbered sprite. So,

in this example, you set bit 7 in sprite control word 2 in the data

structure for sprite 1.

When the sprites are moved, the Copper list must keep them both at exactly

the same position relative to each other. If they are not kept together on

the screen, their pixels will change color. Each sprite will revert to three

colors plus t ransparent, but the colors may be different than if they were

ordinary, unattached sprites. The color selection for the lower numbered

sprite will be from color registers 17 - 19. The color selection for the

higher numbered sprite will be from color register s 20, 24, and 28.

- Sprite Hardware 119 -

The following data structure is for the six -color spaceship made with two attached sprites.

SPRITE0:

 DC.W $6D60,$7200 ;VSTART = 65, HSTART = 128

 DC.W $0C30,$0000 ;First color descriptor word

 DC.W $1818,$0420

 DC.W $342C,$0E70

 DC.W $1818,$0420

 DC.W $0C30,$0000

 DC.W $0000,$0000 ;End of sprite 0

SPRITE1:

 DC.W $6D60,$7280 ;Same as sprite 0 except attach bit on

 DC.W $07E0,$0000 ;First descriptor word for sprite 1

 DC.W $0FF0,$0000

 DC.W $1FF8,$0000

 DC.W $0FF0,$0000

 DC.W $07E0,$0000

 DC.W $0000,$0000 ;End of sprite 1

MANUAL MODE

It is almost always best to l oad sprites using the automatic DMA channels. Sometimes,
however, it is useful to load these registers directly from one of the microprocessors.
Sprites may be activated "manually" whenever they are not being used by a DMA channel.
The same sprite that is showing a DMA -controlled icon near the top of the screen can also
be reloaded manually to show a vertical colored bar near the bottom of the screen. Sprites

can be activated manually even when the sprite DMA is turned off.

You display sprites manually by writing to the sprite data registers SPRxDATB and
SPRxDATA, in that order. You write to SPRxDATA last because that address "arms'' the
sprite to be output at the next horizontal comparison. The data written will then be
displayed on every line, at the hori zontal position given in the "H" portion of the position
registers SPRxPOS and SPRxCTL. If the data is unchanged, the result will be a vertical
bar. If the data is reloaded for every line, a complex sprite can be produced.

The sprite can be terminated ("d isarmed") by writing to the SPRxCTL register. If you write
to the SPRxPOS register, you can manually move the sprite horizontally at any time, even
during normal sprite usage.

- 120 Sprite Hardware -

SPRITE HARDWARE DETAILS

Sprites are produced by the circuitry shown in Figure 4-13. This Figure shows in block
form how a pair of data words becomes a set of pixels displayed on the screen.

The circuitry elements for sprite display are explained below.

o Sprite d ata registers. The registers SPRxDATA and SPRxDATB hold the bit patterns that
describe one horizontal line of a sprite for each of the eight sprites. A line is 16 pixels
wide, and each line is defined by two words to provide election of three colors and
tr ansparent.

o Parallel - to -serial converters. Each of the 16 bits of the sprite data bit pattern is
individually sent to the color select circuitry at the time that the pixel associated with that
bit is being displayed on -screen.

Immediately after the data is transferred from the sprite data registers, each parallel - to -
serial converter begins shifting the bits out of the converter, most significant (leftmost) bit
first. The shift occurs once during each low - resolution pixel time and continues until all 16
bits have been transferred to the display circuitry. The shifting and data output does not
begin again until the next time this converter is loaded from the data registers.

Because the video image is produced by an electron beam that is being swept from le ft to
right on the screen, the bit - image of the data corresponds exactly to the image that
actually appears on the screen (most significant data on the left).

o Sprite serial video data. Sprite data goes to the priority circuit to establish the priority
between sprites and playfields.

o Sprite position registers. These registers, called SPRxPOS, contain the horizontal
position value (X value) and vertical position value (Y value) for each of the eight sprites.

o Sprite control registers. These registers, called SPRxCTL, contain the stopping position
for each of the eight sprites and whether or not a sprite is attached.

o Beam counter. The beam counter tells the system the current location of the video
beam that is producing the picture.

o Comparator. Th is device compares the value of the beam counter to the Y value in the

position register SPRxPOS. If the beam has reached the position at which the leftmost
upper pixel of the sprite is to appear, the comparator issues a load signal to the serial - to -
parall el converter and the sprite display begins.

- Sprite Hardware 121 -

 | Beam counter |

 |(Horizontal pos.)| ____________________

 |_________________| |SPRxDATA load decode|

 \ / | (68000 or DMA) |

 ________ \ /_______ |____________________|

 | | Equal |

 | Compensator |______ ___________________ |

 |_________________| | |SPRxPOS load decode| |

 / \ ________|______| (68000 or DMA) | |

 _______/__ \ ____|_ | |___________________| |

 | | | |

 | SPRxPOS (Horiz.)| | |

 |_________________| | < - "ARM SPRITE" - > |

 / \ ________|____________________________o

 ____________/ \ | | ___ _______ |

| | | |AND | - | | | |

| ___________ | | \ __/ | -------- |Q S| ----- |

|| \ / | | | | _____________

|| ________ \ /_____|_ | ---- |Q R| -- |SPRxCTL load |

|| | | | |_______| | decode |

|| | SPRxDATA | | |(68000 or DMA|

|| |_________________| ____o |_____________|

| | \ / | |

|| ______ \ /_______|_ | _____ ______________

|| ____| Parallel to | | | |Sprite serial |

|| __|__ |serial converter | ----------------- > | | video data |

|| ___ |_____________ ____| | | | |

|| _ _________________ | | | Output to |

|| | Parallel to | | | |video priority|

|| |serial converter | ----------------- > | | logic |

|| |_ ________________| | _____| |______________|

|| / \ | |

|| _______/__ \ ______ |____|

|| | |

|| | SPRxDATB |

|| |_________________| ____________________

|| / \ ^ |SPRxDATB load decode|

|| / \ |___________|(68000 or DMA |

||_______| | |____________________|

| __________|

||

||__

|_______________________________ __

 DATA BUS

 Figure 4- 13: Sprite Control Circuitry

Figure 4-13 shows the following:

o Writing to the sprite control registers disables the horizontal comparator circuitry. This
preven ts the system from sending any output from the data registers to the serial
converter or to the screen.

- 122 Sprite Hardware -

o Writing to the sprite A data register enables the horizontal comparator. This enables
output to the screen when the horizontal position of the video beam equals the horizontal
value in the position register.

o If the comparator is enabled, the sprite data will be sent to the display, with the
leftmost pixel of the sprite data placed at the position defined in the horizontal part of
SPRxPOS.

o As long as the comparator remains enabled, the current contents of the sprite data
register will be output at the selected horizontal position on a video line.

o The data in the sprite data registers does not change. It is either rewritten by the user
or modified under DMA control.

The components described above produce the automatic DMA display as follows: When
the sprites are in DMA mode, the 18 -bit sprite pointer register (composed of SPRxPTH and
SPRxPTL) is used to read the first two words from the sprite data structure. These words
contain the starting and stopping position of the sprite. Next, the pointers write these
words into SPRxPOS and SPRxCTL. After this write, the value in the pointers points to t he
address of the first data word (low word of data for line 1 of the sprite.)

Writing into the SPRxCTL register disabled the sprite. Now the sprite DMA channel will
wait until the vertical beam counter value is the same as the data in the VSTART (Y value)
part of SPRxPOS. When these values match, the system enables the sprite data access.

The sprite DMA channel examines the contents of VSTOP (from SPRxCTL, which is the
location of the line after the last line of the sprite) and VSTART (from SPRxPOS) to s ee
how many lines of sprite data are to be fetched. Two words are fetched per line of sprite
height, and these words are written into the sprite data registers. The first word is stored
in SPRxDATA and the second word in SPRxDATB.

The fetch and store for each horizontal scan line occurs during a horizontal blanking
interval, far to the left of the start of the screen display. This arms the sprite horizontal
comparators and allows them to start the output of the sprite data to the screen when the
horizontal beam count value matches the value stored in the HSTART (X value) part of
SPRxPOS.

If the count of VSTOP - VSTART equals zero, no sprite output occurs. The next data word
pair will be fetched, but it will not be stored into the sprite data registers. It will instead

become the next pair of data words for SPRxPOS and SPRxCTL.

When a sprite is used only once within a single display field, the final pair of data words,
which follow the sprite color descriptor words, is loaded automatically as the next conte nts
of the SPRxPOS and SPRxCTL registers. To stop the sprite after that first data set, the pair
of words should contain all zeros.

Thus, if you have formed a sprite pattern in memory, this same pattern will be produced
as pixels automatically under DMA c ontrol one line at a time.

- Sprite Hardware 123 -

SUMMARY OF SPRITE REGISTERS

There are eight complete sets of registers used to describe the sprites. Each set consists
of five registers. Only the registers for sprite O are described here. All of the others are

the same, except for the name of the register, which includes the appropriate number.

POINTERS
Pointers are registers that are used by the system to point to the current data being used.
During screen display, the registers are incremented to point to the data being used as
the screen display progresses. Therefore, pointer registers must be freshly written during
the start of the vertical blanking period.

SPR0PTH and SPR0PTL
This pair of registers contains the 32 -bit word address of Sprite 0 DMA data.

Pointer register names for the other sprites are:

 SPR1PTH SPR1PTL
 SPR2PTH SPR2PTL
 SPR3PTH SPR3PTL
 SPR4PTH SPR4PTL
 SPRSPTH SPRSPTL
 SPR6PTH SPR6PTL
 SPR7PTH SPR7PTL

CONTROL REGISTERS

SPR0POS
This is the sprite 0 position register. The word written into this register controls the
position on the screen at which the upper left -hand corn er of the sprite is to be placed.
The most significant bit of the first data word will be placed in this pos ition on the screen.

- 124 Sprite Hardware -

NOTE

The sprites have a placement resolution on a full screen of 320 by 200 NTSC (320 by 256
PAL). The sprite resolution is independent of the bit -plane resol ution.

BIT POSITIONS:

o Bits 15 -8 specify the vertical start position, bits V7 - V0.

o Bits 7 -0 specify the horizontal start position, bits H8 - H1.

NOTE
This register is normally only written by the lsprite DMA channel itself. See the details
above re garding the organization of the sprite data. This register is usually updated
directly by DMA.

SPR0CTL
This register is normally used only by the sprite DMA channel. It contains control
information that is used to control the sprite data - fetch process. Bi t positions:

o Bits 15 -8 specify vertical stop position for a sprite image, bits V7 - V0.

o Bit 7 is the attach bit. This bit is valid only for odd -numbered sprites. It indicates that
sprites 0, 1 (or 2,3 or 4,5 or 6,7) will, for color interpretation, be considered as paired,
and as such will be called four bits deep. The odd -numbered (higher number) sprite

contains bits with the higher binary significance.

During attach mode, the attached sprites are normally moved horizontally and vertically
together u nder processor control. This allows a greater selection of colors within the
boundaries of the sprite itself. The sprites, although attached, remain capable of
independent motion, however, and they will assume this larger color set only when their
edges ov erlay one another.

o Bits 6 -3 are reserved for future use (make zero).

o Bit 2 is bit V8 of vertical start.

o Bit 1 is bit V8 of vertical stop.

o Bit 0 is bit H0 of horizontal start.

- Sprite Hardware 125 -

Position and control registers for the other sprites are:

 SPR1POS SPR1CTL
 SPR2POS SPR2CTL

 SPR3POS SPR3CTL
 SPR4POS SPR4CTL
 SPR5POS SPRSCTL
 SPR6POS SPR6CTL
 SPR7POS SPR7CTL

DATA REGISTERS

The following registers, although defined in the address space of the main processor, are
normally used only by the display processor. They are the holding registers for the data
obtained by DMA cycles.

 SPR0DATA, SPR0DATB data registers for Sprite 0
 SPR1DATA, SPR1DATB data registers for Spr ite 1
 SPR2DATA, SPR2DATB data registers for Sprite 2
 SPR3DATA, SPR3DATB data registers for Sprite 3
 SPR4DATA, SPR4DATB data registers for Sprite 4
 SPR5DATA, SPR5DATB data registers for Sprite 5
 SPR6DATA, SPR6DATB data registers for Spri te 6
 SPR7DATA, SPR7DATB data registers for Sprite 7

SUMMARY OF SPRITE COLOR REGISTERS

Sprite data words are used to select the color of the sprite pixels from the system color
register set as indicated in the following Table s.

If the bit combination s from single sprites are as shown in Table 4-6, then the colors will
be taken from the registers shown.

- 126 Sprite Hardware -

 Table 4- 6: Color Registers for Single Sprites

 SINGLE SPRITES COLOR

 Sprite Value Register

 0 or 1 00 Not used *

 01 17

 10 18

 11 19

 2 or 3 00 Not used *

 01 21

 10 22

 11 23

 4 or 5 00 Not used *

 01 25

 10 26

 11 27

 6 or 7 00 Not used *

 01 29

 10 30

 11 31

* Selects transparent mode.

