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CHAPTER 1 
 

INTRODUCTION  

 
 
The Amiga family of computers consists of several models, each of which  has been 
designed on the same premise to provide the user with a low cost  computer that features 
high cost performance. Th e Amiga does this through  the use of custom silicon hardware 
that yields advanced graphics and  sound features.  
 

There are three distinct models that make up the Amiga computer family:  the A500, 
A1000, and A2000. Though the models differ in price and  featur es, they have a common 
hardware nucleus that makes them software  compatible with one another. This chapter 
describes the Amiga's hardware  components and gives a brief overview of its graphics and 
sound features.  
 

                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-  Introduction 1 -  



COMPONENTS OF THE AMIGA  
 
These are the hardware components of the Amiga:  
 

o Motorola MC68000 16/32 bit main processor. The Amiga also supports the  68010, 
68020, and 68030 processors as an option.  
 
o 512K byt es of internal  RAM, expandable to 1 MB on the A500 and A2000.  
 
o 256K bytes of ROM containing a real time, multitasking operating system  with sound, 
graphics, and animation support routines.  

 
o Built - in 3.5 inch double sided disk drive.  
 
o Expansion disk p ort for connecting up to three additional disk drives,  which may be 
either 3.5 inch or 5.25 inch, double sided.  
 
o Fully programmable RS -232 -C serial port.  
 
o Fully programmable  parallel port . 
 
o Two button opto -mechanical mouse.  
 
o Two reconfigurable cont roller ports (for mice, joysticks, light pens,  paddles, or custom 
controllers).  

 
o A professional keyboard with numeric keypad, 10 function keys, and cursor  keys. A 
variety of international keyboards are also supported.  
 
o Ports for simultaneous composite video, and analog or digital RGB output.  
 
o Ports for left and right stereo audio from four special purpose audio  channels.  
 
o Expansion options that allow you to add RAM, additional disk drives  (floppy or hard), 
peripherals, or co -processors.  
 
THE MC6X000  AND THE AMIGA CUSTOM CHIPS  
The Motorola 68000 is a 16/32 bit microprocessor. The system clock speed for  NTSC 
Amigaôs is 7.15909 megahertz (PAL 7.09379 MHz). These speeds may vary  when using  an 

external  system clock, such as from a genlock. The 68000 has  an address space of 16 
megabytes. In the Amiga, the  68000 can address over  8 megabytes of continuous random 
access memory (RAM).  
                             
 
 
 
 
 
 
 
 
 
 

 
 
 

-  2 Introduction -  



In addition to the 68000, the Amiga contains special purpose hardw are  known as the 
"custom chips" that greatly enhance system performance. The  term "custom chips" refers 
to the 3 integrated  circuits which were  designed specifically for the Amiga computer. 
These three custom chips  (called Agnus, Paula, and Denise) each co ntain the logic to 

handle a  specific set of tasks, such as video, sound, direct memory access (DMA),  
or graphics.  
 
Among other functions, the custom chips provide the following:  
 
¶ Bitplane generated, high resolution graphics capable of supporting both PAL  and 

NTSC video standards.  

 
o On NTSC systems the Amiga typically produces a 320 by 200 non -interlaced  

or 320 by 400 interlaced display in 32 colors and a 640 by 200 non -
interlaced or 640 by 400 interlaced display in 16 colors.  

 
o On PAL systems, the  Amiga typic ally produces a 320 by 256 non -interlaced  

or 320 by 512 interlaced display in 32 colors, and a 640 by 256 non -
interlaced or 640 by 512 interlaced display in 16 colors.  

 
Additional video modes allow for the display of up to 4,096 colors on  screen 
simultaneo usly (hold -and -modify) or provide for larger, higher  resolution displays 
(overscan).  
 
¶ A custom display co -processor that allows changes to most of the special  purpose 

registers in synchronization with the position of the video beam.  This allows such 
specia l effects as mid -screen changes to the color  palette, splitting the screen into 
multiple horizontal slices each having  different video resolutions and color depths, 
beam synchronized interrupt  generation for the 68000 and more. The co -processor 
can trigger  many  times per screen, in the middle of lines, and at the beginning or 
during  the blanking interval. The co -processor itself can directly affect most  of the 
registers in the other custom chips, freeing the 68000 for general  computing tasks.  

 
¶ 32 system col or registers, each of which contains a twelve bit number as  four bits 

of RED, four bits of GREEN, and four bits of BLUE intensity  information. This allows 
a system color palette of 4,096 different  choices of color for each register.  

 
¶ Eight reusable 16 bit wide sprites with up to 15 color choices per  sprite pixel (when 

sprites arc paired). A sprite is an easily movable  graphics object whose display is 

entirely independent of the background  (called a playfield); sprites can be 
displayed over or under this  background. A sprite is 16 low resolution pixels wide 
and an arbitrary  number of lines tall. After producing the last line of a sprite on the  
screen, a sprite DMA channel may be used to produce yet another sprite  image 
elsewhere on screen (with at least one h orizontal line between each  reuse of a 
sprite processor). Thus, many small sprites can be produced by  simply reusing the 
sprite processors appropriately.  

 
¶ Dynamically controllable inter -object priority, with collision  detection. This means 

that the system can dynamically control the video  priority between the sprite 
objects and the bitplane backgrounds  (playfields). You can control which object or 
objects appear over or  under the background at any time.  

 



Additionally, you can use system hardware to detect collisions between  objects and have 
your program react to such collisions.  
 
o Custom bit blitter used for high speed data movement, adap table  to  bitplane animation. 

The blitter has been designed to efficiently retrieve  data from up to three sources, 
combin e the data in one of 256 different  possible ways, and optionally store the combined 
data in a destination  area. This is one of the situations where the 68000 gives up memory  
cycles to a DMA channel that can do the job more efficiently (see below).  The bit blitter, in 
a special mode, draws patterned  lines into  rectangularly organized memory regions at a 
speed of about 1 million dots  per second; and it can efficiently handle area fill.  
 

o Audio consisting of four digital channels with independently  programmab le volume and 
sampling rate. The audio channels retrieve their  control and data via direct memory 
access. Once started, each channel can  automatically play a specified waveform without 
further processor  interaction. Two channels are directed into each of t he two stereo audio  
outputs. The audio channels may be linked together to provide amplitude or  frequency 
modulation or both forms of modulation simultaneously.  
 
o DMA controlled floppy disk read and write on a full track basis. This  means that the 
built - in  disk can read over 5600 bytes of data in a single  disk revolution (11 sectors of 
512 bytes each).  
 
The internal  memory shared by the custom chips and the 68000 CPU is also  called "chip 
memory". The original custom chips in the Amiga were  designed to be ab le to physically 
access up to 512K bytes of shared  memory. The new version of the Agnus custom chip 

was created which allows  the graphics and audio hardware to access up to a full megabyte 
of  memory.  
 
The Amiga 500 and 2000 models were designed to be able to accept the new  Agnus 
custom chip, called "Fat Agnus", due to its square shape. Hence,  the A500 and A2000 
have allocated a chip memory space of 1 MB. This  entire 1 MB space is subject to the  
arbitration logic that controls the  CPU and custom chip accesse s. On the A1000, only the 
first 512K bytes of  memory space is shared, chip memory.  
 
These custom chips and the 68000 share memory on a fully interleaved  basis. Since the 
68000 only needs to access the memory bus during each  alternate  clock cycle in order t o 
run full speed, the rest of the time the  memory bus is free for other activities. The custom 
chips use the memory  bus during these  free cycles, effectively  allowing the  68000 to run 
at  full rated speed  most of the time. We say "most of the time" because  there are some 

occasions when the special purpose hardware steals memory  cycles from the 68000, but 
with good reason. Specifically, the  coprocessor and the data moving DMA channel called 
the blitter can each  steal time from the 68000 for jobs they can do better  than the 68000.  
Thus, the system DMA channels are designed with maximum performance in  mind. The 
job to be done is performed  by the most efficient hardware  element available. Even when 
such cycle stealing occurs, it only blocks  the 68000's access to the internal, shared 
memory. When using ROM or  external  memory, the 68000 always runs at full speed.  
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Another primary feature of the Amiga hardware is the ability to  dynamically control which 
part of the chip memory is used for the  background display. audio, and sprites. The Amiga 
is not limited to a  small, specific area of RAM for a frame buffer. Instead, the system  
allows display bitplanes, sprite  processor control lists, coprocessor  instruction l ists, or 

audio channel control lists to be located anywhere  within chip memory.  
 
This same region of memory can be accessed by the bit blitter. This  means, for example, 
that the user can store partial images at scattered  areas of chip memory and use these 
images for animation effects by  rapidly replacing on screen material while saving and 
restoring  background images. In fact, the Amiga includes firmware support for  display 
definition and control as well as support for animated objects  embedded within playf ields.  

 
VCR AND DIRECT CAMERA INTERFACE  
In addition to the connectors for monochrome composite, and analog or  digital RGB 
monitors, the Amiga can be expanded to include a VCR or  camera interface. This system 
is capable of synchronizing with an external  vid eo source and replacing the system 
background color with the external  image. This allows development of fully integrated 
video images with  computer generated graphics. Laser disk input is accepted in the same  
manner.  
 
PERIPHERALS 
Floppy disk storage is pro vided by a built in, 3.5 inch floppy disk  drive. Disks are 80 track, 
double sided, and formatted as 11 sectors per  track, 512 bytes per sector (over 900,000 
bytes per disk). The disk  controller can read and write 320/360K IBM PC (MS -DOS) 
formatted  3.5  or 5 .25 inch disks, and 640/720K IBM PC (MS -DOS) formatted  3.5 inch  

disks. External  3.5 inch or 5.25 inch disk drives can be added to the  system through the 
expansion connector. Circuitry for some of the  peripherals resides on Paula. Other chips 
handle various  signals not  specifically assigned to any of the custom chips, including 
modem  controls, disk status sensing, disk motor and stepping controls, ROM  enable, 
parallel input/output interface, and keyboard interface.  
 
The Amiga includes a standard RS -232 -C ser ial port for external  serial  input/output 
devices.  
 
A keyboard with numeric keypad, cursor controls and 10 function keys is  included in the 
base system. For maximum flexibility, both key -down and  key -up signals are sent. The 
Amiga also supports a variety o f international  keyboards. Many other types of controllers 
can be attached  through the  two controller ports on the base unit. You can use a mouse,  
joystick, keypad, track -ball, light pen, or steering wheel controller in  either of the 

controller ports.  
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SYSTEM EXPANDABILITY AND ADAPTABILITY  
New peripheral devices may be easily added to all Amiga models. These  devices are 
automatically recognized and used by system software through  a well defin ed, well 
documented linking procedure called AUTOCONFIG.  

 
On the A500 and A1000 models, peripheral devices can be added to the  Amiga's 86 pin 
expansion connector, including additional external  RAM.  Extra disk units may be added 
from a connector at the rea r of the unit.  
 
The A2000 model provides the user with the same features as the A500 or  A1000, but 
with the added convenience  of simple and extensive  expandability. The 86 pin, external 

connector of the A1000 and A500 is  not externally  accessible on the A2 000. Instead, the 
A2000 contains 7  internal slots that allow many types of expansion boards to be quickly  
and easily added inside the machine. These expansion boards may contain  coprocessors, 
RAM expansion, hard disk controllers, video or I/O ports.  There is also room to mount 
both floppy and hard disks internally . The  A2000 also supports the special Bridgeboard 
coprocessor card. This  provides a complete IBM PC on a card and allows the Amiga to run 
MS-DOS compatible software, while simultaneously running na tive Amiga software.  
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ABOUT THE EXAMPLES 
 
The examples in this book all demonstrate direct manipulation of the  Amiga hardware. 
However, as a general rule, it is not pe rmissible to  directly access the hardware in the 

Amiga unless your software either has  full control of the system, or has arbitrated via the 
OS for exclusive  access to the particular  parts of the hardware you wish to control.  
 
Almost all of the hardware di scussed in this manual, most notably the  Blitter, Copper, 
playfield, sprite, CIA, trackdisk, and system control  hardware, are in either exclusive or 
arbitrated use by portions of the  Amiga OS in any running Amiga system. Additional 
hardware, such as the  audio, parallel, and serial hardware, may be in use by applications 

which  have allocated their use through the system software.  
 
Before attempting to directly manipulate any part of the hardware in the  Amiga's 
multitasking environment, your application must first be granted  exclusive access to that 
hardware by the operating system library,  device, or resource which arbitrates its 
ownership. The operating system  functions for requesting and receiving control of parts of 
the Amiga  hardware are varied and are no t within the scope of this manual. Generally  
such functions, when available, will be found in the library, device, or  resource which 
manages that portion of the Amiga hardware in the  multitasking environment. The 
following list will help you to find the  appropriate operating system functions or 
mechanisms which may exist for  arbitrated access to the hardware discussed in this 
manual.  
 
     Copper, Playfield, Sprite, Blitter -  graphics.library  

     Audio -  audio.device  
     Trackdisk -  trackdisk.device, disk .resource  
     Serial -  serial.device, misc.resource  
     Parallel -  parallel.device, cia.resource, misc.resource  
     Gameport -  input.device, gameport.device, potgo.resource  
     Keyboard -  input.device, keyboard.device  
     System Control -  graphics.lib rary, exec.library (interrupts)  
 
Most of the e xamples in this book use the hw_ examples.i file (see  Appendix J) to d efine 
the chip register names. h w_examples.i uses the  system include file hardware/custom.i to 
define the chip structures and  relative addres ses. The values defined in hardware/custom.i 
and how  examples.i are offsets from the base chip register address space. In  general, this 
base value is defined as _custom and is resolved during  linking from amiga.lib. (_ciaa and 
_ciab are also resolved in th is way.)  