If the bit combinations from attached sprites are as shown in Table 4-7, then the colors
will be taken from the registers shown.

- Sprite Hardware 127 -

 Table 4- 7: Color Registers for Attached Sprites

 ATTACHED SPRITES

 Color

 Value Register

 0000 Selects transparent mode

 0001 17

 0010 18

 0011 19

 0100 20

 0101 21

 0110 22

 0111 23

 1000 24

 1001 25

 1010 26

 1011 27

 1100 28

 1101 29

 1110 30

 1111 31

INTERACTIONS AMONG SPRITES AND OTHER OBJECTS
Playfields share the display with sprites. Chapter 7, "System Control Hardware," shows
how playfields can be given different video display priorities relative to the sprites and
how playfields can collide with (overlap) the sprites or each other.

- 128 Sprite Hardware -

CHAPTER 5

AUDIO HARDWARE

INTRODUCTION
This chapter shows you how to directly access the audio hardware to produce sounds. The
major topics in this chapter are:

o A brief overview of how a computer produces sound.

o How to produce simple steady and changing sounds and more complex ones.

- Audio Hardware 129 -

o How to use the audio channels for special effects, wiring them for stereo sound if
desired, or using one channel to modulate another.

o How to produce quality sound within the system limitations.

A section at th e end of the chapter gives you values to use for creating musical notes on
the equal - tempered musical scale.

This chapter is not a tutorial on computer sound synthesis; a thorough description of
creating sound on a computer would require a far longer docu ment. The purpose here is
to point the way and show you how to use the Amiga's features. Computer sound

production is fun but complex, and it usually requires a great deal of trial and error on the
part of the user. You use the instructions to create some sound and play it back, readjust
the parameters and play it again, and so on.

The following works are recommended for more information on creating music with
computers:

o Wayne A. Bateman, Introduction to Computer Music (New York: John Wiley and Sons,
19 80).

o Hal Chamberlain, Musical Applicators of Microprocessors (Rochelle Park, New Jersey:
Hayden, 1980).

INTRODUCING SOUND GENERATION

Sound travels through air to your ear drums as a repeated cycle of air pressure variations,
or sound waves. Sounds can be represented as graphs that model how the air pressure
varies over time. The attributes of a sound, as you hear it, are related to the shape of the
graph. If the waveform is regular and repetitive, it will sound like a tone with steady
pitch (highness or lowness), such as a single musical note. Each repetition of a waveform
is called a cycle of the sound. If the waveform is irregular, the sound will have little or no
pitch, like a loud clash or rushing water. How often the waveform repeats (its
frequency) has an effect upon its pitch; sounds with higher frequencies are higher in
pitch. Humans can hear sounds that have a frequency of between 20 and 20,000 cycles
per second. The amplitude of the waveform (highest point o n the graph), is related to the
percei ved loudness of the sound. Finally, the general shape of the waveform determines
its tone quality, or timbre. Figure 5-1 shows a particular kind of waveform, called a sine
wave, that represents one cycle of a simple tone.

- 130 Audio Hardware -

Figure 5- 1: Sine waveform

In electronic sound recording and output devices, the attributes of sounds are represented
by the parameters of amplitude and frequency. Frequency is the number of cycles per
second, and the mos t common unit of frequency is the Hertz (Hz), which is 1 cycle per
second. Large values, or high frequencies, are measured in kilohertz (KHz) or megahertz
(MHz).

Frequency is strongly related to the perceived pitch of a sound. When frequency
increases, pi tch rises. This relationship is exponential. An increase from 100 Hz to 200 Hz
results in a large rise in pitch, but an increase from 1,000 Hz to 1,100 Hz is hardly
noticeable. Musical pitch is represented in octaves. A tone that is one octave higher than
another has a frequency twice as high as that of the first tone, and its perceived pitch is
twice as high.

The second parameter that defines a waveform is its amplitude. In an electronic circuit,
amplitude relates to the voltage or current in the circuit. When a signal is going to a
speaker, the amplitude is expressed in watts. Perceived sound intensity is measured in
decibels (db). Human hearing has a range of about 120 db; 1 db is the faintest audible
sound. Roughly every 10 db corresponds to a doubling of sound, and 1 db is the smallest
change in amplitude that is noticeable in a moderately loud sound. Volume, which is the
amplitude of the sound signal which is output, corresponds logarithmically to decibel level.

The frequency and amplitude parameters of a sine wave are completely independent.
When sound is heard, however, there is interaction between loudness and pitch. Lower -
frequency sounds decrease in loudness much faster than high - frequency sounds.

- Audio Hardware 131 -

The third attribute of a sound, timbre, depends on the presence or absence of overtones,
or harmonics. Any complex waveform is actually a mixture of sine waves of different
amplitudes, frequencies, and phases (the starting point of the waveform on the time
axis). These component sine waves are called harmonics. A square waveform, for

example, has an infinite number of harmonics.

In summary, all steady sounds can be described by their frequency, overall amplitude,
and relative ha rmonic amplitudes. The audible equivalents of these parameters are pitch,
loudness, and timbre, respectively. Changing sound is a steady sound whose parameters
change over time.

In electronic production of sound, an analog device, such as a tape recorder, records
sound waveforms and their cycle frequencies as a continuously variable representation of
air pressure. The tape recorder then plays back the sound by sending the waveforms to
an amplifier where they are changed into analog voltage waveforms. The a mplifier sends
the voltage waveforms to a loudspeaker, which translates them into air pressure
vibrations that the listener perceives as sound.

A computer cannot store analog waveform information. In computer production of sound,
a waveform has to be repr esented as a finite string of numbers. This transformation is
made by dividing the time axis of the graph of a single waveform into equal segments,
each of which represents a short enough time so the waveform does not change a great
deal. Each of the resul ting points is called a sample. These samples are stored in memory,
and you can play them back at a frequency that you determine. The computer feeds the
samples to a digital - to -analog converter (DAC), which changes them into an analog

voltage waveform. To produce the sound, the analog waveforms are sent first to an
amplifier, then to a loudspeaker.

Figure 5-2 shows an example of a sine wave, a square wave, and a triangle wave, along
with a Table of samples for each.

NOTE
The illustrations are not to scale and there are fewer dots in the wave forms than there
are samples in the Table . The amplitude axis values 127 and -128 represent the high and
low limits on relative amplitude.

- 132 Audio Hardware -

Figure 5- 2: Digitized Amplitude Values

 DIGITISED AMPLITUDE VALUES

 TIME SINE SQUARE TRIANGLE

 0 0 100 0

 1 39 100 20

 2 75 100 40

 3 103 100 60

 4 121 100 80

 5 127 100 100

 6 121 100 80

 7 103 100 60

 8 75 100 40

 9 3 9 100 20

 10 0 - 100 0

 11 - 39 - 100 - 20

 12 - 75 - 100 - 40

 13 - 103 - 100 - 60

 14 - 121 - 100 - 80

 15 - 127 - 100 - 100

 16 - 121 - 100 - 80

 17 - 103 - 100 - 60

 18 - 75 - 100 - 40

 19 - 39 - 100 - 20

THE AMIGA SOUND HARDWARE
The Amiga has four hardware sound channels. You can independently program each of the
channels to produce complex sound effects. You can also attach channels so that one
channel modulates the sound of another or combine two channels for stereo effects.

- Audio Hardware 133 -

Each audio channel includes an eight -bit digital - to -analog converter driven by a direct
memory access (DMA) channel. The audio DMA can retrieve two data samples during each
horizontal video scan line. For simple, steady tones, the DMA can automatically play a
waveform repeatedly; you can also program all kinds of complex sound effects.

There are two methods of basic sound production on the Amiga ï automatic (DMA) sound
generation and direct (non -DMA) sound generation. When you use automatic sound
generation, the system retrieves data automatically by direct memory access.

FORMING AND PLAYING A SOUND

This section shows you how to create a simple, steady sound and play it. Many basic
concepts that apply to all sound generation o n the Amiga are introduced in this section.

To produce a steady tone, follow these basic steps:

1. Decide which channel to use.

2. Define the waveform and create the sample Table in memory.

3. Set registers telling the system where to find the data and the length of the data.

4. Select the volume at which the tone is to be played.

5. Select the sampling period, or output rate of the data.

6. Select an audio channel and start up the DMA.

DECIDING WHICH CHANNEL TO USE
The Amiga has four audio channels . Channels 0 and 3 are connected to the left -side
stereo output jack. Channels 1 and 2 are connected to the right -side output jack. Select a
channel on the side from which the output is to appear.

CREATING THE WAVEFORM DATA
The waveform used as an example in this section is a simple sine wave, which produces a
pure tone. To conserve memory, you normally define only one full cycle of a waveform in
memory. For a steady, unchanging sound, the values at the waveformôs beginning and
ending points and the trend or slope of the data at the beginning and end should be
closely related. This ensures that a continuous repetition of the waveform sounds like a

continuous stream of sound.

- 134 Audio Hardware -

Sound data is or ganized as a set of eight -bit data items; each item is a sample from the
waveform. Each data word retrieved for the audio channel consists of two samples.
Sample values can range from -128 to +127.

As an example, the data set shown below produces a close approximation to a sine wave.

NOTE
The data is stored in byte address order with the first digitized amplitude value at the
lowest byte address, the second at the next byte address, and so on. Also, note that the
first byte of data must start at a word -address boundary. This is because the audio DMA
retrieves one word (16 bits) at a time and uses the sample it reads as two bytes of data.

To use audio channel 0, write the address of "audiodata" into AUD0LC, where the audio
data is organized as shown below. For simplicity, "AUDxLC" in the Table below stands for
the combination of the two actual location registers (AUDxLCH and AUDxLCL). For the
audio DMA channels to be able to retrieve the data, the data address to which AUDOLC
points must be somewhere in chi p RAM.

 Table 5- 1: Sample Audio Data Set for Channel 0

 audiodata --- > AUD0LC * 100 98

 AUD0LC +2 ** 92 83

 AUD0LC +4 71 56

 AUD0LC +6 38 20

 AUD0LC +8 0 - 20

 AUD0LC +10 - 38 - 56

 AUD0LC +12 - 71 - 83

 AUD0LC +14 - 92 - 83

 AUD0LC +16 - 100 - 98

 AUD0LC +18 - 92 - 83

 AUD0LC +20 - 71 - 56

 AUD0LC +22 - 38 - 20

 AUD0LC +24 0 20

 AUD0LC +26 38 56

 AUD0LC +28 71 83

 AUD0LC +30 92 98

NOTES

* Audio data is l ocated on a word - address boundary.

** AUD0LC stands for AUD0LCL and AUD0LCH.

- Audio Hardware 135 -

TELLING THE SYSTEM ABOUT THE DATA
In order to retrieve the sound data for the audio channel, the system needs to k now
where the data is located and how long (in words) the data is.

The location registers AUDxLCH and AUDxLCL contain the high three bits and the low
fifteen bits, respectively, of the starting address of the audio data. Since these two
register addresses are contiguous, writing a long word into AUDxLCH moves the audio
data address into both locations. The "x" in the register names stands for the number of
the audio channel where the output will occur. The channels are numbered 0, 1, 2,and 3.

These regist ers are location registers, as distinguished from pointer registers. You need to

specify the contents of these registers only once; no resetting is necessary when you wish
the audio channel to keep on repeating the same waveform. Each time the system
retri eves the last audio word from the data area, it uses the contents of these location
registers to again find the start of the data. Assuming the first word of data starts at
location "audiodata" and you are using channel 0, here is how to set the location
registers:

WHERE0DATA:

 LEA CUSTOM,a0 ; Base chip address...

 LEA AUDIODATA,a1

 MOVE.L a1,AUDOLCH(a0) ;Put address (32 bits)

 ; into location register.

The length of the data is the number of sampl es in your waveform divided by 2, or the
number of words in the data set. Using the sample data set above, the length of the data

is 16 words. You write this length into the audio data length register for this channel. The
length register is called AUDxLEN , where "x" refers to the channel number. You set the
length register AUD0LEN to 16 as shown below.

SETAUDOLENGTH:

 LEA CUSTOM,a0 ; Base chip address

 MOVE.W #16,AUD0LEN(a0) ; Store the length...

SELECTING THE VOLUME
The vol ume you set here is the overall volume of all the sound coming from the audio
channel. The relative loudness of sounds, which will concern you when you combine
notes, is determined by the amplitude of the wave form. There is a six -bit volume register
for each audio channel. To control the volume of sound that will be output through the

selected audio channel, you write the desired value into the register AUDxVOL, where "x"
is replaced by the channel number. You can specify values from 64 to 0. These volume
values correspond to decibel levels. At the end of this chapter is a Table showing the
decibel value for each of the 65 volume levels.

- 136 Audio Hardware -

For a typical output at volume 64, with maximum data value s of -128 to 127, the voltage
output is between +.4 volts and - .4 volts. Some volume levels and the corresponding
decibel values are shown in Table 5-2.

 Table 5- 2: Volume Values

 VOLUME DECIBEL VALUE

 64 0 (maximum volume)

 48 - 2.5

 32 - 6.0

 16 - 12.0 (12db down from the

 volume at maximum level)

For any volume setting from 64 to 0, you write the value into bits 5 -0 of AUD0VOL. For
example:

SETAUDOVOLUME:

 LEA CUSTOM,a0

 MOVE.W #48,AUD0VOL(a0)

The decibels are shown as negative values from a maximum of 0 because this is the way a
recording device, such as a tape reco rder, shows the recording level. Usually, the recorder
has a dial showing 0 as the optimum recording level. Anything less than the optimum
value is shown as a minus quantity.

SELECTING THE DATA OUTPUT RATE
The pitch of the sound produced by the waveform d epends upon its frequency. To tell the
system what frequency to use, you need to specify the sampling period. The sampling
period specifies the number of system clock ticks, or timing intervals, that should elapse
between each sample (byte of audio data) f ed to the digital - to -analog converter in the
audio channel. There is a period register for each audio channel. The value of the period
register is used for count -down purposes; each time the register counts down to 0,
another sample is retrieved from the w aveform data set for output. In units, the period
value represents clock ticks per sample. The minimum period value you should use is 124
ticks per sample NTSC (123 PAL) and the maximum is 65535. These limits apply to both
PAL and NTSC machines. For high -quality sound, there are other constraints on the
sampling period (see the section called "Producing High -quality Sound").

NOTE
A low period value corresponds to a higher frequency sound and a high period value
corresponds to a lower frequency sound.

- Audio Hardware 137 -

LIMITATIONS ON SELECTION OF SAMPLING PERIOD
The sampling period is limited by the number of DMA cycles allocated to an audio channel.
Each audio channel is allocated one DMA slot per horizontal scan line of the screen
display. An audio channel can retrieve two data samples during each horizontal scan line.

The following calculation gives the maximum sampling rate in samples per second.

 2 samples/line * 262.5 frames/frame * 59.94 fram es/second

 = 31,469 samples/second

The Figure of 31,469 is a theoretical maximum . In order to save buffers, the hardware is
designed to handle 28,867 samples/second. The system timing interval is 279.365

nanoseconds, or .279365 microseconds. The maximum sampling rate of 28,867 samples
per second is 34.642 microseconds per sample (1/28,867 = .000034642). The formula for
calculating the sampling period is:

 sample interval clock constant

Period value = --------------- = -- ------------

 clock interval samples per second

Thus, the minimum period value is derived by dividing 34.642 microseconds per sample
by the number of microseconds per interval:

 34.642 microseconds/sample

Maximum perio d = -------------------------- = 124 timing intervals/sample

 0.279365 microseconds/interval

or:
 3,579,545 ticks/second

Minimum period = ---------------------- =124 ticks/sample

 28,867 samples/second

Therefore, a value of at least 124 must be written into the period register to assure that
the audio system DMA will be able to retrieve the next data sample. If the period value is

below 124, by the time the cycle count has reached 0, the audio DMA will not have had
enough time to retrieve the next data sample and the previous sample will be reused.

28,867 samples/second is also the maximum sampling rate for PAL systems. Thus, for
PAL systems, a value of at least 123 ticks/sample must be written into the per iod register.

 CLOCK VALUES

 NTSC PAL UNITS

Clock Constant 3579545 3546895 ticks per second

Clock Interval 0.279365 0.281937 microseconds per interval

- 138 Audio Har dware -

NOTE
The Clock Interval is derived from the clock constant, where:

 1

clock interval = --------------

 clock constant

then scale the result to microseconds. In all of these calculations "ticks" and "timing
intervals" refer to the same thing.

SPECIFYING THE PERIOD VALUE

After you have selected the desired interval between data samples, you can calculate the
value to place in the period register by using the period formula:

 desired interval clock constant

Period value = ---------------- = ------------------

 clock interval samples per second

As an example, say you wanted to produce a 1 KHz sine wave, using a Table of eight data
samples (four data words) (see Figure 5-3).

Figure 5- 3: Example Sine Wave

- Audio Hardware 139 -

Sampled Values: 0

 90

 127

 90

 0

 - 90

 - 127

 - 90

To output the series of eight samples at 1 KHz (1,000 cycles per second), each full cycle is
output in 1/1000th of a second. Therefore, each individual value must be retrieved in
1/8th of that time. This translates to 1,000 microsecon ds per waveform or 125

microseconds per sample. To correctly produce this waveform , the period value should be:

 125 microseconds/sample

Period value = ---------------------------- = 447 timing Intervals/sample

 0.279365 micr oseconds/interval

To set the period register, you must write the period value into the register AUDxPER,

where "x" is the number of the channel you are using. For example, the following
instruction shows how to write a period value of 447 into the period register for channel 0.

SETAUDOPERIOD:

 LEA CUSTOM,a0

 MOVE.W #447,AUD0PER(a0)

To produce high -quality sound, avoiding aliasing distortion, you should observe the
limitations on period values that are discussed in the section below called "Producing
Quality Sound."

For the relationship between period and musical pitch, see the section at the end of the
chapter, which contains a listing of the equal - tempered musical scale.

PLAYING THE WAVEFORM
After you have defined the audio data location, length, volume and period, you can play
the waveform by starting the DMA for that audio channel. This starts the output of sound.
Once started, the DMA continues until you specifically stop it. Thus, the waveform is
played over and over aga in, producing the steady tone. The system uses the value in the
location registers each time it replays the waveform.

For any audio DMA to occur (or any other DMA, for that matter), the DMAEN bit in
DMACON must be set. When both DMAEN and AUDxEN are set, the DMA will start for
channel x. All these bits and their meanings are shown in Table 5-3.

- 140 Audio Hardware -

 Table 5- 3: DMA and Audio Channel Enable Bits

 DMACON REGISTER

 Bit Name Function

 15 SET/CLR When this bit is written as a 1, it

 sets any bit in DMACONW for which

 the corresponding bit position is

 also a 1, leaving all other bits alone.

 9 DMAEN Only while this bit is a 1 can

 any direct memory access occur.

 3 AUD3EN Audio channel 3 enable.

 2 AUD2EN A udio channel 2 enable.

 1 AUD1EN Audio channel 1 enable.

 0 AUD0EN Audio channel 0 enable.

For example, if you are using channel 0, then you write a 1 into bit 9 to enable DMA and a
1 into bit 0 to enable the audio channel, as shown below.

BEGINCHAN0:

 LEA CUSTOM,a0

 MOVE.W #(DMAF_SETCLR!DMAF_AUD0!DMAF_MASTER),DMACON(a0)

STOPPING THE AUDIO DMA
You can stop the channel by writing a 0 into the AUDxEN bit at any time. However, you
cannot resu me the output at the same point in the waveform by just writing a 1 in the bit
again. Enabling an audio channel almost always starts the data output again from the top
of the list of data pointed to by the location registers for that channel. If the channe l is
disabled for a very short time (less than two sampling periods) it may stay on and thus
continue from where it left off.

The following example shows how to stop audio DMA for one channel.

STOPAUDCHAN0:

 LEA CUSTOM,a0

 MOVE.W #(DMAF_AUD0),DMACON(a0)

 -

- Audio Hardware 141 -

SUMMARY
These are the steps necessary to produce a steady tone:

1. Define the waveform.

2. Create the data set containing the pairs of data samples (data words). Normally, a d ata
set contains the definition of one waveform.

3. Set the location registers:

 AUDxLCH (high three bits)

 AUDxLCL (low fifteen bits)

4. Set the length register, AUDxLEN, to the number of data words to be retrieved before
starting a t the address currently in AUDxLC.

5. Set the volume register, AUDxVOL.

6. Set the period register, AUDxPER

7. Start the audio DMA by writing a 1 into bit 9, DMAEN, along with a 1 in the SET/CLR bit
and a 1 in the position of the AUDxEN bit of the chann el or channels you want to start.

EXAMPLE
In this example, which gathers together all of the program segments from the preceding

sections, a sine wave is played through channel 0. The example assumes exclusive access
to the Audio hardware, and will not wo rk directly in a multitasking environment.

MAIN:

 LEA CUSTOM,a0 ; Custom chip base address

 LEA SINEDATA(pc),a1 ; Address of data to

 ; audio location register 0

WHEREODATA:

 MOVE.L a1,AUD0LCH(a0) ; The 68000 writes

 ; this as though it were

 ; a 32 - bit register at the

 ; low - bits location

 ; (common to all locations

 ; and pointer registers

 ; in the system).

SETAUDOLENGTH:

 MOVE.W #4,AUD0LEN(a0) ;Set length in words

- 142 Audio Hardware -

SETAUDOVOLUME:

 MOVE.W #64,AUD0VOL(a0) ;Use m aximum volume

SETAUDOPERIOD:

 MOVE.W #447,AUD0PER(a0)

BEGINCHAN0:

 MOVE.W #(DMAF_SETCLR!DMAF_AUD0!DMAF_MASTER),DMACON(a0)

 RTS ; Return to main code

 DS.W 0 ; Be sure word - aligned

SINEDATA:

 DC.B 0, 90, 127, 90, 0, - 90, - 127, - 90

 END

PRODUCING COMPLEX SOUNDS

In addition to simple tones, you can create more complex sounds, such as different
musical notes joined into a one -voice melody, different notes played at the same time, or
mod ulated sounds.

JOINING TONES
Tones are joined by writing the location and length registers, starting the audio output,
and rewriting the registers in preparation for the next audio waveform that you wish to
connect to the first one. This is made easy by t he timing of the audio interrupts and the
existence of back -up registers. The location and length registers are read by the DMA
channel before audio output begins.
The DMA channel then stores the values in back -up registers. Once the original registers
hav e been read by the DMA channel, you can change their values without disturbing the
operation you started with the original register contents. Thus, you can write the contents
of these registers, start an audio output, and then rewrite the registers in prep aration for

the next waveform you want to connect to this one.

Interrupts occur immediately after the audio DMA channel has read the location and
length registers and stored their values in the back -up registers. Once the interrupt has
occurred, you can r ewrite the registers with the location and length for the next waveform
segment. This combination of back -up registers and interrupt timing lets you keep one
step ahead of the audio DMA channel, allowing your sound output to be continuous and

smooth.

If y ou do not rewrite the registers, the current waveform will be repeated. Each time the
length counter reaches zero, both the location and length registers are reloaded with the
same values to continue the audio output.

- Audio Hardware 143 -

EXAMPLE
This example details the system audio DMA action in a step -by -step fashion.

Suppose you wanted to join together a sine and a triangle waveform, end -to -end, for a

special audio effect, alternating between them. The following sequence shows the action
of your program as well as its interaction with the audio DMA system. The example
assumes that the period, volume, and length of the da ta set remains the same for the
sine wave and the triangle wave.

INTERRUPT PROGRAM

If (wave = triangle)
 write AUD0LCL with address of sine wave data.

Else if (wave = sine)
 write AUD0LCL with address of triangle wave data.

MAIN PROGRAM

1. Set up volume, period, and length.
2. Write AUD0LCL with address of sine wave dat a.
3. Start DMA.
4. Continue with something else.

- 144 Audio Hardware -

SYSTEM RESPONSE

As soon as DMA starts,

a. Copy to "back -up" length register from AUDOLEN.

b. Copy to "back -up'' location register from AUDOLCL (will be used as a pointer showing
current data word to fetch).

c. Create an interrupt for the 68000 saying that it has completed retrieving working copies
of length and location registers.

d. Start retrieving audio data each alloca ted DMA time slot.

PLAYING MULTIPLE TONES AT THE SAME TIME
You can play multiple tones either by using several channels independently or by
summing the samples in several data sets, playing the summed data sets through a single
channel.

Since all four a udio channels are independently programmable, each channel has its own
data set; thus a different tone or musical note can be played on each channel.

MODULATING SOUND
To provide more complex audio effects, you can use one audio channel to modulate

another . This increases the range and type of effects that can be produced. You can
modulate a channel's frequency or amplitude, or do both types of modulation on a channel
at the same time.

Amplitude modulation affects the volume of the waveform. It is often us ed to produce
vibrato or tremolo effects. Frequency modulation affects the period of the waveform.
Although the basic waveform itself remains the same, the pitch is increased or decreased
by frequency modulation.

The system uses one channel to modulate an other when you attach two channels. The
attach bits in the ADKCON register control how the data from an audio channel is
interpreted (see the Table below). Normally, each channel produces sound when it is
enabled. If the "attach" bit for an audio channel i s set, that channel ceases to produce
sound and its data is used to modulate the sound of the next higher -numbered channel.

When a channel is used as a modulator, the words in its data set are no longer treated as
two individual bytes. Instead, they are us ed as "modulator" words. The data words from
the modulator channel are written into the corresponding registers of the modulated
channel each time the period register of the modulator channel times out.