 
Normally, the base address is loaded into an address register and the  offsets given by 
hardware/custom.i and hw_examples.i are then used to  address the correct register.  
 
                               

 

 

 

 

 

 

 

 

 

 

 

 

 

-  Introduction 7 -  



NOTE 
The of fset values of the registers are the addresses that the Copper must  use to talk to 
the registers.  For example, in assembler:  
 

INCLUDE "exec/types.i"  

INCLUDE "hardware/custom.i"  

 

          XREF custom                     ; External reference  

 

  Start:  lea    _custom,a0               ; Use a0 as base register  

          move.w #$7FFF,intena(a0)        ; Disable all interrupts  

 

In C, you would use the structure definitions in hardware/custom.h For  

example:  

 

#include         "exec/types.h"  

#include        "hardw are/custom.h"  

 

extern  struct  Custom  custom;  

 

/* You may need to define the above external as  

**  extern struct Custom far custom;  

**  Check you compiler manual.  

*/  

 

main()  

{  

custom.intena = 0x7FFF;         /* Disable all interrupts  */  

}  

 

The Amiga hardw are include files are generally supplied  with your  compiler or assembler. 
Listings of the  hardware include files may also be  found in the Addison -Wesley Amiga ROM 
Kernel  Manual "Includes and  Autodocs". Generally, the include file label names are very 
simil ar to  the equivalent hardware register list names with the following typical  

differences.  
 
o Address registers which have low word and high word components are  generally listed 
as two word sized registers in the hardware register  list, with each register n ame 
containing either a suffix or embedded "L"  or "H" for low and high. The include file label 
for the same register  will generally treat the whole register as a longword (32 bit) 
register,  
and therefore will not contain the "L" or "H" distinction.  
 
o Rela ted sequential registers which are given individual names with  number suffixes in 
the hardware register list, are generally referenced  from a single base register definition 
in the include files. For example,  the color registers in the hardware list (COLOR 00, 
COLOR01, etc.) would  be referenced from the "color" label defined in "hardware/custom.i"  
(color+0, color+2, etc.).  

 
o Examples of how to define the correct register offset can be found in  the hw_examples.i 
file listed in Appendix J.  
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SOME CAVEATS TO HARDWARE LEVEL PROGRAMMERS  
 
The Amiga is available in a variety of models and configurations, and is  further diversified 
by a wealth of add -on expansion peripherals and  processor replacements. In additi on, 

even standard Amiga hardware such as  the keyboard and floppy disks, are supplied by a 
number of different  manufacturers and may vary subtly in both their timing and in their  
ability to perform outside of their specified capabilities.  
 
The Amiga operati ng system is designed to operate the Amiga hardware  within spec, 
adapt to different hardware and RAM configurations, and  generally provide upward 
compatibility with any future hardware upgrades  or "add ons " envisioned by the 

designers. For maximum upward  compatibility, it is strongly suggested that programmers 
deal with the  hardware through the commands and functions provided by the Amiga  
operating system.  
 
If you find it necessary to program the hardware directly, then it is  your responsibility to 
write co de which will work properly on various  models and configurations. Be sure to 
properly request and gain control  of the hardware you are manipulating, and be especially 
careful in the  following areas:  
 
Do not jump into ROM. Beware of any example code that ca lls routines in  the $F80000 to 
$FFFFFF range. These are ROM addresses and the ROM  routines WILL move with every OS 
revision. The only supported interface  to system ROM code is through the provided library, 
device, and resource  calls.  
 

Do not modify or depe nd on the format of any private system structures.  This includes the 
poking of copper lists, memory lists, and library  bases.  
 
Do not depend on any address containing any particular system structure  or type of 
memory. The system modules dynamically allocat e their memory  space when they are 
initialized. The addresses of system structures and  buffers differ with every OS, every 
model, and every configuration, as  does the amount of free memory and system stack 
usage. Remember that all  data for direct custom ch ip access must be in CHIP RAM. This 
includes bit  images (bitplanes, sprites, etc), sound samples, trackdisk buffers, and  copper 
lists.  
 
Do not write spurious data to, or interpret undefined data from currently  unused bits or 
addresses in the custom chip sp ace. All undefined bits  must be set to zero for writes, and 
ignored on reads.  

 
Do not write data past the current end of custom chip space. Custom chips  may be 
extended or enhanced  to provide additional registers, or to use  currently undefined bits in 
exis ting registers.  
 
All custom chip registers are read only OR write only. Do not read write  only registers, and 
do not write to read only registers.  
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Do not read, write, or use any currently undefin ed address ranges. The  current and future 
usage of such areas is reserved by Commodore and is  definitely subject to change.  
 
If you are using the system libraries, devices, and resources, you must  follow the defined 

interface. Assembler programmers (and co mpiler  writers) must enter functions through 
the library  base jump Table s, with  arguments passed as longs and library base address in 
A6. Results returned  in D0 must be tested, and the contents of D0 -D1/A0 -A1 must be 
assumed  gone after a system call.  
 
NOTE 
The assembler TAS instruction should not be used in any Amiga program.  The TAS 

instruction assumes an indivisible read -modify -write but this can  be defeated by system 
DMA. Instead use BSET and BCLR. These instructions  perform a test and set operation 
whic h cannot be interrupted.  
 
TAS is only needed for a multiple CPU system. On a single CPU system,  the BSET and 
BCLR instructions are identical to TAS, as the 68000 does  not interrupt instructions in the 
middle. BSET and BCLR first test, then  set bits.  
 
Do no t use assembler instructions which are privileged on any 68000  family processor, 
most notably MOVE SR,<ea> which is privileged on the  68010/20/30. Use the Exec 
function GetCC() instead of MOVE SR, or use the  appropriate non -privileged instruction as 
shown below:  
 

            CPU        User Mode        Super Mode  

           68000       MOVE SR,<ea>     MOVE SR,<ea>  

         68010/20/30   MOVE CCR,<ea>    MOVE SR,<ea>  

 

All addresses must be 32 bits. Do not use the upper 8 bits for other  data, and do not use 
signed variables or signed math for addresses. Do  not execute code on your stack or use 
self -modifying code since such code  can be defeated by the caching capabilities of some 
68xxx processors. And  never use processor or clock speed dependent software loop s for 
timing  delays. See Appendix F for information on using an 8520 timer for delays.  
 
NOTE 
When strobing any register which responds to either a read or a write,  (for example 
copjmp2) be sure to use a MOVE.W #$00, not CLR.W. The CLR  instruction causes a read 
and a clear (two accesses) on a 68000, but only  a single access on 68020 and above. This 
will give different results on  different processors.  

 
If you are programming at the hardware level, you must follow hardware  interfacing 
specifications. All hardw are is NOT the same. Do not assume  that low level hacks for 
speed or copy protection will work on all  drives, or all keyboards, or all systems, or future 
systems. Test your  software on many different systems, with different processors, OS,  
hardware, and RA M configurations.  
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Figure  1-1: Block Diagram for the Amiga Computer Family.  
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Chapter 2  
 

COPROCESSOR HARDWARE 
 

 
INTRODUCTION  
The Copper is a general purpose coprocessor that resides in one of the  Amiga's custom 
chips. It retrieves is instructions via direct memory  acces s (DMA). The Copper can control 
nearly the entire graphics system,  freeing the 68000 to exe cute program logic; it can also 
directly affect  the contents of most of the chip control registers. It is a very powerful  tool 
for directing mid -screen modifications in graphics displays and for  dire cting the register 

changes that must occur during the  vertical  blanking periods. Among other things, it can 
control register updates,  reposition sprites, change the color palette, update the audio 
channels,  and control the blitter.  
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One of the features of the Copper is its ability to WAIT for a specific  video beam position, 
then MOVE data into a system register. During the  WAIT period, the Copper examines the 
contents of the video beam position  counter directly. This means that while the Copper is 
waiting for the  beam to reach a specific position, it does not use the memory bus at all.  

Therefore, the bus is freed for use by the other DMA channels or by the  68000 . 
 
When the WAIT condition has been satisfied, the Copper steals memory  cycles from either 
the blitter or the 68000 to move the specified data  into the selected special -purpose 
register.  
 
The Copper is a two -cycle processor that requests the bus only durin g odd -numbered 

memory cycles. This prevents collision with audio, disk,  refresh, sprites, and most low -
resolution display DMA access, all of  which use only the even -numbered memory cycles. 
The Copper, therefore,  needs priority over only the 68000 and the b litter (the DMA 
channel that  handles animation, line drawing, and polygon filling).  
 
As with all the other DMA channels in the Amiga system, the Copper can  retrieve its 
instructions only from the chip RAM area of system memory.  
 
ABOUT THIS CHAPTER  
In this chapter, you will learn how to use the special Copper instruction  set to organize 
mid -screen register value modifications and pointer  register set -up during the vertical 
blanking interval. The chapter shows  how to organize Copper instructions into Copper 
lists, how to use Copper  lists in interlaced mode, and how to use the Copper with the 
blitter. The  Copper is discussed in this chapter in a general fashion. The chapters  that deal 

with playfields, sprites, audio, and the blitter contain more  specific sugges tions for using 
the Copper.  
 
WHAT IS A COPPER INSTRUCTION?  
 
As a coprocessor, the Copper adds its own instruction set to the  instructions already 
provided by the 68000. The Copper has only three  instructions, but you can do a lot with 
them:  
 
o WAIT for a s pecific screen position specified as x and y co -ordinates.  
 
o MOVE n immediate data value into one of the special -purpose registers.  
 
o SKIP the next instruction if the video beam has already reached a specified  screen 

position.  
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All Copper instructions consist of two 16 -bit words in sequential memory  locations. Each 
time the Copper fetches an instruction, it fetches both  words. The MOVE and SKIP 
instructions require two memory cycles and  two  instruction words. Because only the odd 
memory cycles are requested by  the Copper, four memory cycle times are required per 

instruction. The  WAIT instruction requires three memory cycles and six memory cycle 
times;  it takes one extra memory cycle to w ake up.  
 
Although the Copper can directly  affect only machine registers, it can  affect the memory 
by setting up a blitter operation. More information  about how to use the Copper in 
controlling the blitter can be found in  the sections called "C ontrol Regist er" and "Using the 
Copper with the  Blitter."  

 
The WAIT and MOVE instructions are described below. The SKIP instruction  is described in 
the "Advanced Topics" section.  
 
THE MOVE INSTRUCTION  
 
The MOVE instruction transfers data from RAM to a register destinat ion.  The transferred 
data is contained in the second word of the MOVE  instruction; the first word contains the 
address of the destination  register. This procedure is shown in detail in the section called  
"Summary of Copper Instructions."  
 

    FIRST INSTRUC TION WORD (IR1)  

    Bit   0        Always set to 0.  

 

    Bits  8 -  1    Register destination address (DA8 - 1).  

    Bits 15 -  9    Not used, but should be set to 0.  

 

    SECOND INSTRUCTION WORD (IR2) 

    Bits 15 -  0    16 bits of data to be transferred (move d) to the register  

                   destination.  
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The Copper can store data into the following registers:  
 
o Any register  whose address is $20 or above.  
 

o Any register whose a ddress is between $10 and $20 if the Copper danger  bit is a 1. The 
Copper danger bit is in the Copper's control register,  COPCON, which is described in the 
"Control Register" section.  
 
o The Copper cannot write into any register whose address is lower than  $10.  
 
Appendix B contains all of the machine register addresses.  

 
The following example MOVE instructions point bit -plane pointer 1 at  $21000 and bit -
plane pointer 2 at S25000.2  
 

     DC.W    $00E0,$0002     ;Move $0002 to register $0E0 (BPL1PTH)  

     DC.W    $00E2,$1000     ;Move $1000 to register $0E2 (BPL1PTL)  

     DC.W    $00E4,$0002     ;Move $0002 to register $0E4 (BPL2PTH)  

     DC.W    $00E6,$5000     ;Move $5000 to register $0E6 (BPL2PTL)  

 

Normally, the appropriate assembler ".i" files are included  so that  names, rather than 
addresses, may be used for referencing hardware  registers. It is strongly recommended 
that you reference all hardware  addresses via their defined names in the system include 
files. This will  allow you to more easily adapt your s oftware to take advantage of future  
hardware or enhancements. For example:  
 

     INCLUDE "hardware/custom.i"  

 

     DC.W    bplpt+$00,$0002 ;Move $0002 into register $0E0 (BPLlPTH)  

     DC.W    bplpt+$02,$1000 ;Move $1000 into register $0E2 (BPLlPTL)  

     DC.W    bplpt+$04,$0002 ;Move $0002 into regi3ter $0E4 (PL2PTH)  

     DC.W    bplpt+$06,$5000 ;Move $5000 into register  $0E6 (BPL2PTL)  

 

For use in the  hardware manual examples, we have made a special include  file (see 
Appendix J) that defines all of the hard ware register names  based off of the 
"hardware/custom.i" file. This was done to make the  examples easier to read from a 
hardware point of view. Most of the  examples in this manual are here to help explain the 
hardware and are, in  most cases, not useful wit hout modification and a good deal of 
additional  code.  
 