- Audio Hardwa re 145 -

To modulate only the amplitude of the audio output, you must attach a channel as a
volume modulator. Define the modulator channel's data set as a series of words, each
containing volume information in the following format:

 BITS FUNCTION

 15 - 7 Not used

 6 - 0 Volume information, V6 - V0

To modulate only the frequency, you must attach a channel as a period modulator. Define
the modulator channel's data set as a series of words, each containing period information
in the f ollowing format:

 BITS FUNCTION

 15 - 0 Period information, P15 - P0

If you want to modulate both period and volume on the same channel , you need to attach
the channel as both a period and volume modulator. For instance, if channel 0 is u sed to
modulate both the period and frequency of channel 1, you set two attach bits - bit 0 to
modulate the volume and bit 4 to modulate the period. When period and volume are both
modulated, words in the modulator channel's data set are defined alternatel y as volume
and period information.

The sample set of data in Table 5-4 shows the differences in interpretation of data when a
channel is used directly for audio, when it is attached as volume modulator, when it is

attached as a period modulator, and when it is attache d as a modulator of both volume
and period.

 Table 5- 4: Data Interpretation in Attach Mode

 INDEPENDENT MODULATING

DATA (NOT BOTH MODULATING MODULATING

WORDS MODULATING) P ERIOD AND VOLUME PERIOD ONLY VOL ONLY

Word 1 |data|data| |vol for other channel| |period| |volume|

Word 2 |data|data| |period for other channel| |period| |volume|

Word 3 |data|data| |volume for other channel| |period| |volume|

Word 4 |data|data| |period for other channel| |period| |volume|

- 146 Audio Hardware -

The lengths of the data sets of the modulator and the modulated channels are completely
independent.

Channels are attached by the system in a predetermined order, as shown in Table 5-5. To

attach a channel as a modulator, you set its attach bit to 1. If you set either the volume
or period attach bits for a channel, that channel's audio output will be disa bled; the
channel will be attached to the next higher channel, as shown in Table 5-5. Because an
attached channel always modulates the next higher numbered channel, you cannot attach
channel 3. Writing a 1 into channel 3's modulate bits only disables its a udio output.

 Table 5- 5: Channel Attachment for Modulation

 ADKCON REGISTER

 Bit Name Function

 7 ATPER3 Use audio channel 3 to modulate nothing

 (di sables audio output of channel 3)

 6 ATPER2 Use audio channel 2 to modulate period

 of channel 3

 5 ATPER1 Use audio channel 1 to modulate period

 of channel 2

 4 ATPER0 Use audio channel 0 to modulate period

 of channel 1

 3 ATVOL3 Use audio channel 3 to modulate nothing

 (disables audio output of channel 3)

 2 ATVOL2 Use audio channel 2 to modulate volume

 of channel 3

 1 ATVOL1 Use audio channel 1 to modulate volume

 of channel 2

 0 ATVOL0 Use audio channel 0 to mod ulate volume

 of channel 1

- Audio Hardware 147 -

PRODUCING HIGH -QUALITY SOUND

When trying to create high -quality sound, you need to consider the following factors:

o Waveform transi tions.

o Sampling rate.

o Efficiency.

o Noise reduction.

o Avoidance of aliasing distortion.

o Limitations of the low pass filter.

MAKING WAVEFORM TRANSITIONS
To avoid unpleasant sounds when you change from one waveform to another, you need to
make t he transitions smooth. You can avoid "clicks" by making sure the waveforms start
and end at approximately the same value. You can avoid "pops" by starting a waveform
only at a zero -crossing point. You can avoid "thumps" by arranging the average amplitude
of each wave to be about the same value. The average amplitude is the sum of the bytes
in the waveform divided by the number of bytes in the waveform.

SAMPLING RATE

If you need high precision in your frequency output, you may find that the frequency you
wi sh to produce is somewhere between two available sampling rates, but not close
enough to either rate for your requirements. In those cases, you may have to adjust the
length of the audio data Table in addition to altering the sampling rate.

For higher fre quencies, you may also need to use audio data Table s that contain more
than one full cycle of the audio waveform to reproduce the desired frequency more
accurately, as illustrated in Figure 54.

- 148 Audio Hardware -

Figure 5. 4: Waveform with Multiple Cycles

EFFICIENCY
A certain amount of overhead is involved in the handling of audio DMA. If you are trying
to produce a smooth continuous audio synthesis, you should try to avoid as much of the
system control overhead as possible. Basically, the larger the audio buffer you provide to
the system, the less often it will need to interrupt to reset the pointers to the top of the
next buffer and, coincidentally, the lower the amount of system interaction that will b e

required. If there is only one waveform buffer, the hardware automatically resets the
pointers, so no software overhead is used for resetting them.

The "Joining Tones" section illustrated how you could join "ends" of tones together by
responding to inte rrupts and changing the values of the location registers to splice tones
together. If your system is heavily loaded, it is possible that the response to the interrupt
might not happen in time to assure a smooth audio transition. Therefore, it is advisable to

utilize the longest possible audio Table where a smooth output is required. This takes
advantage of the audio DMA capability as well as minimizing the number of interrupts to
which the 68000 must respond.

- Audio Hardware 149 -

NOISE REDUCTION
To reduce noise levels and produce an accurate sound, try to use the full range of -128 to
127 when you represent a waveform. This reduces how much noise (quantization error)
will be added to the sign al by using more bits of precision. Quantization noise is caused by

the introduction of round -off error. If you are trying to reproduce a signal, such as a sine
wave, you can represent the amplitude of each sample with only so many digits of
accuracy. The difference between the real number and your approximation is round -off
error, or noise.

By doubling the amplitude, you create half as much noise because the size of the steps of
the wave form stays the same and is therefore a smaller fraction of the ampl itude.

In other words, if you try to represent a waveform using, for example, a range of only +3
to -3, the size of the error in the output would be considerably larger than if you use a
range of +127 to -128 to represent the same signal. Proportionally, the digital value used
to represent the waveform amplitude will have a lower error. As you increase the number
of possible sample levels, you decrease the relative size of each step and, therefore,
decrease the size of the error.

To produce quiet sounds, continue to define the waveform using the full range, but adjust
the volume. This maintains the same level of accuracy (signal - to -noise ratio) for quiet
sounds as for loud sounds.

ALIASING DISTORTION
When you use sampling to produce a waveform , a side eff ect is caused when sampling

rate "beats" or combines with the frequency you wish to produce. This produces two
additional frequencies, one at the sampling rate plus the desired frequency and the other
at the sampling rate minus the desired frequency. This phenomenon is called aliasing
distortion.

Aliasing distortion is eliminated when the sampling rate exceeds the output frequency by
at least 7 KHz. This puts the beat frequency outside the range of the low -pass filter,
cutting off the undesirable frequenci es. Figure 5-5 shows a frequency domain plot of the
anti -aliasing low -pass filter used in the system.

- 150 Audio Hardware -

 ^

 /| \

 |

 |

 0 db |____

 | \

 | \ Filter response

 | \

 - 30 db |_______ \ _________________________________ \

 | | | | | | /

 05 10 15 20 25 30

 KHz

 Filter passes all fre quencies below about 5KHz

 Figure 5- 5: Frequency Domain Plot of Low - Pass Filter

Figure 5-6 shows that it is permissible to use a 12 KHz sampling rate to produce a 4 KHz
waveform. Both of the beat frequencies are outside the range of the filter, as shown in
these calculations:

 12+4= 16KHz
 12 -4= 8KHz

 ^ Filter response

 /| \

 | 12 KHz sampling frequency

 | |

 0 db |____ |

 | \ Diff. | Sum

 | \ | | |

 | 4| \ | | |

 - 30 db |____|__ \ _|___|_____|_____________________ \

 / | | | | | | /

 / 05 10 15 20 25 30

 / KHz

 /

 Desired output frequency

 Figure 5- 6: Noise - free Output (No Aliasing Distortion)

You can see in Figure 5-7 that is unaccep table to use a 10 KHz sampling rate to produce a
4 KHz waveform . One of the beat frequen cies (10 - 4) is within the range of the filter,
allowing some of that undesirable frequency to show up in the audio output.

- Audio Hardware 151 -

 ^ Filter response

 /| \

 | 10 KHz sampling frequency

 | |

 0 db |____ |

 | \ Diff. | Sum

 | \ | | |

 | 4| \ | | |

 - 30 db |____|__ \ |__|____|______________________ \

 / | | | | | | /

 / 05 1 0 15 20 25 30

 / KHz

 /

 Desired output frequency

 Figure 5- 7: Some Aliasing Distortion

All of this gives rise to the following equation, showing that the sampling frequency must
exceed the output frequency by at least 7 KHz, so that the beat frequency will be above
the cut -off range of the anti -aliasing filter:

 Minimum sampling rate = highest frequency component + 7 KHz

The frequency component of the equation is stated as "highest frequency component"
because you may be producing a complex waveform with multiple frequency elements,

rather than a pure sine wave.

LOW-PASS FILTER
The system includes a low -pass filter that eliminates aliasing distortion as described
above. This filter becomes active around 4 KHz and gradually begins to attenuate (cut off)
the signal. Generally, you cannot clearly hear frequencies higher than 7 KHz. Therefore,
you get the most complete frequency response in the frequency range of 0 - 7 KHz. If you
are ma king frequencies from 0 to 7 KHz, you should select a sampling rate no less
than 14 KHz, which corresponds to a sampling period in the range 124 to 256.

At a sampling period around 320, you begin to lose the higher frequency values between
0 KHz and 7 KHz , as shown in Table 5-6.

- 152 Audio Hardware -

 Table 5- 6: Sampling Rate and Frequency Relationship

 Sampling Sampling Maximum Output

 Period R ate (KHz) Frequency (KHz)

Maximum sampling rate 124 29 7

Minimum sampling rate 256 14 7

 for 7 KHz output

Sampling rate too low 320 11 4

 for 7 KHz output

In A2000s with 2 layer mot herboards and later AS00 models there is a control bit that
allows the audio output to bypass the low pass filter. This control bit is the same output
bit of the 8520 CIA that controls the brightness of the red "power" LED. Bypassing the
filter allows for improved sound in some applications, but an external filter with an
appropriate cut -off frequency may be required.

USING DIRECT (NON -DMA) AUDIO OUTPUT

It is possible to create sound by writing audio data one word at a time to the audio output
addresses, instead of setting up a list of audio data in memory. This method of controlling
the output is more processor - intensive and is therefore not recommended.

To use direct audio output, do not enable the DMA for the audio channel you wish to use;

this changes the timing of the interrupts. The normal interrupt occurs after a data address
has been read; in direct audio output, the interrupt occurs after one data word has been
output.

Unlike in the DMA -controlled automatic data output, in direct audio output, if you do not
write a new set of data to the output addresses before two sampling intervals have
elapsed, the audio output will cease changing. The last value remains as an output of the
digital - to -analog converter.

The volume and period registers are set a s usual.

- Audio Hardware 153 -

THE EQUAL-TEMPERED MUSICAL SCALE
Table 5-7 gives a close approximation of the equal - tempered scale over one octave when
the sample size is 16 bytes. The "Period" column gives th e period count you enter into the
period register. The length register AUDxLEN should be set to 8 (16 bytes = 8 words). The

sample should represent one cycle of the waveform.

 Table 5- 7: Equal - tempered Octave for a 16 Byte Sample

 NTSC PAL Ideal Actual NTSC Actual PAL

 Period Period Note Frequency Frequency Frequency

 254 252 A 880.0 880.8 879.7

 240 238 A# 932.3 932.2 931.4

 226 224 B 987.8 9 89.9 989.6

 214 212 C 1046.5 1045.4 1045.7

 202 200 C# 1108.7 1107.5 1108.4

 190 189 D 1174.7 1177.5 1172.9

 180 178 D# 1244.5 1242.9 1245.4

 170 168 E 1318.5 1316.0 1319.5

 160 159 F 1396.9 1398.3 1394.2

 151 150 F# 1480.0 1481.6 1477.9

 143 141 G 1568.0 1564.5 1572.2

 135 133 G# 1661.2 1 657.2 1666.8

The Table above shows the period values to use with a 16 byte sample to make tones in
the second octave above middle C. To generate the tones in the lower octaves, there are
two methods you can use, doubling the period value or doubling the sample size.

When you double the period, the time between each sample is doubled so the sample
takes twice as long to play. This means the frequency of the tone generated is cut in half
which gives you the next lowest octave. Thus, if you play a C wi th a period value of 214,
then playing the same sample with a period value of 428 will play a C in the next lower
octave.

Likewise, when you double the sample size, it will take twice as long to play back the
whole sample and the frequency of the tone gen erated will be in the next lowest octave.
Thus, if you have an 8 byte sample and a 16 byte sample of the same waveform played at
the same speed, the 16 byte sample will be an octave lower.

- 154 Audio Hardware -

A sample for an equal - tempered scale typically represents one full cycle of a note. To
avoid aliasing distortion with these samples you should use period values in the range
124 -256 only. Periods from 124 -256 correspond to playback rates in the range 14 -28K
samples per second which makes the most effective use of the Amiga's 7 kHz cut -off filter

to prevent noise. To stay within this range you will need a different sample for each
octave.

If you cannot use a different sample for each octave, then you will have to adjust the
period value over its full range 124 -65536. This is easier for the programmer but can
produce undesirable high - frequency noise in the resulting tone. Read the section called
"Aliasing Distortion" for more about this.

The values in Tabl e 5-7 were generated using the formula shown below. To calculate the
tone generated with a given sample size and period use:

 Clock Constant 3579545

 Frequency = -------------- = ------- = 880.8hz

 Sample Bytes* Period 16*Period

The clock constant in an NTSC system is 3579545 ticks per second. In a PAL system, the
clock constant is 3546895 ticks per second. Sample bytes is the number of bytes in one
cycle of the waveform sample. (The clock constant is derived from dividing the system
clock value by 2. The value will vary when using an external system clock, such as a
genlock.)

Using the formula above you can generate the values needed for the even - tempered scale
for any arbitrary sample. Table 5-8 gives a clo se approximation of a five octave even
tempered -scale using five samples. The values were derived using the formula above.
Notice that in each octave period values are the same but the sample size is halved. The
samples listed represent a simple triangular wave form.

- Audio Hardware 155 ï

 Table 5- 8: Five Octave Even - tempered Scale

 NTSC PAL Ideal Actual NTSC Actual PAL

 Period Period Note Frequency Frequency Fr equency

 254 252 A 55.00 55.05 54.98

 240 238 A# 58.27 58.26 58.21

 226 224 B 61.73 61.87 61.85

 214 212 C 65.40 65.34 65.35

 202 200 C# 69.29 69.22 69.27

 190 189 D 73.41 73.59 73.30

 180 178 D# 77.78 77.68 77.83

 170 168 E 82.40 82.25 82.47

 160 159 F 87.30 87.39 87.13

 151 150 F# 92.49 92.60 92.36

 143 141 G 98.00 97.78 98.26

 135 133 G# 103.82 103.57 104.17

Sample size = 256 bytes, AUDxLEN = 128

 254 252 A 110.00 110.10 109.96

 240 238 A# 116.54 116.52 116.43

 226 224 B 123.47 123.74 123.70

 214 212 C 130.81 130.68 130.71

 202 200 C# 138.59 138.44 138.55

 190 189 D 146.83 147.18 146.61

 180 178 D# 155.56 155.36 155.67

 170 168 E 164.81 164.50 164.94

 160 159 F 174.61 174.78 174.27

 151 150 F# 184.99 185.20 184.73

 143 141 G 196.00 195.56 196.52

 135 133 G# 207.65 207.15 208.35

Sample size = 128 bytes, AUDxLEN = 64

 254 252 A 220.00 220.20 219.92

 240 238 A# 233.08 233.04 232.86

 226 224 B 246.94 247.48 247.41

 214 212 C 261.63 261.36 261.42

 202 200 C# 277.18 276.88 277.10

 190 189 D 293.66 294.37 293.23

 180 178 D# 311.13 310.72 311.35

 170 168 E 329.63 329.00 329.88

 160 159 F 349.23 349.56 348.55

 151 150 F# 369.99 370.40 369.47

 143 141 G 392.00 391.12 393.05

 135 133 G# 415.30 414.30 416.70

Sample size = 64 bytes, AUDxLEN = 32

- 156 Audio Hardware ï

 NTSC PAL Ideal Actual NTSC Actual PAL

 Period Period Note Frequency Frequency Frequency

 254 252 A 440.0 440.4 439.8

 240 238 A# 466.16 466.09 465.72

 226 224 B 493.88 494.96 494.82

 214 212 C 523.25 522.71 522.83

 202 200 C# 554.37 553.77 554.20

 190 189 D 587.33 588.74 586.46

 180 178 D# 622.25 621.45 622.70

 170 168 E 659.26 658.00 659.76

 160 159 F 698.46 699.13 697.11

 151 150 F# 739.99 740.80 738.94

 143 141 G 783.99 782.24 786.10

 135 133 G# 830.61 828.60 833.39

Sample size = 32 bytes, AUDxLEN = 16

 254 252 A 880.0 880.8 879.7

 240 238 A# 932.3 932.2 931.4

 226 224 B 987.8 989.9 989.6

 214 212 C 1046.5 1045.4 1045.7

 202 200 C# 1108.7 1107.5 1108.4

 190 189 D 1174.7 1177.5 1172.9

 180 178 D# 1244.5 1242.9 1245.4

 170 168 E 1318.5 1316.0 1319.5

 160 159 F 1396.9 1398.3 1394.2

 151 150 F# 1480.0 1481.6 1477.9

 143 141 G 1568.0 1564.5 1572.2

 135 133 G# 661.2 1657.2 1666.8

Sample size = 16 bytes, AUDxLEN = 8

- Audio Hardware 157 -

 256 BYTE SAMPLE

 0 2 4 6 8 10 12 14 16 18 20 22 24 26

 28 30 32 34 36 38 40 42 44 46 48 50 52 54

 56 58 60 62 64 66 68 70 72 74 76 78 80 82

 84 86 88 90 92 94 96 98 100 102 104 106 108 110

 112 114 116 118 120 122 124 126 128 126 124 122 120 118

 116 114 112 110 108 106 104 102 100 98 96 94 92 90

 88 86 84 82 80 78 76 74 72 70 68 66 64 62

 60 58 56 54 52 50 48 46 44 42 40 38 36 34

 32 30 28 26 24 22 20 18 16 14 12 10 8 6

 4 2 0 - 2 - 4 - 6 - 8 - 10 - 12 - 14 - 16 - 18 - 20 - 22

 - 24 - 26 - 28 - 30 - 32 - 34 - 36 - 38 - 40 - 42 - 44 - 46 - 48 - 50

 - 52 - 54 - 56 - 58 - 60 - 62 - 64 - 66 - 68 - 70 - 72 - 74 - 76 - 78

 - 80 - 82 - 84 - 86 - 88 - 90 - 92 - 94 - 96 - 98 - 100 - 102 - 104 - 106

- 108 - 110 - 112 - 114 - 116 - 118 - 120 - 122 - 124 - 126 - 127 - 126 - 124 - 122

- 120 - 118 - 116 - 114 - 112 - 110 - 108 - 106 - 104 - 102 - 100 - 98 - 96 - 94

 - 92 - 90 - 88 - 86 - 84 - 82 - 80 - 78 - 76 - 74 - 72 - 70 - 68 - 66

 - 64 - 62 - 60 - 58 - 56 - 54 - 52 - 50 - 48 - 46 - 44 - 42 - 40 - 38

 - 36 - 34 - 32 - 30 - 28 - 26 - 24 - 22 - 20 - 18 - 16 - 14 - 12 - 10

 - 8 - 6 - 4 - 2

 128 BYTE SAMPLE

 0 4 8 12 16 20 24 28 32 36 40 44 48 52

 56 60 64 68 72 76 80 84 88 92 96 100 104 108

 112 116 120 124 128 124 120 116 112 108 104 100 96 92

 88 84 80 76 72 68 64 60 56 52 48 44 40 36

 32 28 24 20 16 12 8 4 0 4 8 12 16 20

 24 28 32 36 40 44 48 52 56 60 64 68 72 76

 80 84 88 92 96 100 104 108 112 116 120 124 - 127 - 124

- 120 - 116 - 112 - 108 - 104 - 100 - 96 - 92 - 88 - 84 - 80 - 76 - 72 - 68

 - 64 - 60 - 56 - 52 - 48 - 44 - 40 - 36 - 32 - 28 - 24 - 20 - 16 - 12

 - 8 - 4

 64 BYTE SAMPLE

 0 8 16 24 32 40 48 56 64 72 80 88 96 104

 112 120 128 120 112 104 96 88 80 72 64 56 48 40

 32 24 16 8 0 - 8 - 16 - 24 - 32 - 40 - 48 - 56 - 64 - 72

 - 80 - 88 - 96 - 104 - 112 - 120 - 127 - 120 - 112 - 104 - 96 - 88 - 80 - 72

 - 64 - 56 - 48 40 - 32 - 24 - 16 - 8

 32 BYTE SAMPLE

 0 16 32 48 64 80 96 112 128 112 96 80 64 48

 32 16 0 - 16 - 32 - 48 - 64 - 80 - 96 - 112 - 127 - 112 - 96 - 80

 - 64 4 8 - 32 - 16

 16 BYTE SAMPLE

 0 32 64 96 128 96 64 32 0 - 32 - 64 - 96 - 127 - 96

 - 64 - 32

- 158 Audio Hardware -

DECIBEL VALUES FOR VOLUME RANGES

Table 5-9 provides the corresponding decibel values for the volume ranges of the Amiga
system.

 Table 5- 9: Decibel Values and Volume Ranges

 Volume Decibel Value Volume Decibel Value

 64 0.0 32 - 6.0

 63 - 0.1 31 - 6.3

 62 - 0.3 30 - 6.6

 61 - 0.4 129 - 6.9

 60 - 0.6 28 - 7.2

 59 - 0.7 27 - 7.5

 58 - 0. 9 26 - 7.8

 57 - 1.0 25 - 8.2

 56 - 1.2 24 - 8.5

 55 - 1.3 23 - 8.9

 54 - 1.5 22 - 9.3

 53 - 1.6 21 - 9. 7

 52 - 1.8 20 - 10.1

 51 - 2.0 19 - 10.5

 50 - 2.1 18 - 11.0

 49 - 2.3 17 - 11.5

 48 - 2.5 16 - 12.0

 47 - 2.7 15 - 12.6

 46 - 2.9 14 - 13.2

 45 - 3.1 13 - 13.8

 44 - 3.3 12 - 14.5

 43 - 3.5 11 - 15.3

 42 - 3.7 10 - 16.1

 41 - 3.9 9 - 17.0

 40 4.1 8 - 18.1

 39 4.3 7 - 19.2

 38 4.5 6 - 20.6

 37 4.8 5 - 22.1

 36 - 5.0 4 - 24.1

 35 - 5.2 3 - 26.6

 34 - 5.5 2 - 30.1

 33 - 5.8 1 - 36.1

 0 Minus infinity

- Audio Hardware 159 -

THE AUDIO STATE MACHINE

For an explanation of the various states, refer to Figure 5-8. There is one audio state
machine for each channel. The machine has eight states and is clocked at the clock

constant rate (3.58 MHz NTSC). Three of the states are basically unused and just transfer
back to the idle (000) state. One of the paths out of the idle state is designed for
interrupt -driven operation (processor provides the data), and the other path is designed
for DMA -driven operation (the "Agnus" special chip provides the data).

In interrupt -driven operation, transfer to the main loop (states 010 and 011) occurs
immediately after data is written by the processor. In the 010 state the upper byte is

output, and in the 011 state the lower byte is ou tput. Transitions such as 010011010
occur whenever the period counter counts down to one. The period counter is reloaded at
these transitions. As long as the interrupt is cleared by the processor in time, the machine
remains in the main loop. Otherwise, it enters the idle state. Interrupts are generated on
every word transition (011010).

In DMA -driven operation, transition to the 001 state occurs and DMA requests are sent to
Agnus as soon as DMA is turned on. Because of pipelining in Agnus, the first data word
must be thrown away. State 101 is entered as soon as this word arrives; a request for the
next data word has already gone out. When the data arrives, state 010 is entered and the
main loop continues until the DMA is turned off. The length counter coun ts down once
with each word that comes in. When it finishes, a DMA restart request goes to Agnus
along with the regular DMA request. This tells Agnus to reset the pointer to the beginning
of the Table of data. Also, the length counter is reloaded and an in terrupt request goes

out soon after the length counter finishes (counts to one). The request goes out just as
the last word of the waveform starts its output.

DMA requests and restart requests are transferred to Agnus once each horizontal line, and
the da ta comes back about 14 clock cycles later (the duration of a clock cycle is 280 ns).

In attach mode, things run a little differently. In attach volume, requests occur as they do
in normal operation (on the 011010 transition). In attach period, a set of re quests occurs
on the O10011 transition. When both attach period and attach volume are high, requests
occur on both transitions.

If the sampling rate is set much higher than the normal maximum sampling rate
(approximately 29 KHz), the two samples in the bu ffer register will be repeated. If the
filter on the Amiga is bypassed and the volume is set to the maximum ($40), this feature

can be used to make modulated carriers up to 1.79 MHz. The modulation is placed in the
memory map, with plus values in the even bytes and minus values in the odd bytes.

The symbols used in the state diagram are explained in the following list. Upper -case
names indicate external signals; lower -case names indicate local signals.

- 160 Audio Hard ware -

AUDxON DMA on "x" indicates channel number (signal from DMACON).

AUDxIP Audio interrupt pending (input to channel from interrupt

 circuitry).

AUDxIR Audio interrupt request (output from channel to interrupt

 circuit ry)

intreq1 Interrupt request that combines with intreq2 to form AUDxIR

intreq2 Prepare for interrupt request. Request comes out after the

 next 011 -- >010 transition in normal operation.

AUDxDAT Audio data load signal. Loads 16 bits o f data to audio channel.

AUDxDR Audio DMA request to Agnus for one word of data.