 1 Hexadecimal numbers are distinguished from decimal numbers by the $  prefix.  
 2 All sample code segments are in assembly language.  
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THE WAIT INSTRUCTION  
 
The WAIT instruction causes the Copper to wait until the video beam  counters are equal to 
(or greater than) the coordinates specified in the  instruction. While waiting, the Copper is 

off the bus and not using  memory cycles.  
 
The fir st instruction word contains the vertical and horizontal  coordinates of the beam 
position. The second word contains enable bits  that are used to form a "mask" that tells 
the system which bits of the  beam position to use in making the comparison.  
 

         FIRST INSTRUCTION WORD (IR1)  

 

         Bit  0      Always set to 1.  

         Bits 15 -  8 Vertical beam position (called VP).  

         Bits  7 -  1 Horizontal beam position (called HP).  

 

 

         SECOND INSTRUCTION WORD (IR2) 

 

         Bit  0      Always se t to 0.  

         Bit 15      The blitter - finished - disable bit.  

                     Normally, this bit is a 1.  

                     (See the "Advanced Topics" section below.)  

 

         Bits 14 -  8 Vertical position compare enable bits (called VE).  

         Bits 7 -  1  Horizontal position compare enable bits (called HE).  

 

The following example WAIT instruction waits for scan line 150 ($96) with  the horizontal 
position masked off.  
 

        DC.W    $9601,$FF00     ; Wait for line 150,  

                                ; ignore horizontal counters .  

 

The following example WAIT instruction waits for scan line 255 and  horizontal position 

254.  This event will never occur, so the Copper  stops until the next vertical blanking 
interval begins.  
 

        DC.W    $FFFF,$FF FE     ; Wait for line 255,  

                                ; H = 254 (ends Copper list).  

 

To understand why position VP=$FF HP=$FE will never occur, you must look at  the 

comparison operation of the Copper and the size restrictions of the  position informat ion. 
Line number 255 is a valid line to wait for, in  fact it is the maximum value that will fit into 
this field. Since 255 is  the maximum number, the next line will wrap to zero (line 256 will 
appear  as a zero in the  
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comparison.) The line number will never be greater than $FF The  horizontal position has a 
maximum value of $E2. This means that the  largest number that will ever appear in the 
comparison is $FFE2. When  waiting for $FFE2, the li ne $FF will be reached, but the 
horizontal  position $FE will never happen. Thus, the position will never reach  $FFFE. 

 
You may be tempted  to wait for horizontal position $FE (sin ce it will  never happen), and 
put a smaller number into the vertical position field.  This will not lead to the desired 
result. The comparison operation is  waiting for the beam position to become greater than 
or equal to the  entered position. If the vertical position is not $FF, then as soon as  
the line number becomes  higher than he entered number, the comparison  will evaluate to 
true and the wait will end.  

 
The following notes on horizontal and vertical beam position apply to  both the WAIT 
instruction and o the SKIP instruction. The SKIP  instruction is described below in the 
"Advance d Topics" section.  
 
HORIZONTAL BEAM POSITION  
The horizontal beam position has a value of $0 to $E2. The least  significant  bit is not used 
in the comparison, so there are 113 positions  available for Copper operations. This 
corresponds to 4 pixels in low  res olution and 8 pixels in high resolution. Horizontal 
blanking falls in  the range of $0F to $35. The standard screen (320 pixels wide) has an  
unused horizontal portion of $04 to $47 (during which only the background  color is 
displayed).  
 
All lines are not th e same length in NTSC. Every other line is a long  line (228 color clocks, 

0-$E3), with the others being 227 color clocks  long. In PAL, they are all 227 long. The 
display sees all these lines as  227 1/2 color clocks long, while the copper sees alternating 
long & short  lines.  
 
VERTICAL BEAM POSITION  
The vertical beam position can be resolved to one line, with a maximum  value of 255. 
There are actually 262 NTSC (312 PAL) possible vertical  positions. Some minor 
complications can occur if you want something to  happen within these last six or seven 
scan lines. Because  there are only  eight bits of resolution for vertical beam position 
(allowing 256  different positions), one of the simplest ways to handle this is shown  below.  
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        INSTRUCTION                                EXPLANATION  

 

 

[ ... other instructions ... ]  

 

WAIT for position (0,255)                     At this point, the vertical  

                                              co unter appears to wrap to 0  

                                              because the comparison works  

                                              on the least significant bits  

                                              of  the vertical count.  

 

WAIT fo r any horizontal position wit h         Thus the total of 256+ 6 = 262  

vertical position 0 through 256, covering     lines of video beam travel  

the last 6 lines of the scan before vertical  during which Copper  

blanking occurs.                              in structions can be executed.  

 

NOTE 
The vertical is like the horizontal -  as there are alternating long and short  lines, there are 
also long and short fields (interlace only). In NTSC, the  fie lds are 262, then 263 lines and 

in PAL, 312,313.  
 
This alteration  of lines & fields produces the standard NTSC 4 field  repeating pattern:  
 
     short field ending on short line  
     long field ending on long line  
     short field ending on long line  

     long field ending on short line  
     & back to the beginning...  
 
1 horizontal count takes 1 cycle of the system clock. (Processor is twice  this)  
 
     NTSC- 3,579,545 Hz  
     PAL-  3,546,895 Hz  

     genlocked -  basic clock frequency plus or minus about 2%.  
 
THE COMPARISON ENABLE BITS  
Bits 14 -1 are normally set to all 1s. Th e use of the comparison enable  bits is described 
later in the "Advanced Topics " section.  
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USING THE COPPER REGISTERS  
 
There are several machine registers and strobe addresses dedicat ed to the  Copper:  
 

o Location registers  
 
o Jump address strobes  
 
o Control register  
 
LOCATION REGISTERS  

The Copper has two sets of location registers:  
 
            COP1LCH High 3 bits of first Copper list address.  
            COP1LCL Low 16 bits of first C opper list address.  
            COP2LCH High 3 bits of second Copper list address.  
            COP2LCL Low 16 bits of second Copper list address.  
 
In accessing the hardware directly, you often have to write to a pair of  registers that 
contains the address of some data. The register with the  lower address always has a 
name ending in "H" and contains the most  significant data, or high 3 bits of the address. 
The register with the  higher address has a name ending in "L" and contains the least  
significant data, or low 15 bits of the address. Therefore, you write the  18 -bit address by 
moving one long word to the register whose name ends in  "H." This is because when you 
write long words with the 68000, the most  significant word goes in the lower addressed 

word.  
 
In  the  case of the  Copper location registers, you write the address to  COP1LCH. In the 
following text, for simplicity, these addresses are referred  to as COP1LC or COP2LC.  
 
The Copper location registers contain the two indirect jump addresses  used by the 
Copper. The Copper fetches its instructions by using its  program counter and increments 
the program counter after each fetch. When  a jump address strobe is written, the 
corresponding location register is  loaded into the Copper program counter. This causes the  
Copper to jump to  a new location, from which its next instruction will be fetched.  
Instruction fetch continues sequentially until the Copper is interrupted  by another jump 
address strobe.  
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NOTE 
At the start of each vertical blanking interval, COP1LC is automatically  used to start the 
program counter. That is, no matter what the Copper is  doing, when the end of vertical 
blanking occurs, the Copper is  automatically forced to restart its  operations at the address 

contained  in COP1LC.  
 
JUMP STROBE ADDRESS 
When you write to a Copper strobe address, the Copper reloads its  program counter from 
the corresponding location register. The Copper can  write its own location registers and 
strobe addr esses to perform  programmed jumps. For instance, you might MOVE an 
indirect address into  the COP2LC location register. Then, any MOVE instruction that 

addresses  COPJMP2 strobes this indirect address into the program counter.  
 
There are two jump strobe addr esses:  
 
         COPJMP1 Restart Copper from address contained in COP1LC.  
         COPJMP2 Restart Copper from address contained in COP2LC.  
 
CONTROL REGISTER 
The Copper can access some special -purpose registers all of the time,  some registers only 
when a special  control bit is set to a 1, some  registers not at all. The registers that the 
Copper can always affect are  numbered $20 through $FF inclusive. Those it cannot affect 
at all are  numbered $00 to $0F  inclusive. (See Appendix B for a list of registers  
in address order.) The Copper control register is within this group ($00  to $0F). Thus it 
takes deliberate action on the part of the 68000 to  allow the Copper to write into a 

specific range of the special -purpose  registers.  
 
The Copper control register, cal led COPCON, contains only one bit, bit  #1. This bit, called 
CDANG (for Copper Danger Bit) protects all registers  numbered between $10 and $1F 
inclusive.  This range includes the  blitter  control registers. When CDANG is 0, these 
registers cannot be written  by  the Copper. When CDANG is 1, these registers can be 
written by the  Copper.  Preventing the Copper from accessing the blitter control registers  
prevents a "runaway" Copper (caused by a poorly formed instruction list)  from 
accidentally affecting system mem ory.  
 
NOTE 
The CDANG bit is cleared after a reset.  
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PUTTING TOGETHER A COPPER INSTRUCTION LIST  
 
The Copper instruction list contains all the register resetting done  during the vertica l 
blanking interval and the register modifications  necessary for making mid -screen 

alterations. As you are planning what  will happen during each display field, you may find it 
easier to think of  each aspect of the display as a separate subsystem, such as p layfields,  
sprites, audio, interrupts, and so on. Then you can build a separate list  of things that must 
be done for each sub -system individually at each  video beam position.  
 
When you have created all these intermediate lists of things to be done,  you mus t merge 
them together into a single instruction list to be  executed by the Copper once for each 

display frame. The alternative is to  create this all - inclusive list directly, without the 
intermediate steps.  
 
For example, the bit -plane pointers used in playf ield displays and the  sprite pointers must 
be rewritten during the vertical blanking interval  so the data will be properly retrieved 
when the screen display starts  again. This can be done with a Copper instruction list that 
does the  following:  
 
     WAIT u ntil first line of the display  
     MOVE data to bit -plane pointer 1  
     MOVE data to bit -plane pointer 2  
     MOVE data to sprite pointer 1  
     and so on  
 

As another example, the  sprite DMA channels that create movable objects  can be re -used 
multiple ti mes during the same display field. You can  change the size and shape of the 
reuses of a sprite; however, every  multiple reuse normally uses the same set of colors 
during a full display  frame.  
You can change sprite colors mid -screen with a Copper instructio n list  that waits until the 
last line of the first use of the sprite processor  and changes the colors before the first line 
of the next use of the same  sprite processor:  
 
     WAIT for first line of display  
     MOVE firstcolor1 to COLOR 17  
     MOVE first color2 to COLOR 18  
     MOVE firstcolor3 to COLOR 19  
     WAIT for last line +1 of sprite's first use  
     MOVE secondcolor1 to COLOR 17  

     MOVE secondcolor2 to COLOR 18  
     MOVE secondcolor3 to COLOR 19  
     and so on  
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As you create Copper instruction lists, note that the final list must be  in the same order as 
that in which the video beam creates the display.  The video beam traverses the screen 
from position (0,0) in the upper left  hand  corner of the screen to the end of the display 
(226,262) NTSC (or  (226,312) PAL) in the lower right hand corner. The first 0 in (0,0)  

represents the x position. The second 0 represents the y position. For  example, an 
instruction that does something at pos ition (0,100) should  come after an instruction that 
affects the display at position (0,60).  
 
NOTE 
Given the form of the WAIT instruction, you can sometimes get away with  not sorting the 
list in strict video beam order. The WAIT instruction  causes the Coppe r to wait until the 

value in the beam counter is equal to  or greater than the value in the instruction.  
 
This means, for example, if you have instructions following each other like  this:  
 
     WAIT for position (64,64)  
     MOVE data  
     WAIT for position  (60,60)  
     MOVE data  
 
The Copper will perform both moves, even though the instructions are out  of sequence. 
The "greater than" specification prevents the Copper from  locking up if the beam has 
already passed the specified position. A side  effect is that  the second MOVE below will be 
performed:  
 

     WAIT for position (60,60)  
     MOVE data  
     WAIT for position (60,60)  
     MOVE data  
 
At the time of the second WAIT in this sequence, the beam counters will  be greater than 
the position shown in the instru ctions. Therefore, the  second MOVE will also be performed.  
 
Note also that the above sequence of instructions could just as easily be  
 
     WAIT for position (60,60)  
     MOVE data  
     MOVE data  
 

because multiple MOVEs can follow a single WAIT.  
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COMPLETE SAMPLE COPPER LIST 
The following example shows a complete Copper list. This list is for two  bitplanes -one at 
$21000 and one at $25000. At the top of the screen, the  color registers are loaded with 
the following values:  
 

          REGISTER    COLOR  

 

          COLOR00     white  

          COLOR01     red  

          COLOR02     green  

          COLOR03     blue  

 

At line 150 on the screen, the color registers are reloaded:  
 

          REGISTER    COLOR 

 

          COLOR00     black  

          COLOR01     yellow  

          COLOR02     cyan  

          COLOR03     magenta  

 

The complete Copper list follows.  

 

;  

; Notes:  

;       1. Copper lists must be in CHIP ram.  

;       2. Bitplane addresses used in the  example are arbitrary.  

;       3. Destination register addresses in copper move instructions  

;          are offsets from the base address of the custom chips.  

;       4. As always, hardware manual examples assume that your  

;          application has taken  full control of the hardware,  

;          and is not conflicting with operating system use of  

;          the same hardware.  

;       5. Many of the examples just pick memory addresses to  

;          be used. Normally you would need to allocate the  

;          required type of memory from the system with AllocMem()  

;       6. As stated earlier, the code examples are mainly to help  

;          clarify the way the hardware works.  

;       7. The following INCLUDEs are required by all example code  

;          in this  chapter.  

;  

          INCLUDE "exec/types.i"  

          INCLUDE "hardware/custom.i"  

          INCLUDE "hardware/dmabits.i"  

          INCLUDE "hardware/hw_examples.i"  
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COPPERLIST: 

;  

; Set up  pointers to two bit planes  

;  

     DC.W    BPL1PTH,$0002      ;Move S0002 into register $0E0 (BPL1PTH)  

     DC.W    BPL1PTL,$1000      ;Move $1000 into register $0E2 (BPL1PTL)  

     DC.W    BPL2PTH,$0002      ;Move $0002 into register  $0E4 (BPL2PTH)  

     DC.W    BPL2PTL,$5000      ;Move $5000 into register $0E6 (BPL2PTL)  

;  

; Load color registers  

;  

     DC.W    COLOR00,$0FFF      ;Move white into register $180 (COLOR00  

     DC.W    COLOR01,$0F00      ;Move red into register $182 (COLOR01)  

     DC.W    COLOR02 ,$00F0      ;Move green into register $189 (COLOR02)  

     DC.W    COLOR03,$000F      ;Move blue into register $186 (COLOR03)  

;  

; Specify 2 lo - res bitplanes  

;  

     DC.W    BPLCON0,$2200      ;2 lores planes, color on  

;  

; Wait for line 150  

;  

     DC.W    $96 01,$FF00        ;Wait for line 150, ignore horiz. position  

;  

; Change color registers mid - display  

;  

     DC.W    COLOR00,$0000      ;Move black into register $0180 (COLOR00)  

     DC.W    COLOR01,$0FF0      ;Move yellow into register $0182 (COLOR01)  

     DC.W    COLOR02,$00FF      ;Move cyan into register $0184 (COLOR02)  

     DC.W    COLOR03,$0F0F      :Move magenta into register $0186 (COLOR03)  

;  

;  End Copper list by waiting for the impossible  

;  

     DC.W    $FFFF,$FFFE        ;Wait for line 255, H = 254 ( never happens)  

 

For more information about color registers, see Chapter 3, "Playfield  

Hardware."  

 

LOOPS AND BRANCHES  
Loops and branches in Copper lists are covered in the  "Advanced Topics"  section below.  
 
 
STARTING AND STOPPING THE COPPER  
 
 
STARTING THE CO PPER AFTER RESET 
At power -on or reset time, you must initialize  one of the Copper location  registers 
(COP1LC or COP2LC) and write to its strobe address before  Copper DMA is tuned on. This 
ensures a known start address and known  state. Usually, COP1LC is used because  this 

particular register is reused  during each vertical blanking time. The following sequence of  
instructions shows how to  
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initialize a location register. It is assumed that the user  has already  

created the correct Copper instruction list at location "mycoplist."  

 

;  

; Install the copper list  

;  

     LEA    CUSTOM,a1           ; a1 = address of custom chips  

     LEA    MYCOPLIST(pc),a0    ; Address of our copper list  

     MOVE.L a0,COP1 LC(a1)       ; Write whole longword address  

     MOVE.W COPJMP1(a1),d0      ; Causes copper to load PC from COP1LC  

;  

; Then enable copper and raster dma  

;  

     MOVE.W  #(DMAF SETCLR!DMAF_COPPER!DMAF_RASTER!DMAF_MASTER),DMACON(a1) 

;  

 

Now, if the contents of  COP1LC are not changed, every time vertical  blanking occurs the 
Copper will restart at the same location for each  subsequent video screen. This forms a 
repea table  loop which, if the list  is correctly formulated, will cause the displayed screen to 

be s tabl e. 
 
STOPPING THE COPPER 
No stop instruction is provided for the Copper. To ensure that it will  stop and do nothing 
until the screen display ends and the program counter  starts again at the top of the 
instruction list, the last instruction  should be to WAIT  for an event that cannot occur. A 
typical instruction  is to WAIT for VP = $FF and HP = $FE. An HP of greater than $E2 is not  

possible. When the screen display ends and vertical blanking starts, the  Copper will 
automatically be pointed to the top of its in struction list,  and this final WAIT instruction 
never finishes.  
 
You can also stop the Copper by disabling its ability to use DMA for  retrieving instructions 
or placing data. The register called DMACON  controls all of the DMA channels. Bit7, 
COPEN, enables  Copper DMA when  set to 1.  

 
For information about controlling the DMA, see Chapter 7, "System Control  Hardware."  
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ADVANCED TOPICS  
 
 
THE SKIP INSTRUCTION  

The SKIP instruction  cause s the Copper to skip the next instruction if  the video beam 
counters are equal to or greater than the value given in  the instruction.  
 
The contents of the SKIP instructions words are shown below. They are  identical to the 
WAIT instruction, except that bit 0 of the second  instruction word is a 1 to identify this as 
a SKIP instruction.  
 

         FIRST INSTRUCTION WORD (IR1)  

 

         Bit  0      Always set to 1.  

 

         Bits 15 -  8 Vertical position (called VP).  

 

         Bits  7 -  1 Horizontal position (ca lled HP).  

 

                     Skip if the beam counter is equal to or  

                     greater than these combined bits  

                     (bits 15 through 1).  

 

         SECOND INSTRUCTION WORD (IR2) 

 

         Bit  0      Always set to 1.  

 

         Bit  15     The blitter - finished - disable bit.  

                     (See "Using the Copper with the  

                     Blitter" below.)  

 

         Bits 14 -  8 Vertical position compare enable bits (called VE).  

 

         Bits 7 -  1  Horizontal position com pare enable bits (called HE).  

 

The notes about horizontal and vertical beam position found in the  discussion of the WAIT 
instruction apply also to the SKIP instruction.  
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The follow ing example SKIP instruction skips the instruction following it  if VP (vertical 
beam position) is greater than or equal to 100 ($64).  
 

      DC.W   $6401,$FF01    ; If VP >= 100,  

                            ; skip next instruction (ignore HP)  

 

COPPER LOOPS AND BRANCHES AND COMPARISON ENABLE  
You can change the value in the location registers at any time and use  this value to 
construct loops in the instruction list. Before the next  vertical blanking time, however, the 
COP1LC registers must be repointed  to the  beginning of the appropriate Copper list. The 
value in the COP1L  location registers will be restored to the Copper's program counter at  
the start of the vertical blanking period.  
 
Bits 14 -1 of instruction word 2 in the WAIT and SKIP instructions specify  which bits of the 
horizontal and vertical position are to be used for the  beam counter comparison. The 
position in instruction word 1 and the  compare enable bits in instruction word 2 are tested 
against the actual  beam counters before any further action is taken. A position bit in  
instruction word 1 is used in comparing the positions with the actual  beam counters if and 

only if the corresponding enable bit in instruction  word 2 is set to 1. If the corresponding 
enable bit is 0, the comparison  is always true.  For instance, if you care only about the 
value in the  last four bits of the vertical position, you set only the last four  compare 
enable bits, bits (11 -8) in instruction word 2.  
 
Not all of the bits in the beam counter may be masked. If you look at the  description of 
the IR2 (second instruction word) you will notice that bit  15 is the blitter - finished -disable 
bit. This bit is not part of the beam  counter comparison mask, it has its own meaning in 
the Copper WAIT  instruction. Thus, you can not mask the most significant bit in WAIT or  
SKIP instructions. In most situations this limitation does not come into  play, however, the 
following  example shows how to deal with it.  
 
This example will instruct the Copper to issue an interrupt every 16 scan  lines. It might 
seem that the way to do this would be to use a mask of  $0F and then compare the result 

with $0F. This should compare "true" for  $1F, $2F, $3F, etc. Since the test is for greater 
than or equal to, this  would seem to allow checking for every 16th scan line. H owever, the  
highest order bit cannot be masked, so it will always appear in the  comparisons. When the 
Copper is waiting for $0F and the vertical position  is past 128 (hex $80), this test will 
always be true. In this case, the  minimum value in the compariso n will be $80, which is 
always greater than  $0F, and the interrupt will happen on every scan line. Remember, the  
Copper only checks for greater than or equal to.  
 
In the following example, the Copper lists have been made to loop. The  COP1LC and 
COP2LC valu es are either set via the CPU or in the Copper list  before this section of 
Copper code. Also, it is assumed that you have  correctly installed an interrupt server for 
the Copper interrupt that  will be generated every 16 lines. Note that these are non -
interl aced scan  lines.  
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HOW IT WORKS:  
Both loops are, for the most part, exactly the same. In each, the Copper  waits until the 
vertical position register has $?F (? is any hex digit)  in it, at whic h point we issue a 
Copper interrupt to the Amiga hardware.  To make sure that the Copper does not loop 

back before the vertical  position has changed and cause another interrupt on the same 
scan line,  wait for the horizontal position to be $E2 alter each int errupt. Position  $E2 is 
horizontal position 113 for the Copper and the last real  horizontal position available. This 
will force the Copper to the next  line before the next WAIT. The loop is executed by 
writing to the COPJMP1  register. This causes the Coppe r to jump to the address that was  
initialized in COP1LC.  
 

The masking problem described above makes this code fail after vertical  position 127. A 
separate loop must be executed when vertical position is  greater than or equal 127. When 
the vertical position  becomes greater  than or equal to 127, the first loop instruction is 
skipped, dropping  the Copper into the second loop. The second loop is much the same as 
the  first, except that it waits for $?F with the high bit set (binary  1xxx1111). This is true 
for bo th the vertical and the horizontal WAIT  instructions. To cause the second loop, write 
to the COPJMP2 register.  The list is put into an infinite wait when VP >= 255 so that it will 
end  before the vertical blank. At the end of the vertical blanking period  COP1LC is written 
to by the operating system, causing the first loop to  start up again.  
 
NOTE 
The COP1LC register is written at the end of the vertical blanking period  by a graphics 
interrupt handler which is in the vertical blank interrupt  server chain. As long as this 
server is intact, COP1LC will be correctly  strobed at the end of each vertical  blank.  
 

;  

; This is the data for the Copper list.  

;  

; It is assumed that COPPERL1 is loaded into COP1LC and  

; that COPPERL2 is loaded into COP2LC by some other code .  

;  

COPPERL1: 

     DC.W    $0F01,$8F00     ; Wait for VP=0xxxllll  

     DC.W    INTREQ,$8010    ; Set the copper interrupt bit  

 

     DC.W    $00E3,$80FE     ; Wait for Horizontal $E2  

                             ; This is so the line gets finished before  

                             ; we check if we are there (The wait above)  

 

     DC.W    $7F01,$7F01     ; Skip if VP>=127  

     DC.W    COPJMP1,$0      ; Force a jump to COP1LC  

 

COPPERL2: 

     DC.W    $8F01,$8F00     ; Wait for Vp=1xxx1111  

     DC.W    INTREQ, $8010    ; Set the copper interrupt bit...  

 

     DC.W    $80E3,$80FE     ; Wait for Horizontal $E2  

                             ; This is so the line gets finished before  

                             ; we check if we are there  (The wait above)  

 

     DC.W    $FF01, $FE01    : Skip if VP>=255  
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     DC.W    COPJMP2,$0      ; Force a jump to COP2LC  

 

; Whatever cleanup copper code that might be needed here...  

; Since there are 262 lines in NTSC, and we stopped at 255, there is a  

; bit of time available  

 

     DC.W    $FFFF,$FFFE     ; End of Copper list  

 

USING THE COPPER IN INTERLACED MODE  
An interlaced bit -plane display has twice the normal number of vertical  lines on the 
screen.  
Whereas a normal NTSC di splay has 262 lines, an interlaced NTSC display  has 524 lines. 
PAL has 312 lines normally and 625 in interlaced mode. In  interlaced mode, the video 
beam scans the screen twice from top to  bottom, displaying, in the case of NTSC, 262 
lines at a time. During  the  first scan, the odd -numbered lines are displayed. During the 
second scan,  the even -numbered lines are displayed and interlaced with the odd - 
numbered ones. The scanning circuitry thus treats an interlaced display  as two display 
fields, one containing the even -numbered lines and one  containing the odd -numbered 
lines. Figure  2-1 shows how an interlaced  display is stored in memory.  
 

 

      Odd Field               Even field  

       (time t)            (time t+16.6ms)         Data in memory  

                                                    _____________  

                                                   |             |  

                                                   |      1      |  

                                                   |_____________|  

                                                   |             |  

    _____________          _____________           |      2      |  

   |             |        |             |          |_____________|  

   |      1      |        |      2      |          |             |  

   |_____________|        |_____________|          |      3      |  

   |             |        |             |          |_____________|  

   |      3      |        |      4      |          |             |  

   |_____________|        |_____________|          |      4      |  

   |             |        |             |          |_____________|  

   |      5      |        |      6      |          |             |  

   |_____________|        |_____________|          |      5      |  

                                                   |_____________|  

                                                   |             |  

                                                   |      6      |  

                                                   |_____________|  

 

                Figure  2- 1: (Interlaced Bit - Plane in RAM)  

 

 

The system retrieves data for bit -plane displays by using pointers to the  starting address 
of the data in memory. As you can see, the starting  address for the even -numbered fields 
is one line greater than the  starting a ddress for the odd -numbered fields. Therefore, the 
bit -plane  pointer must contain a different value for alternate fields of the  interlaced 
display.  
 