AUDxDSR Audio DMA request to Agnus to reset pointer to start of block.

dmasen Restart request enable.

percntrld Reload period counter from back - up latch typica lly written by

 processor with AUDxPER (can also be written by attach mode).

percount Count period counter down one latch.

perfin Period counter finished (value = 1).

lencntrld Reload length counter from back - up latch.

lencount Count length counter down one notch.

lenfin Length counter finished (value = 1).

volcntrld Reload volume counter from back - up latch.

pbufld1 Load output buffer from holding latch written to by AUDxDAT.

pbufld2 Like pbufld1, but only during 010 -- >011 with attach period.

AUDxAV Attach volume. Send data to volume latch of next channel

 instead of to D -- >A converter.

AUDxAP Attach period. Send data to period latch of next channel

 instead of to the DA converter.

penhi Enable the high 8 bits of data to go to the D -- >A converter.

- Audio Hardware 161 -

napnav /AUDxAV * /AUDxAP + AUDxAV - no attach stuff or else attach

 volume. Condition for normal DMA and interrupt re quests.

sq2,1,0 The name of the state flip - flops, MSB to LSB.

Figure 5- 8: Audio State Diagram

- 162 Audio Hardware -

Chapter 6

BLITTER HARDWARE

INTRODUCTION

The blitter is one of the two co -pro cessors in the Amiga. Part of the Agnus chip, it is used
to copy rectangular blocks of memory around and to draw lines. When copying memory, it
is approximately twice as fast as the 68000, able to move almost four megabytes per
second. It can draw lines at almost a million pixels per second.

In block move mode, the blitter can perform any logical operation on up to three source
areas, it can shift up to two of the source areas by one to fifteen bits, it can fill outlined
shapes, and it can mask the first and last words of each raster row. In line mode, any
pattern can be imposed on a line, or the line can be drawn such that only one pixel per
horizontal line is set.

- Blitter Hardware 163 -

The blitter can only access CHIP memory - that portion of memory accessible by the
display hardware. Attempting to use the blitter to read or write FAST or other non -CHIP
memory may result in destruction of the contents of CHIP memory.

A "blit" is a single operation of the blitter - perhaps the drawing of a line or movement of
a block of memory. A blit is performed by initializing the blitter registers with appropriate
values and then starting the blitter by writing the BLTSIZE register. As the blitter is an
asynchronous coprocessor, the 68000 continues to run as the blit is executing.

MEMORY LAYOUT

The blitter is a word blitter, not a bit blitter. All data fetched, modified, and written are in
full 16 -bit words. Through careful programming, the blitter ca n do many "bit" type
operations.

The blitter is particularly well suited to graphics operations. As an example, a 320 by 200
screen set up to display 16 colors is organized as four bitplanes of 8,000 bytes each. Each
bitplane consists of 200 rows of 40 by tes or 20 16 -bit words. (From here on, a "word" will
mean a 16 -bit word.)

DMA CHANNELS

The blitter has four DMA channels - three source channels, labelled A, B, and C, and one
destination channel, called D. Each of these channels has separate address poi nter,
modulo and data registers and an enable bit. Two have shift registers, and one has a first

and last word mask register. All four share a single blit size register.

The address pointer registers are each composed of two words, named BLTxPTH and
BLTxPTL. (Here and later, in referring to a register, any "x" in the name should be
replaced by the channel label, A, B, C, or D.) The two words of each register are adjacent
in the 68000 address space, with the high address word first, so they can both be writ ten
with one 32 -bit write from the processor. The pointer registers should be written with an
address in bytes. Because the blitter works only on words, the least significant bit of the
address is ignored. Because only CHIP memory is accessible, some of th e most significant
bits will be ignored as well. On machines with 512 KB of CHIP memory, the most
significant 13 bits are ignored. Future machines will have more CHIP memory and fewer
bits will be ignored. A valid, even, CHIP memory address should always b e written to
these registers.

NOTE
Be sure to write zeros to all unused bits in the custom chip registers. These bits may be
used by later versions of the custom chips. Writing non -zero values to these bits may
cause unexpected results on future machines.

- 164 Blitter Hardware -

Each of the DMA channels can be independently enabled or disabled. The enable bits are
bits SRCA, SRCB, SRCC, and DEST in control register zero (BLTCON0).

When disabled, no memory cycles wil l be executed for that channel and, for a source

channel, the constant value stored in the data register of that channel will be used for
each blitter cycle. For this purpose, each of the three source channels have preloadable
data registers, called BLTxDA T.

Images in memory are usually stored in a linear fashion; each word of data on a line is
located at an address that is one greater than the word on its left. i.e. Each line is a "plus
one" continuation of the previous line. (See Figure 6-1.)

 20 21 22 23 24 24 26

 27 28 29 30 31 32 33

 34 35 36 37 38 39 40

 41 42 43 44 45 46 47

 48 49 50 51 52 53 54

 55 56 57 58 59 60 61

 Figure 6- 1: How Image s are Stored in Memory

The map in Figure 6-1 represents a single bit -plane (one bit of color) of an image at word
addresses 20 through 61. Each of these addresses accesses one word (16 pixels) of a
single bitplane. If this image required sixteen colors, four bit -planes like this would be
required in memory, and four copy (move) operations would be required to completely

move the image.

The blitter is very efficient at copying such blocks because it needs to be told only the
starting address (20), the des tination address, and the size of the block (height = 6, width
= 7). It will then automatically move the data, one word at a time, whenever the data bus
is available. When the transfer is complete, the blitter will signal the processor with a flag
and an i nterrupt.

NOTE

This copy (move) operation operates on memory and may or may not change the memory
currently being used for display.

All data copy blits are performed as rectangles of words, with a given width and height. All

four DMA channels use a sing le blit size register, called BLTSIZE, used for both the width
and height. The width can take a value of from 1 to 64 words (16 to 1024 bits). The
height can run from 1 to 1024 rows. The width is stored in the least significant six bits of
the BLTSIZE regi ster. If a value of zero is stored, a width count of 64 words is used. This
is the only parameter in the blitter

- Blitter Hardware 165 -

t hat is given in words. The height is stored in the upper ten bits of the BLTSIZE register,
with zero representing a height of 1024 rows. Thus, the largest blit possible with the
current Amiga blitter is 1024 by 1024 pixels. However, shifting and masking operations
may require an extra word be fetched for each raster scan line, making the maximum

practical horizontal width 1008 pixels.

NOTE
To emphasize the above paragraph: Blit width is in words with a zero representing 64
words. Blit height is in lines with a zero representing 1024 lines.

The blitter also has facilities, called modu les, for accessing images smaller than the entire

bitplane. Each of the four DMA channels has 16 bit modulo register called BLTxMOD. As
each word is fetched (or written) for an enabled channel, the address pointer register is
incremented by two (bytes, or one word.) After each row of the blit is completed, the
signed 16 -bit modulo value for that DMA channel is added to the address pointer. (A row
is defined by the width stored in BLTSIZE.)

NOTE
The modulo values are in bytes, not words. Since the blitter c an only operate on words,
the least significant bit is ignored. The value is sign -extended to the full width of the
address pointer registers. Negative modules can be useful in a variety of ways, such as
repeating a row by setting the modulo to the negativ e of the width of the bitplane.

As an example, suppose we want to operate on a section of a full 320 by 200 pixel bitmap
that started at row 13, byte 12 (where both are numbered from zero) and the section is

10 bytes wide. We would initialize the pointer register to the address of the bitplane plus
40 bytes per row times 13 rows, plus 12 bytes to get to the correct horizontal position.
We would set the width to 5 words (10 bytes). At the end of each row, we would want to
skip over 30 bytes to get to the beginning of the next row, so we would use a modulo
value of 30. In general, the width (in words) times two plus the modulo value (in bytes)
should equal the full width, in bytes, of the bitplane containing the image.

- 166 Blitter Hardware -

Figure 6- 2: BLTxPTR and BLTxMOD calculations

NOTE
The blitter can be used to process linear rather than rectangular regions by setting the
horizontal or vertical count in BLTSIZE to 1.

Because each DMA channel has it s own modulo register, data can be moved among
bitplanes of different widths. This is most useful when moving small images into larger
screen bitplanes.

- Blitter Hardware 167 -

FUNCTION GENERATOR

The blitter can combine the data from the three source DMA channels in up to 256
different ways to generate the values stored by the destination DMA channel. These

sources might be one bitplane from each of three separate graphics images. While each of
these sources is a rectangular region composed of many points, the same logic operation
will be performed on each point throughout the rectangular region. Thus, for purposes of
defining the blitter logic operation it is only necessary to cons ider what happens for all of
the possible combinations of one bit from each of the three sources.

There are eight possible combinations of values of the three bits, for each of which we

need to specify the corresponding destination bit as a zero or one. T his can be visualized
with a standard truth Table , as shown below. We have listed the three source channels,
and the possible values for a single bit from each one.

A B C D BLTCON0 position MINTERM

0 0 0 ? 0 ABC

 __

0 0 1 ? 1 ABC

 _ _

0 1 0 ? 2 ABC

 _

0 1 1 ? 3 ABC

 __

1 0 0 ? 4 ABC

 _

1 0 1 ? 5 ABC

 _

1 1 0 ? 6 ABC

1 1 1 ? 7 ABC

This information is collected in a standa rd format, the LF control byte in the BLTCON0
register. This byte programs the blitter to perform one of the 256 possible logic operations
on three sources for a given blit.

To calculate the LF control byte in BLTCON0, fill in the truth Table with desired values for
D, and read the function value from the bottom of the Table up.

For example, if we wanted to set all bits in the destination where the corresponding A
source bit is 1 or the corresponding B source bit is 1, we would fill in the last four entri es
of the truth Table with 1 (because the A bit is set) and the third, fourth, seven, and eight
entries with 1 (because the B bit is set), and all others (the first and second) with 0,
because neither A nor B is set. Then, we read the truth Table from the bottom up, reading
11111100, or $FC.

 - "$" indicates hex notation.

- 168 Blitter Hardware -

For another example, an LF control byte of $80 (= 1000 0000 binary) turns on bits only
for those points of the D destination re ctangle where the corresponding bits of A, B, and C
sources were all on (ABC = 1, bit 7 of LF on). All other points in the rectangle, which
correspond to other combinations for A, B, and C, will be 0. This is because bits 6 through

0 of the LF control byte , which specify the D output for these situations, are set to 0.

DESIGNING THE LF CONTROL BYTE WITH MINTERMS
One approach to designing the LF control byte uses logic equations. Each of

the rows in the truth Table corresponds to a "minterm", which is a

par ticular arrangement of values to the A, B, and C bits. For instance, the

first minterm is usually written ABC, or "not A and not B and not C". The

last is written as ABC.

NOTE

Two terms that are adjacent are AND'ed, an d two terms that are separated by

"+" are OR'ed. "And" has a higher precedence, so AB + BC is equal to (AB) +

(BC).

Any function can be written as a sum of minterms. If we wanted to calculate

the function where D is one when the A bit is set and the C bit

 _

is clear, or when the B bit is set, we can write that as AC+B, or "A and not

C or B". Since "1 and A" is "A":

 _

 D = AC + B

 _

 D = A(1)C + (1)B(1)

 _ _

Since either A or A is true (1 = A + A), and similarly for B, and C; we

can expand the above equation further:

 _

 D = A(1)C + (1)B(1)

 _ _ _ _ _

 D=A(B+B)C+(A+A)B(C+C)

 _ __ _ _ _

 D=ABC+ABC+AB(C+C)+AB(C+C)

 _ __ _ _ _ _

 D=ABC+ABC+ABC+ABC+ABC+ABC

After eliminating duplicates, we end up with the five minterms:

 _ _ __ _ _ _

 AC+B=ABC+ABC+ABC+ABC+ABC

These correspond to BLTCON0 bit positions of 6, 4, 7, 3, and 2, according to

our truth Table , which we would then set, and clear the rest.

The wide range of logic operations allow some sophisticated graphics

techniques. For instance, you can move the image of a car across some pre -

existing building images with a few blits. Producing this effect requires

predrawn images of the car, the buildings (or background), and a car

- Blitter Hardware 169 -

"mask" that contains bits set wherever the car image is not transparent. This mask c an be
visualized as the shadow of the car from a light source at the same position as the viewer.

NOTE

The mask for the car need only be a single bitplane regardless of the depth of the
background bitplane. This mask can be used in turn on each of the bac kground bitplanes.

To animate the car, first save the background image where the car will be placed. Next
copy the car to its first location with another blit. Your image is now ready for display. To
create the next image, restore the old background, save the next portion of the
background where the car will be, and redraw the car, using three separate blits. (This

technique works best with beam -synchronized blits or double buffering.)

To temporarily save the background, copy a rectangle of the background (from the A
channel, for instance) to some backup buffer (using the D channel). In this case, the
function we would use is "A", the standard copy function. From Table 6-1, we note that
the corresponding LF code has a value of $F0.

To draw the car, we mig ht use the A DMA channel to fetch the car mask, the B DMA
channel to fetch the actual car data, the C DMA channel to fetch the background, and the
D DMA channel to write out the new image.