Simply, the organization of the data in memory matches the apparent  organization on the 
screen ( i.e. , odd a nd even lines are interlaced  together). This is accomplished by having a 
separate Copper instruction  list for each field to manage displaying the data.  
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To get the Copper to execute the correct list, you set an interrupt to  the 68000 just after 
the first line of the display. When the interrupt is  executed, you change the contents of 
the COP1LC location register to  point to the second list. Then, during the vertical blanking 
interval,  COP1LC will be automatically reset to point  to the original list.  

 
For more information about interlaced displays, see Chapter 3, "Playfield  Hardware."  
 
USING THE COPPER WITH THE BLITTER  
If the Copper is used to start up a sequence of blitter operations, it  must wait for the 
blitter - finished interr upt before starting another  blitter operation. Changing blitter 
registers while the blitter is  operating causes unpredic table  results. For just this purpose, 

the WAIT  instruction includes an additional control bit, called BFD (for blitter  
finished disable) . Normally, this bit is a 1 and only the beam counter  comparisons control 
the WAIT.  
 
When the BFD bit is a 0, the logic of the Copper WAIT instruction is  modified. The Copper 
will WAIT until the beam counter comparison is true  and the blitter has finished.  The 
blitter has finished when  the blitter - finished flag is set. This bit should be unset with 
caution. It could  possibly prevent some screen displays or prevent objects from being  
displayed correctly.  
 
For more information about using the blitter, see Cha pter 6, "Blitter  Hardware."  
 
THE COPPER AND THE 68000  
On those occasions when the Copper's instructions do not suffice, you can  interrupt the 

68000 and use its instruction set  instead. The 68000 can  poll for interrupt flags set in the 
INTREQ register by va rious devices.  To interrupt the 68000, use the Copper MOVE 
instruction to store a 1 into  the following bits of INTREQ:  
 

Table  2- 1: Interrupting the 68000  

 

     BITNUMBER    NAME       FUNCTION  

 

     15           SET/CLR    Set/Clear control bit. Determines  

                             if bits written  with a 1 get set  

                             or cleared.  

 

      4           COPEN      Co - processor interrupting 68000.  

 

See Chapter  7, "System Control Hardware," for more information about  interrupts.  
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SUMMARY OF COPPER INSTRUCTIONS  
 
The Table  below shows a summary of the bit positions for each of the  Copper instructions. 
See Appendix A for a summary of all registers.  
 

  Table  2- 2: Copper I nstruction Summary  

 

             Move             Wait             Skip  

  Bit#    IR1     IR2      IR1     IR2      IR1    IR2  

 

   15      X     RD15      VP7     BFD      VP7    BFD  

   14      X     RD14      VP6     VE6      VP6    VE6  

   13      X     R D13      VPS     VES      VPS    VES  

   12      X     RD12      VP4     VE4      VP4    VE4  

   11      X     RD11      VP3     VE3      VP3    VE3  

   10      X     RD10      VP2     VE2      VP2    VE2  

   09      X     RD09      VP1     VE1      VP1    VE1  

   08     DA8    RD08      VP0     VE0      VP0    VE0  

   07     DA7    RD07      HP8     HE8      HP8    HE8  

   06     DA6    RD06      HP7     HE7      HP7    HE7  

   05     DAS    RD05      HP6     HE6      HP6    HE6  

   04     DA4    RD04      HPS     HES      HPS    HES  

   03     DA3    RD03      HP4     HE4      HP4    HE4  

   02     DA2    RD02      HP3     HE3      HP3    HE3  

   01     DA1    RD01      HP2     HE2      HP2    HE2  

   00      0     RD00       1       0        1      1  

 

X   = don't care , but should be a 0 for upward compatibility  

IR1 = first instruction word  

IR2 = second instruction word  

DA  = destination address  

RD  = RAM data to be moved to destination register  

VP  = vertical beam position bit  

HP  = horizontal beam position bit  

VE  = e nable comparison (mask bit)  

HE  = enable comparison (mask bit)  

BFD = blitter - finished disable  
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Chapter 3  
 

PLAYFIELD HARDWARE  
 

 
INTRODUCTION  
The screen display consists of two basic parts, playfields, which are  sometimes called 
backgrounds, and sprites, which are easily movable graphics  objects. This chapter 
describes how to directly access hardware registers to  form playfields.  
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This chapter begins with a brief overview of playfield features,  including definitions of 
some fundamental terms, and continues with the  following major topics:  
 
o Forming a single "basic" playfield, which is a playfield the same size  as the display 

screen. This section includes concepts that are fundamental  to forming any playfield.  
 
o Forming a dual -playfield display in which one playfield is superimposed  upon another. 
This procedure differs from tha t of forming a basic  playfield in some details.  
 
o Forming playfields of various sizes and displaying only part of a larger  playfield.  
 

o Moving playfields by scrolling them vertically and horizontally.  
 
o Advanced topics to help you use playfields in spec ial situations.  
 
For information about movable sprite objects, see Chapter 4, "Sprite  Hardware." There are 
also movable playfield objects, which are  subsections of a playfield. To move portions of a 
playfield, you use a  technique called playfield animation , which is described in Chapter 6,  
"Blitter Hardware".  
 
PLAYFIELD FEATURES 
The Amiga produces its video displays with raster display techniques. The  picture you see 
on the screen is made up of a series of horizontal video  lines displayed one af ter the 
othe r. Each horizontal video line is made up  of a series of pixels. You create a graphic 
display by defining one or more  bit -planes in memory and filling them with "1"s and "0"s 

The combination of  the "1"s and "0"s will determine the colors in your display.  
 
Each line represents one sweep of an electron beam which is "painting"  the picture as it 
goes along.  
 

        ________________________________________  

  |    |                                        |  

  |    |  --- >----- >----- >----- >----- >---- >---   |  

  |    |  ____________________________________  |  

  |    |  ____________________________________  |  

  |    |  ____________________________________  |  

  |    |            __________________          |  

  |    |            __________________          |  

  |    |                                        |  

  |    |              VIDEO PICTURE             |  

  |    |            __________________          |  

  |    |            __________________          |  

  |    |  ____________________________________  |  

  |    |  ________ ____________________________  |  

  |    |  _____________________________________ |  

  |    |  ____________________________________  |  

 \  /   |________________________________________|  

 

 

         Figure  3- 1:  How the Video display picture is produced  

 

VIDEO P ICTURE     
The video beam produces each line by sweeping  from left to right. It produces the full 
screen b y sweeping the beam from the top to the bottom,  one line at a time.  
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The video beam produces about 262 video lines from t op to bottom, of  which 200 
normally are visible on the screen with an NTSC system. With a  PAL system, the beam 
produces 312 lines, of which 256 are normally  visible. Each complete set of lines 
(262/NTSC or 312/PAL) is called a  display field. The field time , i.e. the time required for a 

complete  display field to be produced, is approximately 1/60th of a second for an  NTSC 
system and approximately 1/50th of a second for PAL. Between display  fields, the video 
beam traverses the lines that are not visible on th e screen and returns to the top of the 
screen to produce another display  field.  
 
The display area is defined as a grid of pixels. A pixel is a single  picture element, the 
smallest addressable part of a screen display. The  drawings below show what a pixel i s 

and how pixels form displays.  
 

   _______________________  

  |       _               |  

  |      |_| < -----------------------  The picture is formed from many  

  |               _       |           elements.  Each element is called  

  |             _|_|_     |           a pixel.  

  |            |_|_|_|    |  

  |            |_|_|_| < -------------  Pixels are used together to build  

  |_______________________|           larger graphic objects.  

 

   ___________________________     ____________________________  

  |                           |   |                            |  

  |                           |   |                            |  

  | < ------  320 pixels ----- > |   | < ------  640 pixels ------ > |  

  |                           |   |                            |  

  |                           |   |                            |  

  |                           |   |                            |  

  |                           |   |                            |  

  |___________________________|   |____________________________|  

 

  In normal resolution mode,      In high resolution mode,  

  320 pixels fill a horizontal     640 pixels fill a horizontal  

  line.                           line.  

 

 

                      Figure  3- 2: What Is a Pixel?  

 

 

The Amiga offers a choice in both hori zontal and vertical resolutions.  Horizontal resolution 

can be adjusted to operate in low resolution or  high resolution mode. Vertical resolution 
can be adjusted to operate in  interlaced or non -interlaced mode.  
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o In low - resolution mode, the normal playfield has a width of 320 pixels.  
 
o High -resolution mode gives finer horizontal resolution 640 pixels in the  same physical 
display area.  

 
o In non -interlaced mode, the normal NTSC playfield has a height of 200  video lines. The 
normal mal PAL screen has a height of 256 video lines.  
 
o Interlaced mode gives finer vertical resolution 400 lines in the same  physical display 
area in NTSC and 512 for PAL.  
 

These modes can be combined, so you can have, f or instance, an  interlaced, high -
resolution display.  
 
Note that the dimensions referred to as "normal" in the previous  paragraph are nominal 
dimensions and represent the normal values you  should expect to use. Actually, you can 
display larger playfields; t he  maximum dimensions are given in the section called "Bit -
Planes and  Playfields of All Sizes." Also, the dimensions of the playfield in memory  are 
often larger than the playfield displayed on the screen. You choose  which part of this 
larger memory picture  to display by specifying a  different size for the display window.  
 
A playfield taller than the screen can be scrolled, or moved smoothly, up  or down. A 
playfield wider than the screen can be scrolled horizontally,  from left to right or right to 
left. Scro lling is described in the  section called "Moving (Scrolling) Playfields."  
 

In the Amiga graphics system, you can have up to thirty - two different  colors in a single 
playfield, using normal display methods. You can  control the color of each individual pixel 
in the playfield display by  setting the bit or bits that control each pixel. A display formed 
in this  way is called a bit -mapped display.  
 
For instance, in a two -color display, the color of each pixel is  determined by whether a 
single bit is on or off. If the bit is 0, the  pixel is one user -defined color, if the bit is 1, the 
pixel is another  color. For a four -color display, you build two bit -planes in memory. When  
the playfield is displayed, the two bit -planes are overlapped, which  means that each pixel 
is now two bits deep. You can combine up to five  bit -planes in this way. Displays made up 
of three, four, or five bit -planes allow a choice of eight, sixteen, or thirty -two colors,  
respectively.  
 
The color of a pixel is always determined by the binary combin ation of  the bits that define 

it. When the system combines bit -planes for display,  the combination of bits formed for 
each pixel corresponds to the number  of a color register. This method of colouring  pixels 
is called color  indirection. The Amiga has thirt y- two color registers, each containing  bits 
defining a user selected color (from a total of 4,096 possible  colors).  
 
Figure  3-3 shows how the combination of up to five bit -planes forms a  code that selects 
which one of the thirty -two registers to use to dis play  the color of a playfield pixel.  
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   _______________________________  

  |      _  

  |     |_|  Bit plane 5  

  |   ____________________________          __  

  |  |     _                               |0 |_     --------  

  |  |    |_|  Bit plane 4                 |_|0 |_          |  

  |  |   _________________________           |_|1 |_        \ __ See below  

  |  |  |    _                                 |_|1 |_      /  

  |  |  |   |_|  Bit plane 3                     |_|1 |     |  

  |  |  |   ______________________                 |__| -----  

     |  |  |   _  

     |  |  |  |_|  Bit plane 2  

     |  |  |   ___________________  

        |  |  |  _  

        |  |  | |_|  Bit plane 1  

        |  |  |  

           |  |  ^  

           |  |  |  

              |  |  

              |  \ --------------  One pixel  

 

 

     Bits fro m plan es 5,4,3,2,1  

 

                 Color Registers  

              _______________________  

             |                       |  

      00000  |                       |  

             |_______________________|  

             |                       |  

      00001  |                       |  

             |_______________________|  

             |                       |  

      00010  |                       |  

             |_______________________|  

             |                       |  

      00011  |                       |  

             |_______________________|  

             |                       |  

      00100  |                       |  

             |__________________ _____|  

             |                       |  

             |           |           |  

             |           |           |  

      -----   |          \ |/          |  

             |                       |  

             |_______________________|  

             |                       |  

      11111  |                       |  

             |_______________________|  

 

 

                Figure  3- 3: How Bit - planes s elect a Color  

 

 

Values in the highest numbered bit -plane have the highest significance in  the binary 
number.  As shown in Figure  3-4, the value in each pixel in the  highest -numbered bit -
plane forms the leftmost digit of the number. The  value in the next highest -numbered bit -
plane forms the next bit, and so  on.   
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Sample data for 4 pixels  

 

   a   b   c   d  

 

   1   1   0   0             Data in Bit - Plane 5 Most Significant  

   1   0   1   0             Data in Bit - Plane 4  

   1   0   0   1             Data in Bit - Plane 3  

   0   1   1   1             Data in Bit - Plane 2  

   0   0   1   0             Data in Bit - Plane 1 Least Significant  

 

   a  Value 6  COLOR  6 

   b  Value 11 COLOR  11 

   c  Value 18 COLOR  18 

   d  Value 28 COLOR  28 

 

        Figure  34: Significance of Bit - Plane Data in Selecting Colors  

 

 

You also have the ch oice of defining two separate playfields, each formed  from up to three 
bit planes. Each of the two playfields uses a separate  set of eight different colors. This is 
called dual -playfield  mode.  
 
FORMING A BASIC PLAYFIELD  
 
To get you started, this section de scribes how to directly access  hardware registers to 
form a single basic playfield that is the same  size as the video screen. Here, "same size" 

means that the playfield is  the same size as the actual display window. This will leave a 
small  border between t he playfield and the edge of the video screen. The  playfield usually 
does not extend all the way to the edge of the physical  display.  
 
To form a playfield, you need to define these characteristics:  
 
o Height and width of the playfield and size of the displ ay window (that  is, how much of 
the playfield actually appears on the screen).  
 
o Color of each pixel in the playfield.  
 
o Horizontal resolution.  
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o Vertical resolution, or interlacin g.  
 
o Data fetch and modulo, which tell the system how much data to put on a  horizontal line 
and how to fetch data from memory to the screen.  

 
In addition, you need to allocate memory to store the playfield, set  pointers to tell the 
system where to find th e data in memory, and  (optionally) write a Copper routine to 
handle redisplay of the playfield.  
 
HEIGHT AND WIDTH OF THE PLAYFIELD  
To create playfield that is the same size as the screen, you can use a  width of either 320 

pixels or 640 pixels, depending up on the resolution  you choose. The height is either 200 
or 400 lines for NTSC, 256 or 512  lines for PAL, depending upon whether or not you 
choose interlaced mode.  
 
BIT -PLANES AND COLOR  
You define playfield color by:  
 
1. Deciding how many colors you need and  how you want to color each pixel.  
 
2. Loading the colors into the color registers.  
 
3. Allocating memory for the number of bit -planes you need and setting a  pointer to each 
bit -plane.  
 

4. Writing instructions to place a value in each bit in the bit -planes  to  give you the correct 
color.  
 
Table  3-1 shows how many bit -planes to use for the color selection you need.  
 

 

                   Number of  Number of  

                    Colors    Bit - Planes  

 

                     1-  2         1  

                     3-  4         2 

                     5-  8         3  

                     9- 16         4  

                    17- 32         5  

 

                  Table  3- 1: Colo rs in a single playfield.  
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THE COLOR TABLE 
The color Table  contains 32 registers, and you may load a different color  into each of the 
registers. Here is a condensed view of the contents of the  color Table :  
 

    Table  3- 2: Portion of the Color Table  

 

    Register Name  Contents          Mean ing  

 

       COLOR00     12 bits   User - defined color for The  

                             background area and borders.  

 

       COLOR01     12 bits   User - defined color number 1  

                             (For example, the alternate color  

                             selection for a two - color playfield).  

 

       COLOR02     12 bits   User - defined color number 2.  

 

       etc  

 

       etc  

 

       COLOR31     12 bits   User - defined color number 31.  

 

COLOR00 is always reserved for the background color. The back ground color  shows in any 
area on the display where there is no other object present  and is also displayed outside 
the defined display window, in the border  area.  

 
NOTE 
If you are  using the optional genlock board for video input from a camera,  VCR, or lase r 
disk, the background color will be replaced by the incoming  video display.  
 
Twelve bits of color selection allow you to define, for each of the 32  registers, one of 
4,096 possible colors, as shown in Table  3-3.  
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     Table  3- 3: Contents of the Color Registers  

 

     Bits  

 

     Bits 15 - 12 Unused  

     Bits 11 -  8 Red  

     Bits  7 -  4 Green  

     Bits  3 -  0 Blue  

 

Table  3-4 shows some sample color register bit assignments and the  resulting colors. At 
the end of the chapter is a more extensive list.  
 

 

    Table  3- 4: Sample Color Register Contents  

 

    Contents of the             Resulting  

    Color Register                Color  

 

        $fff                      White  

        $6fe                      Sky blue  

        $db9                      Tan  

        $000                      Black  

 

Some sample instructions for loading color registers are shown below:  
 

    LEA    CUSTOM,a0               ; Get base address of custom hardware...  

    MOVE.W #$FFF,COLOR00(a0)       ; Load white into color register 0  

    MOVE.W #$6FE,COLOR01(a0)       ; Load sky blue into color register 1  

 

NOTE 
The color registers are write -only. Only by looking at the screen can you  find out the 
contents of each color register. As a standard practice, then,  for these and certain other 
write -only registers, you may wish to keep a  "back -up" RAM copy. As you write to the 
color register itself, you should  update this RAM copy. If you do so, you will always know 
the value ea ch register contains.  
 
SELECTING THE NUMBER OF BIT -PLANES 
After deciding how many colors you want and how many bit -planes are required  to give 
you those colors, you tell the system how many bit -planes to use.  
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You select the number of bit -planes by writing the number into the  register BPLCON0 (for 
Bit Plane Control Register 0) The relevant bits are  bits 14, 13, and 12, named BPU2, 
BPU1, and BPU0 (for "Bit Planes Used").  Table  3-5 shows t he values to write to these bits 
and how the system  assigns bit -plane numbers.  
 

      Table  3- 5: Setting the Number of Bit - Planes  

 

            Number of   Name(s) of  

     Value  Bit - Planes  Bit - Planes  

 

      000     None *  

      001       1       PLANE 1  

      010       2       PLANES 1 and 2  

      011       3       PLANES 1 -  3 

      100       4       PLANES 1 -  4 

      101       5       PLANES 1 -  5 

      110       6       PLANES 1 -  6 **  

      111       7       Value not used.  

 

* Shows only a background color; no playfield is visible.  

 

** Sixth bit - plane is used only in dual - playfield mode and in hold - and-  

modify mode (described in the section called "Advanced Topics").  

 

NOTE 
The bits in the BPLCON0 register cannot be set independently. To set any one  bit , you 

must reload them all.  
 
The following example shows how to tell the system to use two low - resolution bit -planes.  
 

    MOVE.W #$2200,BPLCON0+CUSTOM ; Write to it  

 

Because register BPLCON0 is used for setting other characteristics of the  display and th e 
bits are not independently , the example above  also sets other parameters (all of these 

parameters are described later  in the chapter).  
 
o Hold -and -modify mode is turned off.  
 
o Single -playfield mode is set.  
 
o Composite video color is enabled. (Not applic able in all models.)  
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o Genlock audio is disabled.  
 
o Light pen is disabled . 
 

o Interlaced mode is disabled.  
 
o External  resynchronization is disabled. (genlock)  
 
SELECTING HORIZONTAL AN D VERTICAL RESOLUTION  
Standard home television screens are best suited for low - resolution  displays. Low -
resolution mode provides  320 pixels for each horizontal  line. High - resolution monochrome 

and RGB monitors can produce displays in  high - resolution mode, which provides 640 
pixels for each horizontal line.  If you define an object in low - resolution mode and then 
display it in  high - resolution mode, the object will be only half as wide.  
 
To set horizontal resolution mode, you write to bit 15, HIRES, in  registe r BPLCON0:  
 
High - resolution modewrite 1 to bit 15.  
Low -resolution modewrite 0 to bit 15.  
 
Note that in high - resolution mode, you can have up to four bit -planes in  the playfield and, 
therefore, up to 16 colors.  
 
Interlaced mode allows twice as much data to be displayed in the same  vertical area as in 
non -interlaced mode. This is accomplished by doubling  the number of lines appearing on 

the video screen. The following Table  shows the number of lines required to fill a normal, 
non -overscan  screen.  
 

     Table  3- 6: Lines in a Normal Playfield  

 

                    NTSC PAL 

     -----------------------  

     Non- interlaced 200  256  

     Interlaced     400  512  

 

In interlaced mode, the scanning circuitry vertically offsets the start  of every other field by 
half a sc an line.  
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line 1_________________________  

   | _________________________ | \  

   | _________________________ | \  

   |        _________          |  \  

   |         Field 1           |   \    __________________  

   |         _________          |    \  |___|______________|___Line 1  

   | _________________________ |     >|___|______________|___  

   | _________________________ |    / |   |              |   Line 2  

   |___________________________|   /  |   | Video display|  

                                  /   |   |  (400 lines) |  

line 1_________________________  /    |   |              |  

   | _________________________ |      |__ \ |/_____________|  

   | _________________________ |  

   |        _________          |  

   |         Fie ld 2           |      (same physical space as used  

   |        _________          |       by a 200 line noninterlaced  

   | _________________________ |       display)  

   | _________________________ |  

   |___________________________|  

 

 

                         Figure  3- 5: Interlacing  

 

 

Even though interlaced mode requires a modest amount of extra work in  setting registers 
(as you will see later on in this section), it provides  fine tuning that is needed for certain 
graphics effects. Consider the  diagonal line  in Figure  3-6 as it appears in non -interlaced 

and  interlaced modes. Interlacing eliminates much of the jaggedness or  "staircasing" in 
the edges of the line.  
 

 
 

 

 

Figure  3- 6: Effect of Interlaced Mode on Edges of Objects  

 

 

When you use the special blitter DMA channel to draw lines or polygons  onto an interlaced 
playfield, the playfield is treated as one display,  rath er than as odd and even fields. 
Therefore, you still get the smoother  edges provided by interlacing.       
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To set interlaced or non - interlaced mode, you write to bit 2, LACE, in  register BPLCON0:  
 
    Interlaced mode write 1 to bit 2.  
    Non - interlaced mode write 0 to bit 2.  

 
As explained above in "Setting the Number of Bit -Planes," bits  in BPLCON0  are not 
independently set .  
 
The following example shows how to specify high - resolution and interlaced  modes.  
 

    MOVE.W #$A204,BPLCON0+CUSTOM ; Write to it  

 

The example above also sets the following parameters that are also  controlled through  
register BPLCON0:  
 
o High - resolution mode is enabled.  
 
o Two bit -planes are used.  
 
o Hold -and -modify mode is disabled.  
 
o Single -playfield mode is enabled.  
 
o Composite video color is enabled.  
 

o Genlock audio is disabled.  
 
o Light pen is disabled.  
 
o Int erlaced mode is enabled.  
 
o External resynchronization is disabled.  

 
The amount of memory you need to allocate for each bit -plane depends upon  the 
resolution modes you have selected, because high -resolution or  interlaced playfields 
contain more data and re quire larger bit -planes.  
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ALLOCATING MEMORY FOR BIT -PLANES 
After you set the number of bit -planes and specify resolution modes, you  are ready to 
allocate memory. A bit -plane consists  of an end - to -end  sequence of words at consecutive 
memory locations.  When operating under  the Amiga operating system, use a system call 

such as AllocMem() to  remove a block of memory from the free list and make it available 
to the  program. If the machine has been taken over, simply reserve an area of  memory 
for the bit -planes. Next, set the bit plane pointer registers  (BPLxPTH/BPLxPTL) to point to 
the starting memory address of each bitplane  you are using. The starting address is the 
memory word that conta ins the  bits of the upper left -hand corner of the bit -plane.  
 
Table  3-6 shows how much memory is needed for basic playfields. You may  need to 

balance your color and resolution requirements against the amount  of available memory 
you have.  
 

             Tabl e 3- 7: Playfield Memory Requirements, NTSC  

 

                                             Number of Bytes  

             Picture Size     Modes           per Bit - Plane  

 

             320 X  200     Low - resolution,        8,000  

                           non- int erlaced  

 

             320 X 400     Low - resolution,       16,000  

                           interlaced  

 

             640 X 200     High - resolution,      16,000  

                           non- interlaced  

 

             640 X 400     High - resolution,      32,0 00  

                           interlaced  
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Table  3- 8: Playfield Memory Requirements, PAL  

 

                                              Number of B ytes  

             Picture Siz e     Modes           per Bit - Plane  

 

             320 X 256     Low - resolution,        8,192  

                           non- interlaced  

 

             320 X 512     Low - resolution,       16,384  

                           interlaced  

 

             640 X 256     High - resolution,      16,384  

                           non- interlaced  

 

             640 X 512     High - resolution,      32,768  

                           interlaced  

 

NTSC EXAMPLE OF BIT PLANE SIZE  
For example, using a normal, NTSC, low - resolution, non -interlaced display  with 320 pixels 

across each display line and a total of 200 display lines,  each line of the bit -plane requires 
40 bytes (320 bits divided by 8 bits per  byte = 40). Multiply the 200 lines times 40 bytes 
per line to get 8,000  bytes per bit -plane as given above.  
 
A low - resolution, non -interlaced playfield made up of two bit -planes  requires 16,000 bytes 
of memory area. The memory for each bit -plane must  be continuous, so you need to have 
two 8,000 -byte blocks of available memory.  
 
Figure  3-7 s hows an 8,000 -byte memory area organized as 200 lines of 40 bytes  each, 
providing 1 bit for each pixel position in the display plane.  
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   _____________                            _____________  

  | | | | | | | |  _____________________ \   | | | | | | | |  

  |_|_|_|_|_|_|_|                       /  |_|_|_|_|_|_|_|  

  Mem. Location N                          Mem. location N+38  

 

   _____________                            ____________ _ 

  | | | | | | | |  _____________________ \   | | | | | | | |  

  |_|_|_|_|_|_|_|                       /  |_|_|_|_|_|_|_|  

  Mem. Location N+40          |            Mem. location N+78  

                              |  

                              |  

                              |  

                              |  

   _____________             \ |/            _____________  

  | | | | | | | |  ___________V_________ \   | | | | | | | |  

  |_|_|_|_|_|_|_|                       /  |_|_|_|_|_|_|_|  

  Mem. Location N+7960                     Mem. location N+7998  

 

 

          Figure  3- 7: Memory Organization for a Basic Bit - Plane  

 

 

Access to bit -planes in memory is provided by two address registers,  BPLxPTH and 
BPLxPTL, for each bit -plane (12 registers in all). The "x"  position i n the name holds the 
bit -plane number; for example BPL1PTH and  BPL1PTL hold the starting address of PLANE 
1. Pairs of registers with  names ending in PTH and PTL contain 19 -bit addresses. 68000 
programmers  may treat these as one 32 -bit address and write to them as one long word.  