NOTE
We must fetch the destination background before we write it, as only a portion of a
destination word might need to be modified, and there is no way to do a write to only a

portion of a word.

When blitting the car to the background we would want to use a function that, whenever
the car mask (fetched with DMA channel A) had a bit set, we would pass through the car
data from B, and whenever A did not have a bit set, we would pass through the original
background from C. The corresponding function, commonly referred to as the cookie -cut
function,
 _

is AB+AC, which works out to an LF code value of $CA.

To restore the background and prepare for the next frame, we would copy the information
saved in the first step back, with the standard copy function ($F0).

If you shift the data and the mask to a new location and r epeat the above three steps
over and over, the car will appear to move across the background (the buildings).

NOTE
This may not be the most effective method of animation, depending on the application,
but the cookie -cut function will appear often.

Table 6-1 lists some of the most common functions and their values, for easy reference.

- 170 Blitter Hardware -

Table 6- 1: Table of Common Minterm Values

 Selected BLTCON0 Selected BLTCON0

 Equation LF Code Equation LF Code

 D = A $F0 D = AB $C0

 _ _

 D = A $0F D = AB $30

 _

 D = B $CC D = AB $0C

 _ __

 D = B $33 D = AB $03

 D = C $AA D = BC $88

 _ _

 D = C $55 D = BC $44

 _

 D = AC $A0 D = BC $22

 _ __

 D = AC $50 D = AC $11

 _ _

 D = AC $0A D = A+B $F3

 __ _ _

 D = AC $05 D = A+B $3F

 _

 D = A+B $FC D = A+C $FS

 _ _ _

 D = A+B $CF D = A+C $5F

 _

 D = A+C $FA D = B+C $DD

 _ _ _

 D = A+C $AF D = B+C $77

 _

 D = B+C $EE D = AB+AC $ CA

 _

 D = B+C $BB

- Blitter Hardware 171 -

DESIGNING THE LF CONTROL BYTE WITH VENN DIAGRAMS
Another way to arrive at a particular function is through the use of Venn diagrams:

Figure 6- 3: Blitter Minterm Venn Diagram

1. To select a function D=A (that is, destination = A source only), select only the
minterms that are totally enclosed by the A -circle in the Figure above. This is the set of
minterms 7, 6, 5, and 4. When written as a set of 1s for the selected minterms and 0s for
those not selected, the value becomes:

 Minterm Number 7 6 5 4 3 2 1 0

 Selected Minterms 1 1 1 1 0 0 0 0

 F 0 equals $F0

2. To select a function that is a combination of two sources, look for the minterms by both

of the circles (their intersection). For example, the combination AB (A "and" B) is
represented by the area common to both the A and B circles, or minterms 7 and 6.

 Minterm Numbers 7 6 5 4 3 2 1 0

 Selected Minterms 1 1 0 0 0 0 0 0

 C 0 equals $C0

- 172 Blitter Hardware -

3. To use a function that is the inverse, or "not", of one of the
 _

sources, such as A, take all of the minterms not enclosed by the circle represented by

A on the above Figure . In this case, we have minterms 0, 1, 2, and 3.

 Minterm Numbers 7 6 5 4 3 2 1 0

 Selected Minterms 0 0 0 0 1 1 1 1

 0 F equals $0F

4. To combine minterms, or "or" them, "or" the values together. For example, the
equation AB+BC becomes

 Minterm Numbers 7 6 5 4 3 2 1 0

 AB 1 1 0 0 0 0 0 0

 BC 1 0 0 0 1 0 0 0

 AB+BC 1 1 0 0 1 0 0 0

 C 8 equals $C8

SHIFTS AND MASKS

Up to now we have dealt with the blitter only in moving words of memory around and
combining them with logic operations. This is sufficient for moving graphic images around,
so long as the images stay in the same position relative to the beginning of a word. If our
car image has its left -most pixel on the second pixel from the left, we can easily draw it
on the screen in any position where the leftmost pixel also starts two pixels from the
beginning of some word. But often we want to draw that car shifted left or right by a few
pixels. To this end, both the A and B DMA channels have a barrel shifter that can shift an
image between 0 and 15 bits.

This shifting operation is completely free; it requires no more time to execute a blit wit h

shifts than a blit without shifts, as opposed to shifting with the 68000. The shift is
normally towards the right. This shifter allows movement of images on pixel boundaries,
even though the pixels are addressed 16 at a time by each word address of the b it -plane
image.

So if the incoming data is shifted to the right, what is shifted in from the left? For the first
word of the blit, zeros are shifted in; for each subsequent word of the same blit, the data
shifted out from the previous word is shifted in.

The shift value for the A channel is set with bits 15 through 12 of BLTCON0; the B shift
value is set with bits 15 through 12 of BLTCON1. For most operations, the same value will
be used for both shifts. For shifts of greater than fifteen bits, load the a ddress register
pointer of the destination with a higher address; a shift of 100 bits would require the
destination pointer to be advanced 100/16 or 6 words (12 bytes), and a right shift of the

remaining 4 bits to be used.

As an example, let us say we are doing a blit that is three words wide, two words high,
and we are using a shift of 4 bits. For simplicity , let us assume we are doing a straight
copy from A to D. The first word that will be written to D is the first word fetched from A,
shifted right fou r bits

- Blitter Hardware 173 -

with zeros shifted in from the left. The second word will be the second word fetched from
the A, shifted right, with the least significant (rightmost) four bits of the first word shifted
in. Next, we will write the firs t word of the second row fetched from A, shifted four bits,
with the least significant four bits of the last word from the first row shifted in. This would

continue until the blit is finished.

On shifted blits, therefore, we only get zeros shifted in for the first word of the first row.
On all other rows the blitter will shift in the bits that it shifted out of the previous row. For
most graphics applications, this is undesirable. For this reason, the blitter has the
ability to mask the first and last word of each row coming through the A DMA channel.
Thus, it is possible to extract rectangular data from a source whose right and left edges

are between word boundaries. These two registers are called BLTAFWM and BLTALWM, for
blitter A channel first and last w ord masks. When not in use, both should be initialized to
all ones ($FFFF).

NOTE
Text fonts on the Amiga are stored in a packed bit map. Individual characters from the
font are extracted using the blitter, masking out unwanted bits. The character may the n
be positioned to any pixel alignment by shifting it the appropriate amount.

These masks are "anded" with the source data, before any shifts are applied. Only when
there is a 1 bit in the first -word mask will that bit of source A actually appear in the l ogic
operation. The first word of each row is anded with BLTAFWM, and the last word is
"anded" with BLTALWM. If the width of the row is a single word, both masks are applied
simultaneously.

The masks are also useful for extracting a certain range of "col umns" from some bitplane.
Let us say we have, for example, a predrawn rectangle containing text and graphics that
is 23 pixels wide. The leftmost edge is the leftmost bit in its bitmap, and the bitmap is two
words wide. We wish to render this rectangle sta rting at pixel position 5 into our 320 by
200 screen bitmap, without disturbing anything that lies outside of the rectangle.

- 174 Blitter Hardware -

 |______________2 word source bitmap_______ _____|

 | |

 |___Extract a 23 - bit image_____| |

 | | |

 |_____16 bit word______| | |

 | | | |

 |______________________|_______|_______________|

 | |

 Source | 00000000 00000000 00000000 00000000 |

 DMA B | 11111111 11111111 11111111 11111111 |

 | 10101010 01010101 10101010 01010101 |

 |__|

 | | | | *

 \ |/ \ |/ \ |/ \ |/

 ____V___________V_____ ___V___________V_____

 | | | |

 Mask on | 11111111 11111111 | |11111110 00000000 |

 DMA A | First word mas k | | Second word mask |

 |______________________| |_____________________|

 | | | | _|_ _|_

 \ |/ \ |/ \ |/ \ |/

 ____V____________V__________V__V___________ ___

 Final | |

destination | 00000000 00000000 00000001 11111111 |

 DMA D | 11111111 11111111 11111111 11111111 |

(points to | 10101010 01010101 10101011 11111111 |

 same address|__|

 as DMA C) ^ ^ ^ ^

 ___ ___ ___ /| \ /| \ /| \ /| \

 | | | | | | |

 ____|____________|_________|___|_____|___|___| **

 Destination | |

 before blit | 11111111 11111111 11111111 11111111 |

 DMA C | 11111111 11111111 11111111 11111111 |

 (to be | 11111 111 11111111 11111111 11111111 |

overwritten) |__|

* Source is passed through mask when it is a one, otherwise the

destination is copied.

** Destination does not change where mask is 0.

 Figure 6- 4: Extracting a Range of Columns

To do this, we point the B DMA channel at the bitmap containing the source image, and
the D DMA channel at the screen bitmap. We use a shift value of 5. We also point the C
DMA channel at the screen bitmap. We use a blit width of 2 words. What we need is a
simple copy operation, except we wish to leave the first five bits of the first word, and the
last four bits (2 times 16, less 23, less 5) of the last word alone. The A DMA channel
comes to the rescue. We preload the A data register with $FFFF (all ones), and use a first
word mask with the most significant five bits set to zero ($07FF) and a last word mask
with the least significant four bits set to zero ($07FF).

We do not enable the A DMA channel, but only the B, C, and D channels, since we want to
use the A channel as a simple row mask. We then wish to pass the B (source) data along
wherever the A channel is 1 (for a minterm of AB) and pass along the original destination
data (from the C channel) wherever A is 0 (for a minte rm of AC), yielding our classic

cookie -cut function of AB+AC, or $CA.

- Blitter Hardware 175 -

NOTE
Even though the A channel is disabled, we use it in our logic function and preload the data
register. Disabling a channel simply turns off the memory fetches for that channel; all
other operations are still performed, only from a constan t value stored in the channel's

data register

An alternative but more subtle way of accomplishing the same thing is to use an A shift of
five, a first word mask of all ones, and a last word mask w ith the rightmost nine bits set
to zero. All other registers remain the same.

NOTE

Be sure to load the blitter immediate data registers only after setting the shift count in
BLTCON0/BLTCON1, as loading the data regi sters first will lead to unpredic Table results.
For instance, if the last person left BSHIFT to be "4", and I load BDATA with "1" and then
change BSH1 to "2", the resulting BDATA that is used is "1<<4", not "1<<2". The act of
loading one of the data regist ers "draws" the data through the machine and shifts it.

DESCENDING MODE

Our standard memory copy blit works fine if the source does not overlap the destination.
If we want to move an image one row down (towards increasing addresses), however, we
run into a problem - we overwrite the second row before we get a chance to copy it! The
blitter has a special mode of operation - descending mode - that solves this problem
nicely.

Descending mode is turned on by setting bit one of BLTCON1 (defined as BLITREVERSE).
If you use descending mode the address pointers will be decremented by two (bytes)
instead of incremented by two for each word fetched. In addition, the modulo values will
be subtracted rather than added. Shifts are then towards the left, rather than th e right,
the first word mask masks the last word in a row (which is still the first word fetched, and
the last word mask masks the first word in a row.

Thus, for a standard memory copy, the only difference in blitter setup (assuming no
shifting or masking) is to initialize the address pointer registers to point to the last word in
a block, rather than the first word. The modulo values, blit size, and all other parameters
should be set the same.

NOTE
This differs from predecrement versus postincrement in t he 68000, where an address

register would be initialized to point to the word after the last, rather than the last word.

Descending mode is also necessary for area filling, which will be covered in a later section.

- 176 Blitter Hardware -

COPYING ARBITRARY REGIONS

One of the most common uses of the blitter is to move arbitrary rectangles of data from
one bitplane to another, or to different positions within a bitplane. These rectangles are

usually on arbitrary bit coordinates, so shifting and masking are necessary. There are
further complications. It may take several readings and some experimentation before
everything in this section can be understood.

A source image that spans only two words may, when copied with certain shifts, span
three words. Our 23 pixel wide rectangle above, for instance, when shifted 12 bits, will
span three words. Alternatively , an image spanning three words may fit in two for certain

shifts. Under all such circumstances, the blit size shou ld be set to the larger of the two
values, such that both source and destination will fit within the blit size. Proper masking
should be applied to mask out unwanted data.

Some general guidelines for copying an arbitrary region are as follows.

1. Use the A DMA channel, disabled, preloaded with all ones and the appropriate mask
and shift values, to mask the cookie cut function. Use the B channel to fetch the source
data, the C channel to fetch the destination data, and the D channel to write the
destinatio n data. Use the cookie -cut function $CA.

2. If shifting, always use ascending mode if bit shifting to the right, and use descending
mode if bit shifting to the left.

NOTE
These shifts are the shifts of the bit position of the leftmost edge within a word, rather
than absolute shifts, as explained previously.

3. If the source and destination overlap, use ascending mode if the destination has a
lower memory address (is higher on the display) and descending mode otherwise.

4. If the source spans more words than the destination, use the same shift value for the A
channel as for the source B channel and set the first and last word masks as if they were
masking the B source data.

5. If the destination spans more words than the source, use a shift value of zero for the A
channel and set the first and last word masks as if they were masking the destination D
data.