You write to the high -order word, which is the register whose name ends  in "PTH."  
 
The example below shows how to set the bit -plane pointers. Assuming two  
bit -planes, one at $21000 and the other at $25000, the processor sets  
BPL1PT t o $21000 and BPL2PT to $25000. Note that this is usually the  
Copper's task.  
 

;  

; Since the bit plane pointer registers are mapped as a full 680x0 long -  

; word data, we can store the addresses with a 32 - bit move...  

;  

    LEA    CUSTOM,a0               ; Get  base address of custom hardware...  

    MOVE.L $21000,BPL1PTH(a0)      ; Write bit - plane 1 pointer  

    MOVE.L $25000,BPL2PTH(a0)      ; Write bit - plane 2 pointer  

 

Note that the memory requirements given here are for the playfield only.  You may n eed 
to allo cate additional memory for other parts of the  display, sprites, audio, animation and 
for your application programs.  Memory allocation for other parts of the display is 
discussed in the  chapters describing those topics.  
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CODING THE BIT -PLANES FOR CORRECT COLORING  
After you have specified the number of bit -planes and set the bit -plane  pointers, you can 
actually write the color register codes into the bit -planes.  
 

A ONE-OR TWO-COLOR PLAYFIELD 
For  a one -color playfield, all you need do is write "0"s in all the bits of  the single bit -plane 
as shown in the example below. This code fills a low - resolution bit -plane with the 
background color (COLOR00) by writing all "0"s  into its memory area. The bit -plane starts 
at $21000 and is 8,000 bytes long.  
 

        LEA    $21000,a0        ; Point at bit - plane  

        MOVE.W #2000,d0         ; Write 2000 longwords = 8000 bytes  

LOOP:   MOVE.L #0,(a0)+         ; Write out a zero  

        DBRA   d0,LOOP          ; Dec rement counter and loop until done  

 

For a two -color playfield, you define a bit -plane that has "0"s where  you want the 
background color and "1"s where you want the color in  register 1. The following example 
code is identical to the last example,  except the  bit -plane is filled with $FF00FF00 instead 
of all 0's. This  will produce two colors.  
 

         LEA    $21000,a0        ; Point at bit - plane  

         MOVE.W #2000,d0         ; Write 2000 longwords = 8000 bytes  

LOOP:    MOVE.L #$FF00FF00, (a0)+ ; Write out $ FF00FF00  

         DBRA   d0,LOOP          ; Decrement counter & loop until done  

 

A PLAYFIELD OF THREE OR MORE COLORS  
For three or more colors, you need more than one bit -plane. The task here  is to define 
each bit -plane in such a way that when they are comb ined for  display, each pixel contains 
the correct combination of bits. This is a  little more complicated than a playfield of one 
bit -plane. The following  examples show a four -color playfield, but the basic idea and 
procedures  are the same for playfields co ntaining up to 32 colors.  
 
Figure  3-8 shows two bit -planes forming a four -color playfield:  
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Figure  3- 8: Combining Bit - planes  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

You place the correct  "1"s and "0"s in both bit -planes to give each pixel  in the picture 
above the correct color.  
 
In a single playfield you can combine up to five bit -planes in this way.  Using five bit -
planes allows a choice of 32 different colors for any  single pixel. The pl ayfield color 
selection charts at the end of this  chapter summarize the bit combinations for playfields 
made from four and  five bit -planes.  
 
DEFINING THE SIZE OF THE DISPLAY WINDOW  

After you have completely defined the playfield, you need to define the  size of the display  
window, which is the actual size of the on -screen  display. Adjustment of display window 
size affects the entire display  area, including the border and the sprites, not just the 
playfield. You  cannot display objects outside of the defined display window. Also, the  size 
of the border around the playfield depends on the size of the  display window.  
 
The basic playfield described in this section is the same size as the  screen display area 
and also the same size as the display window. This is  not always the case; often the 
display window is smaller than the actual  "big picture" of the playfield as defined in 
memory (the raster). A  display window that is smaller than the playfield allows you to 
display  some segment of a large  
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playfield or scroll the playfield through the window. You can also define  display windows 
larger than the basic playfield. These larger playfields  and different -sized display windows 
are described in The section below  called "Bit -Planes and Display Windows of All Sizes."  
 

You determine the size of the display window by specifying the vertical  and horizontal 
positions at which the window starts and stops and writing  these positions to the display 
window registers. The re solution of  vertical start and stop is one scan line. The resolution 
of horizontal  start and stop is one low - resolution pixel. Each position on the screen  defines 
the horizontal and vertical position of some pixel, and this  position is specified by the x 
and y coordinates of the pixel. This  document shows the x and y coordinates in this form: 
(x,y). Although the  coordinates begin at (0,0) in the upper left -hand corner of the screen,  

the first horizontal position normally used is $81 and the first vertical  position is $2C. The 
horizontal and vertical starting positions are the  same both for NTSC and for PAL.  
 
The hardware allows you to specify a starting position before ($81,$2C),  but part of the 
display may not be visible. The difference between the  absolute  starting position of (0,0) 
and the normal starling position of  ($81,$2C) is the result of the way many video display 
monitors are  designed. To overcome the distortion that can occur at the extreme edges  of 
the screen, the scanning beam sweeps over a large r area than the front  face of the screen 
can display. A starting position of ($81,$2C) centers  a normal size display, leaving a 
borde r of eight low - resolution pixel  around The display window. Figure  3-9 shows the 
relationship between the  normal display wi ndow, the visible screen area, and the area 
actually  covered by the scanning beam.  
 

 

             (0,0)  

            /      ($81,$2C)  

           /______/____________________________  

          |   ___/__________________________   |  

          |  |  /_________ ________________  | \  |  

          |  | |   / \                      | | \ |  

          |  | |< -- | ------- 320----------- >| |  \  

          |  | |   |                      | |  | \  

          |  | |   |200                   | |  | \ Visible screen  

          |  | |   |                       | |  |          boundaries  

          |  | |   |                      | |  |  

          |  | |___ \ /_____________________| |  |  

          |  |__ \ ________________________/__|  |  

          |______ \ _____________________ /______|  

                  \                     /  

                   \ _____Display _____/  

                    window starting &  

                    stopping positions  

 

 

              Figure  3- 9: Positioning the On - screen Display  
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SETTING THE DISPLAY WINDOW STARTING POSITION  
A horizontal starting position of approximately $81 and a vertical  starting position of 
approximately $2C centers  the display on most  standard television screens. If you select 
high - resolution m ode (640  pixels  horizontally) or interlaced mode (400 lines NTSC, 512 

PAL) the  starting position does not change. The starting position is always  interpreted in 
low - resolution, non - interlaced mode. In other words, you  select a starting position that 
repres ents the correct coordinates in  low - resolution, non -interlaced mode.  
 
The register DIWSTRT (for "Display Window Start") controls the display  window starting 
position. This register contains both the horizontal and  vertical components of the display 
window starting positions, known  respectively as HSTART and VSTART. The following 

example sets DIWSTRT for  a basic playfield. You write $2C for VSTART and $81 for 
HSTART. 
 

    LEA    CUSTOM,a0               ; Get base address of custom hardware...  

    MOVE.W #$2C81,DIWSTRT(a0)      ; Display window start register...  

 
SETTING THE DISPLAY WINDOW STOPPING POSITION  
You also need to set the display window stopping position, which is the  lower right -hand 
corner of the display window. If you select high - resolution or int erlaced mode, the 
stopping position does not change.  Like the starting position, it is interpreted in low -
resolution, non -interlaced mode.  
 
The register DIWSTOP (for Display Window Stop) controls the display  window stopping 
position. This register contains  both  the horizontal and  vertical components of the display 

window stopping positions, known  respectively as HSTOP and VSTOP. The instructions 
below show how to set  HSTOP and VSTOP for the basic playfield, assuming a starting 
position of  ($81,$2C). Note th at the HSTOP value you write is the actual value minus  256 
($100). The HSTOP position is restricted to the right -hand side of  the screen. The normal 
HSTOP value is ($1C1) but is written as ($Cl).  HSTOP is the same both for NTSC and for 
PAL. 
 

The VSTOP posi tion is restricted to the lower half of the screen. This is  accomplished in 
the hardware by forcing the MSB of the stop position to  be the complement of the next 
MSB. This allows for a VSTOP position  greater than 256 ($100) using only 8 bits. 
Normally, the  VSTOP is  set to ($F4) for NTSC, ($2C) for PAL.  
 
    The normal NTSC DIWSTRT is ($2C81).  
    The normal NTSC DIWSTOP is ($F4C1).  

 
    The normal PAL DIWSTRT is ($2C81).  
    The normal PAL DIWSTOP is ($2CC1).  
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The following example sets DIWSTOP for a basic playfield to $F4 for the  vertical position 
and $C1 for the horizontal position.  
 

    LEA    CUSTOM,a0               ; Get base address of custom hardware...  

    MOVE.W #$F4C1,DIWSTOP(a0)      ; Display window stop register...  

 

 

      Table  3- 9: DIWSTRT AND DIWSTOP Summary.  

 

            - Nominal Values -       - Possible Values -  

              NTSC     PAL         MIN         MAX 

    DIWSTRT: 

      VSTART  $2C      $2C         $00         $FF 

      HSTART  $81      $81         $00         $FF 

 

    DIWSTOP: 

      VSTOP   $F4      $2C (=$12C) $80         $7F (=$17F)  

      HSTOP   $C1      $C1         $00 (=$100) $FF (=$1FF)  

 

TELLING THE SYSTEM HOW TO FETCH AND DISPLAY DATA  
After defining the size and p osition of the display window, you need to  give the system the 
on screen location for data fetched from memory. To  do this, you describe the horizontal 
positions where each line starts and  stops and write these positions to the data - fetch 
registers. The da ta - fetch registers have a four -pixel resolution (unlike the display window  
registers, which have a one -pixel resolution). Each position specified is  four pixels from 
the last one. Pixel 0 is position 0; pixel 4 is position  1, and so on.  
 
The data -fetch sta rt and display window starting positions interact with  each other. It is 
recommended that data - fetch start values be restricted  to a programming resolution of 16 
pixels (8 clocks in low - resolution  mode, 4 clocks in high - resolution mode). The hardware 
requi res some time  after the first data fetch before it can actually display the data. As a  
result, there is a difference between the value of window start and data - fetch start of 4.5 
color clocks.  

 
    The normal low - resolution DDFSTRT is ($0038).  
    The norm al high - resolution DDFSTRT is ($003C).  
 
Recall that the hardware resolution of display window start and stop is  twice the hardware 
resolution of data fetch:  
 

          $81  

          ---   - 8.5=$38  

           2 

 

 

          $81  

          ---   - 4.5=$3c  

           2 
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The relationship between data - fetch start and stop is;  
 
    DDFSTRT = DDFSTOP -(8*(word count -1))for low resolution  
 

    DDFSTRT = DDFSTOP -(4*(word count -2))for high resolution  
 
The normal  low - resolution DDFSTOP is ($00D0). The normal high - resolution  DDFSTOP is 
($00D4)  
 
The following example sets data -fetch start to $0038 and data - fetch stop  to $00D0 for a 
basic playfield.  
 

    LEA    CUSTOM,a0               ; Point to base hardware address  

    MOVE.W #$0038,DDFSTRT(a0)      ; Write to DDFSTRT  

    MOVE.W #$00D0,DDFSTOP(a0)      ; Write to DDFSTOP  

 

You also need to tell the system exactly which bytes in memory belong on  each horizontal 
line of the display. To do this, you specify the modulo  value. Modulo refers to the number 
of bytes in memory between the last  word on one horizontal line and the beginning of the 
first word on the  next line. Thus, the modulo enables the system to convert bit -plane data  
stored in linear form (each data byte at a  sequentially increasing memory  address) into 
rectangular form (one "line" of sequential data followed  by another line). For the basic 
playfield, where the playfield in memory  is the same size as the display window, the 
modulo is zero because the  memory ar ea contains exactly the same number of bytes as 
you want to  display on the screen. Figure s 3 -10 and 3 -11 show the basic bit -plane  layout 

in memory and how to make sure the correct data is retrieved.  
 
The bit -plane address pointers (BPLxPTH and BPLxPTL) are  used by the  system to fetch 
the data to the screen. These pointers are dynamic; once  the data fetch begins, the 
pointers are continuously incremented to point  to the next word to be fetched (data is 
fetched two bytes at a  time).  When the end -of - line cond ition is reached (defined by the 
data - fetch  register, DDFSTOP) the modulo is added to the bit -plane pointers,  adjusting 
the pointer to the first word to be fetched for the next  horizontal line.  
 

Data for Line 1:  

Location:            START      START+2      START+4    .....START+38  

                    Leftmost    Next Word    Next Word     Last Display  

                  Display Word                                 Word  

                                                                 ^  

Screen data fetch stops  (DDFSTOP) for                            |  

each horizontal line after the last word  < ---------------------- |  

on the line has been fetched.  

 

Figure  3- 10: Data Fetched for the First Line When Modulo = 0  
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After the first line is fetched, the bit -plane pointers BPLxPTH and  BPLxPTL contain the 
value START+40. The modulo (in this case, 0) is added  to the current value of the pointer, 
so when the pointer begins the data  fetch for the next line, it  fetches the data you want 
on that line. The  data for the next line begins at memory location START+40.  
 