- Blitter Hardware 177 -

6. If the source and destination span the same number of words, use the A channel to
mask either the source, as in 4, or the destination, as in 5.

NOTE

Conditions 2 and 3 can be contradictory if, for instance, you are trying to move an image
one pixel down and to the right. In this case, we would want to use descending mode so
our destin ation does not overwrite our source before we use the source, but we would
want to use ascending mode for the right shift. In some situations, it is possible to get
around general guideline 2 above with clever masking. But occasionally just masking the
fir st or last word may not be sufficient; it may be necessary to mask more than 16 bits on
one or the other end. In such a case, a mask can be built in memory for a single raster

row, and the A DMA channel enabled to explicitly fetch this mask. By setting the A modulo
value to the negative of the width of the mask, the mask will be repeatedly fetched for
each row.

AREA FILL MODE

In addition to copying data, the blitter can simultaneously perform a fill operation during
the copy. The fill operation has only o ne restriction - the area to fill must be defined first
by drawing untextured lines with only one bit set per horizontal row. A special line draw
mode is available for this operation. Use a standard copy blit (or any other blit, as area
fills take place af ter all shifts, masks and logical combination of sources). Descending
mode must be used. Set either the inclusive -fill -enable bit (FILL OR, or bit 3) or the
exclusive - fill -enable bit (FILL XOR, or bit 4) in BLTCON1. The inclusive fill mode fills
between li nes, leaving the lines intact. The exclusive fill mode fills between lines, leaving

the lines bordering the right edge of filled regions but deleting the lines bordering the left
edge. Exclusive fill yields filled shapes one pixel narrower than the same pattern filled with
inclusive fill.

For instance, the pattern:

 00100100 -00011000

filled with inclusive fill, yields:

 00111100 -00011000

with exclusive fill, the result would be

 00011100 -00001000

(Of course, fills are always done on full 16 -bit words.)

- 178 Blitter Hardware -

There is another bit (FILL_CARRYIN or bit 3 in BLTCON1) that forces the area "outside"
the lines be filled; for the above example, with inclusive fill, the output would be;

 11 100111 -11111111

with exclusive fill, the output would be;

 11100011 -11110111

 BEFORE AFTER

 ____________________ ___________________

 | | | |

 | 1 1 1 1 | | 1111 1 11111 |

 | 1 1 1 1 | | 11111 11111 |

 | 1 1 1 1 | | 1111 1111 |

 | 1 1 1 1 | | 111 111 |

 | 11 11 | | 11 11 |

 | 1 1 1 1 | | 111 111 |

 | 1 1 1 1 | | 1111 1111 |

 | 1 1 1 1 | | 11111 11111 |

 |____________________| |___________________|

 Figure 6- 5: Use of the FCI Bit - Bit Is a 0

If the FCI bit is a 1 instead of a 0, the are a outside the lines is filled with ls and the area
inside the lines is left with 0s in between.

 BEFORE AFTER

 ____________________ ___________________

 | | | |

 | 1 1 1 1 | |111 1111111 11|

 | 1 1 1 1 | |111 11111111 11|

 | 1 1 1 1 | |1111 111111111 11|

 | 1 1 1 1 | |11111 1111111111 11|

 | 11 11 | |1111111111111111111|

 | 1 1 1 1 | |11111 1111111111 11|

 | 1 1 1 1 | |1111 111111111 11|

 | 1 1 1 1 | |111 11111111 11|

 |____________________| |___________________|

 Figure 6- 6: Use of the FCI Bit - Bit Is a 1

If you wish to produce very sha rp, single -point vertices, exclusive - fill enable must be
used. Figure 6-7 shows how a single -point vertex is produced using exclusive -fill enable.

- Blitter Hardware 179 -

 BEFORE AFTER EXCLUSIVE FILL

 ____________________ ___________________

 | | | |

 | 1 1 1 1 | | 1111 1111 |

 | 1 1 1 1 | | 111 111 |

 | 1 1 1 1 | | 11 11 |

 | 1 1 11 | | 1 1 |

 | 1 1 1 1 | | 11 11 |

 | 1 1 1 1 | | 111 111 |

 | 1 1 1 1 | | 1111 1111 |

 |____________________| |___________________|

 Figu re 6- 7: Single - Point Vertex Example

The blitter uses the fill carry - in bit as the starting fin state beginning at the right most
edge of each line. For each "1" bit in the source area, the blitter flips the fill state, either
filling or not filling the s pace with ones. This continues for each line until the left edge of
the blit is reached, at which point the filling stops.

BLITTER DONE FLAG

When the BLTSIZE register is written the blit is started. The processor does not stop while
the blitter is workin g, though; they can both work concurrently, and this provides much of
the speed evident in the Amiga. This does require some amount of care when using the
blitter.

A blitter done flag, also called the blitter busy flag, is provided as DMAF BLTDONE in
DMACONR. This flag is set when a blit is in progress.

NOTE
If a blit has just been started but has been locked out of memory access because of, for
instance, display fetches, this bit may not yet be set. The processor, on the other hand,

may be running comple tely uninhibited out of FAST memory or its internal cache, so it will
continue to have memory cycles.

- 180 Blitter Hardware -

The solution is to read a chip memory or hardware register address with the proc essor
before testing the bit. This can easily be done with the sequence:

 btst.b #DMAB_BLTDONE - 8,DMACONR(a1)

 btst.b #DMAB_BLTDONE - 8,DMACONR(a1)

where a 1 has been preloaded with the address of the hardware registers. The first "test"
of the blitte r done bit may not return the correct result, but the second blit .

NOTE
Starting with the Fat Agnus the blitter busy bit has been "fixed" to be set as soon as you
write to BLTSIZE to start the blit, rather than when the blitter gets its first DMA cycle.
However, not all machines will use the newer chips, so it is best to rely on the above
method of testing.

MULTITASKING AND THE BLITTER
When a blit is in progress, none of the blitter registers should be written. For details on
arbitration of blitter access in the system, please refer to the ROM Kernel Manual. In

particular, read the discussion about the OwnBlitter() and DisownBlitter() functions. Even
after the blitter has been "owned", a blit may still be finishing up, so the blitter done flag
should be ch ecked before using it even the first time. Use of the ROM kernel function
WaitBlit() is recommended.

You should also check the blitter done flag before using results of a blit. The blit may not
be finished, so the data may not be ready yet. This can lead to difficult to find bugs,
because a 68000 may be slow enough for a blit to finish without checking the done flag,
while a 68020, perhaps running out of its cache, may be able to get at the data before the
blitter has finished writing it.

Let us say that we have a subroutine that displays a text box on top of other imagery
temporarily. This subroutine might allocate a chunk of memory to hold the original screen
image while we are displaying our text box, then draw the text box. On exit, the

subroutine migh t blit the original imagery back and then free the allocated memory. If the
memory is freed before the blitter done flag is checked, some other process might allocate
that memory and store new data into it before the blit is finished, trashing the blitter
source and, thus, the screen imagery being restored.

INTERRUPT FLAG

The blitter also has an interrupt flag that is set whenever a blit finishes. This flag, INTF
BLIT, can generate a 68000 interrupt if enabled. For more information on interrupts, see
Chap ter 7 "System Control Hardware."

- Blitter Hardware 181 -

ZERO FLAG

A blitter zero flag is provided that can be tested to determine if the logic operation
selected has resulted in zero bits for all destination bits, even if those destination bits are

not written due to the D DMA channel being disabled. This feature is often useful for
collision detection, by performing a logical "and" on two source images to test for overlap.
If the images do not overlap, the zero fla g will stay true.

The Zero flag is only valid after the blitter has completed its operation and can be read
from bit DMAF_BLTNZERO of the DMACONR register.

PIPELINE REGISTER
The blitter performs many operations in each cycle - shifting and masking source words,
logical combination of sources, and area fill and zero detect on the output. To enable so
many things to take place so quickly, the blitter is pipelined. This means that rather than
performing all of the above operations in one blitter cycle, the o perations are spread over
two blitter cycles. (Here "cycle" is used very loosely for simplicity.) To clarify this, the
blitter can be imagined as two chips connected in series. Every cycle, a new set of source
operations come in, and the first chip perform s its operations on the data. It then passes
the half -processed data to the second chip to be finished during the next cycle, when the
first chip will be busy at work on the next set of data. Each set of data takes two "cycles"
to get through the two chips , overlapped so a set of data can be pumped through each
cycle.

What all this means is that the first two sets of sources are fetched before the first

destination is written. This allows you to shift a bitmap up to one word to the right using
ascending mo de, for instance, even though normally parts of the destination would be
overwritten before they were fetched.

- 182 Blitter Hardware -

Table 6- 2: Typical Blitter Cycle Sequence

USE Code

 in Ac tive

BLTCON0 Channels Cycle Sequence

 F A B C D A0 B0 C0 - A1 B1 C1 D0 A2 B2 C2 D1 D2

 E A B C A0 B0 C0 A1 B1 C1 A2 B2 C2

 D A B D A0 B0 - A1 B1 D0 A2 B2 D1 - D2

 C A B A0 B0 - A1 B1 - A2 B2

 B A C D A0 C0 - A1 C1 D0 A2 C2 D1 - D2

 A A C A0 C0 A1 C1 A2 C2

 9 A D A0 - A1 D0 A2 D1 - D2

 8 A A0 - A1 - A2

 7 B C D B0 C0 - - B1 C1 D0 - B2 C2 D1 - D2

 6 B C B0 C0 - B1 C1 - B2 C2

 5 B D B0 - - B1 D0 - B2 D1 - D2

 4 B B0 - - B1 - - B2

 3 C D C0 - - C1 D0 - C2 D1 - D2

 2 C C0 - C1 - C2

 1 D D0 - D1 - D2

 0 none

Notes for the above Table :

o No fill.

o No competing bus activity.

o Three -word blit.

o Typical operation involves fetching all sources twice before the first destination becomes
available. This is due to inte rnal pipelining. Care must be taken with overlapping source
and destination regions.

NOTE
This Table is only meant to be an illustration of the typical order of blitter cycles on the
bus. Bus cycles are dynamically allocated based on blitter operating mod e; competing bus
activity from processor, bitplanes, and other DMA channels; and other factors.
Commodore Amiga does not guarantee the accuracy of or future adherence to this chart.
We reserve the right to make product improvements or design changes in thi s area

without notice.

- Blitter Hardware 183 -

LINE MODE

In addition to all of the functions described above, the blitter can draw patterned lines.
The line draw mode is selected by setting bit 0 (LINEMODE) of BLT CON1, which changes

the meaning of some other bits in BLTCON0 and BLTCON1. In line draw mode, the blitter
can draw lines up to 1024 pixels long, it can draw them in a variety of modes, with a
variety of textures, and can even draw them in a special way for simple area fill.

Many of the blitter registers serve other purposes in line -drawing mode. Consult Appendix
A for more detailed descriptions of the use of these registers and control bits in line -
drawing mode.

In line mode, the blitter draws a line from one point to another, which can be viewed as a
vector. The direction of the vector can lie in any of the following eight octants. (In the
following diagram, the standard Amiga convention is used, with x increasing towards the
right and y increasing down.) The number in parenthesis is the octant numbering; the
other number represents the value that should be placed in bits 4 through 2 of BLTCON1.

Figure 6- 8: Octants for Line Drawing

Line drawing based on octants is a simplification that takes advantage of symmetries
between x and -x, y and -y. The following Table lists the octant number and
corresponding values:

- 184 Blitter Hardware -

Table 6- 3: BLTCON1 Code Bits for Octant Line Drawing

BLTCON1 Code Bits Octant #

 0 1 1 2

 1 1 1 3

 1 0 1 4

 0 1 0 5

 0 0 0 6

 1 0 0 7

We initialize BLTCON1 bits 4 through 2 according to t he above Table . Now, we introduce

the variables dx and dy, and set them to the absolute values of the difference between
the x coordinates and the y coordinates of the endpoints of the line, respectively.

 dx = abs (x2 - x1)

 dy = abs (y2 - y1)

Now , we rearrange them if necessary so dx is greater than dy.

 if (dx < dy)

 {

 temp = dx;

 dx = dy;

 dy = temp;

 }

Alternately , set dx and dy as follows:

 dx = max(abs(x2 - x1), abs(y2 - y1)) ;

 dy = min(abs(x2 - x1), abs(y2 - y1)) ;

These calculations have the effect of "normalizing" our line into octant 0; since we have
already informed the blitter of the real octant to use, it has no difficulty drawing the line.

We initialize the A pointer register to 4 * dy - 2 * dx. If this value is negative, we set the
sign bit (SIGNFLAG in BLTCONl), otherwise we clear it.
We set the A modulo register to 4 * (dy - dx) and the B modulo register to 4 * dy.

The A data register should be preloaded with $8000. Both word masks should be set to $
The A shift value should be set to the x coordinate of the first point (x1) modulo 15.

The B data register should be initialized with the line texture pattern , if any, or $FFFF for a
solid line. The B shift value should be set to the bit number at which to start the line
texture (zero means the last significant bit.)

- Blitter Hardware 185 -