Data for Line 2:  

Location:            START+40    START+42     START+44   .....START+78  

                     Leftmost    Next Word    Next Word     Las t Display  

                   Display Word                                 Word  

 

    Figure  3- 11: Data Fetched for the Second Line When Modulo = 0  

 

 

Note that the pointers always contain an even number, because data is  fetched from the 
display a word at a t ime.  
 
There are two modulo registers, BPL1MOD for the odd -numbered bit -planes  and BPL2MOD 
for the even -numbered bit -planes. This allows for differing  modules  for each playfield in 
dual -playfield mode. For normal  applications, both BPL1MOD and BPL2MOD will be the 
same.  
 
The following example sets the modulo to 0 for a low - resolution playfield  with one bit -
plane. The bit -plane is odd -numbered.  
 

    MOVE.W #0,BPL1MOD+CUSTOM     ; Set modulo to 0  

 

DATA FETCH IN HIGH -RESOLUTION MODE  
When you are using high - resol ution mode to display the basic playfield,  you need to fetch 
80 bytes for each line, instead of 40.  
 
MODULO IN INTERLACED MODE  
For interla ced mode, you must redefine the modulo, because interlaced mode  uses two 
separate scanningôs of the video screen for a  single display of the  playfield. During the 

first scanning, the odd -numbered lines are fetched to  the screen; and during the second 
scanning, the even -numbered lines are  fetched.  
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The bit -planes for a full -screen -sized, interlaced display are 400 NTSC  (512 PAL), rather 
than 200 NTSC (256 PAL), lines long. Assuming that the  playfield in memory is the normal 
320 pixels wide, data for the  interlaced picture begins at the following locat ions (these are 
all byte  addresses):  

 
        Line 1 START  
        Line 2 START+40  
        Line 3 START+80  
        Line 4 START+120  
 
and so on. Therefore, you use a modulo of 40 to skip the lines in the  other field. For odd 

fields, the bit -plane pointers b egin at START. For  even fields, the bit -plane pointers begin 
at START+40  
 
You can use the Copper to handle resetting of the bit -plane pointers for  interlaced 
displays.  
 
DISPLAYING AND REDISPLAYING THE PLAYFIELD  
You start playfield display by making certain  that The bit -plane pointers  are set and bit -
plane DMA is turned on. You turn on bit -plane DMA by  writing a 1 to bit BPLEN in the 
DMACON (for DMA control) register. See  Chapter 7, "System Control Hardware," for 
instructions on setting this  register.  
 
Each time The playfield is redisplayed, you have to reset the bit -plane  pointers. Resetting 
is necessary because the pointers have been  incremented to point to each successive 

word in memory and must be  repointed to the first word for the next display. You writ e 
Copper  instructions to handle the redisplay or perform this operation as part of  a vertical 
blanking task.  
 
ENABLING THE COLOR DISPLAY  
The stock A1000 has a color composite output and requires bit 9 set in  BPLCON0 to create 
a color composite display sign al. Without the addition  of specialized hardware, the A500 
and A2000 cannot generate color  composite output.  
 
NOTE 
The color burst enable does not affect the RGB video signal. RGB video is  correctly 
generated regardless of the output of the composite video  signal.  
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BASIC PLAYFIELD SUMMARY  
The steps for defining a basic playfield are summarized below:  
 
1. Define Playfield Characteristics  

 
   a. Specify height in lines:  
 
      o For NTSC:  
 
        * 200 for non -interlaced mode.  
 

        * 400 for interlaced mode.  
 
      o For PAL:  
 
        * 256 for non -interlaced mode.  
 
        * 512 for interlaced mode.  
 
 
    b. Specify width in pixels:  
 
      o 320 for low - resolution mode.  
 
      o 640 f or high - resolution mode.  

 
 
    c. Specify color for each pixel:  
 
      o Load desired colors in color table  registers.  
 
      o Define color of each pixel in terms of the binary value that points  
        at the desired color register.  
 
      o Build bit -planes.  
 
      o Set bit -plane registers.  
 
        * Bits 12 -14 in BPLCON0 -  number of bit -planes (BPU2 -  BPU0).  

 
        * BPLxPTH -  pointer to bit -plane starting position in memory                    
                    (written  as a long word).  
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  d. Specify resolution:  
 
      o Low resolution:  
 

        * 320 pixels in each horizontal line.  
 
        * Clear bit 15 in register BPLCON0 (HIRES).  
 
      o High resolution:  
 
        * 640 pixels in  each horizontal line.  

 
        * Set bit 15 in register BPLCON0 (HIRES).  
 
   e. Specify interlaced or non -interlaced mode:  
 
      o Interlaced mode:  
 
        * 400 vertical lines for NTSC, 512 for PAL.  
 
        * Set bit 2 in register BPLCON0 (LACE).  
 
      o Non -interlaced mode:  
 
        * 200 vertical lines for NTSC, 256 for PAL.  

 
        * Clear bit 2 in BPLCON0 (LACE).  
 
2. Allocate Memory. To calculate data -bytes in the total bit -planes, use  the following 
formula: Bytes per line * lines in playfield * number  of bit -planes  
 
3. Define Size of Display Window.  
 
      o Write start position of display window in DIWSTRT:  
 
        * Horizontal position in bits 0 through 7 (low -order bits).  
 
        * Vertical position in bits 8 through 15 (high -order bits).  
 

      o Write stop position of display window in DIWSTOP:  
 
        * Horizontal position in bits 0 through 7.  
 
        * Vertical position in bits 8 through 15.  
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4. Define Data Fetch. Set regist ers DDFSTRT and DDFSTOP:  
 
      o For DDFSTRT, use the horizontal position as shown in "Setting the  
        Display Window Starting Position."  

 
      o For DDFSTOP, use the horizontal position as shown in "Setting the  
        Display Window Stopping Positi on."  
 
5. Define Modulo. Set registers BPL1MOD and BPL2MOD. Set modulo to 0 for  non -
interlaced, 40 for interlaced.  
 

6. Write Copper Instructions To Handle Redisplay.  
 
7. Enable Color Display. For the A1000: set bit 9 in BPLCON0 to enable  the color display 
on a composite video monitor. RGB video is not  affected. Only the A1000 has color 
composite video output, other machines  cannot enable this feature using standard 
hardware.  
 
EXAMPLES OF FORMING BASIC PLAYFIELDS  
The following examples show how to set the reg isters and write the  coprocessor lists for 
two different playfields.  
 
The first example sets up a 320 x 200 playfield with one bit -plane, which is  located at 
$21000. Also, a Copper list is set up at $20000.  
 

This example relies on the include file "hw exam ples.i", which is found  in Appendix J.  
 

    LEA    CUSTOM,a0                ; a0 points at custom chip  

    MOVE.W #$1200,BPLCON0(a0)       ; One bit - plane, enable composite color  

    MOVE.W #0,BPLCON1(a0)           ; Set horizontal scroll value to 0  

    MOVE.W #0,BPL1MOD(a0)           ; Set modulo to 0 for all odd bit - planes  

    MOVE.W #$0038,DDFSTRT(a0)       ; Set data - fetch start to $38  

    MOVE.W #$00D0,DDFSTOP(a0)       ; Set data - fetch stop to $D0  

    MOVE.W #$2C81,DIWSTRT(a0)       ; Set DIWSTRT to $ 2C81 

    MOVE.W #$F4C1,DIWSTOP(a0)       ; Set DIWSTOP to $F4Cl  

    MOVE.W #$0F00,COLOR00(a0)       ; Set background color to red  

    MOVE.W #$0FF0,COLOR01(a0)       ; Set color register 1 to yellow  

;  

;  Fill bit - plane with $FF00FF00 to produce stripes  

;  

    MOVE.L #$21000,a1               ; Point at beginning of bit - plane  

    MOVE.L #$FF00FF00,d0            ; We will write $FF00FF00 long words  

    MOVE.W #2000,d1                 ; 2000 long words = 8000 bytes  

;  

LOOP: 

    MOVE.L d0,(a1)+                 ; Wr ite a long word  

    DBRA   d1,LOOP                  ; Decrement counter and loop until done  

;  

; Set up Copper list at $20000  

;  

    MOVE.L #$20000,a1               ; Point at Copper list destination  

    LEA    COPPERL(pc).a2           ; Point a2 at Copper l ist data  
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CLOOP: 

    MOVE.L (a2),(a1)+               ; Move a word  

    CMPI.L #$FFFFFFFE,(a2)+         ; Check for last longword of Copper list  

    BNE    CLOOP                    ; Loop until entire  copper list i9 moved  

;  

; Point Copper at Copper list  

;  

    MOVE.L #$20000,COP1LCH(a0)      ; Write to Copper location register  

    MOVE.W COPJMP1(a0),d0           ; Force copper to $20000  

;  

; Start DMA  

;  

    MOVE.W #(DMAF_SETCLR!DMAF_COPPER!DMAF_RASTER!DMAF_MASTER),DMACON(a0) 

                                    ; Enable bit - plane and Copper DMA  

    BRA ....                        ; Go do next task  

;  

; This is the data for the Copper list.  

;  

COPPERL: 

    DC.W BPL1PTH,$0002              ; Move $0002 to addre ss $0E0 (BPL1PTH)  

    DC.W BPL1PTL,$1000              ; Move $1000 to address $0E2 (BPL1PTL)  

    DC.W $FFFF,$FFFE                ; End of Copper list  

 

The second example sets up a high - resolution, interlaced display with one  bitplane. This 
example also rel ies on the include file "hw_examples.i",  which is found in Appendix J.  
 

    LEA    CUSTOM,a0                ; Address of custom chips  

    MOVE.W #$9204,BPLCON0(a0)       ; Hires, one bit - plane, interlaced  

    MOVE.W #0,BPLCON1(a0)           ; Horizontal sc roll value 0  

    MOVE.W #80,BPL1MOD(a0)          ; Modulo = 80 for odd bit - planes  

    MOVE.W #80,BPL2MOD(a0)          ; Ditto for even bit - planes  

    MOVE.W #$003C,DDFSTRT(a0)       ; Set data - fetch start for hires  

    MOVE.W #$00D4,DDFSTOP(a0)       ; Set  data - fetch stop  

    MOVE.W #$2C81,DIWSTRT(a0)       ; Set display window start  

    MOVE.W #$F4C1,DIWSTOP(a0)       ; Set display window stop  

;  

; Set up color registers  

;  

    MOVE.W #$000F,COLOR00(a0)       ; Background color = blue  

    MOVE.W #$0FFF,COLOR01(a0)       ; Foreground color = white  

 

;Set up bit - plane at S20000  

 

    LEA    $20000,a1                ; Point a1 at bit - plane  

    LEA    CHARLIST(pc),a2          ; a2 points at character data  

    MOVE.W #400,d1                  ; Write 400 lines of dat a 

    MOVE.W #20,d0                   ; Write 20 long words per line  

L1:  

    MOVE.L (a2),(a1)+               ; Write a long word  

    DBRA   d0,L1                    ; Decrement counter and loop until full  

 

    MOVE.W #20,d0                   ; Reset long w ord counter  

    ADDQ.L #4,a2                    ; Point at next word in char list  

    CMPI.L #$FFFFFFFF,(a2)          ; End of char list?  

    BNE    L2  

    LEA    CHARLIST(pc),a2          ; Yes, reset a2 to beginning of list  

L2:  

    DBRA   d1,L1                    ; Decrement line counter and loop until  

                                    ; done  

  

;  



; Start DMA  

;  

 

   MOVE.W #(DMAF_SETCLR!DMAF_RASTER!DMAF_MASTER),DMACON(a0) 

                         ; Enable bit - plane DMA only, no Copper  

 

; Because this examp le has no Copper list, it sits in a  

; loop waiting for the vertical blanking interval. When it  

; comes, you check the LOF ( long frame  bit in VPOSR. If  

; LOF = 0, this is a short frame and the bit - plane pointers  

; are set to point to S20050. If LOF = 1, t hen this is a  

; long frame and the bit - plane pointers are set to point to  

; $20000. This keeps the long and short frames in the  

; right relationship to each other.  

 

VLOOP: 

    MOVE.W INTREQR(a0),d0           ; Read interrupt requests  

    AND.W  #$0020,d0                ; Mask off all but vertical blank  

    BEQ    VLOOP                    ; Loop until vertical blank comes  

    MOVE.W #$0020,INTREQ(a0)        ; Reset vertical interrupt  

    MOVE.W VPOSR(a0),d0             ; Read LOF bit into d0 bit 15  

    BPL    VL1                      ; If LOF = 0, jump  

    MOVE.L #$20000,BPL1PTH(a0)      ; LOF = 1, point to $20000  

    BRA    VLOOP                    ; Back to top  

VL1:  

    MOVE.L #$20050,BPL1PTH(a0)      ; LOF = 0, point to $20050  

    BRA    VLOOP                    ; Back to top  

;  

; Character list  

;  

CHARLIST:  

    DC.L   $18FC3DF0,$3C6666D8,$3C66C0CC,$667CC0CC  

    DC.L   $7E66C0CC,$C36666D8,$C3FC3DF0,$00000000  

    DC.L   $FFFFFFFF  
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FORMING A DUAL -PLAYFIELD DISPLAY  
For more flexibility in designing your background display, you can  specify two playfields 
instead of one. In dual -playfield mode, one  playfield is displayed directly in front of the 
other. For example, a  computer game display  might have some action going on in one 

playfield in  the back -ground, while the other playfield is showing a control panel in  the 
foreground. You can then change either the foreground or the  background without having 
to redesign the entire display. You can  also  move the two playfields independently.  
 
A dual -playfield display is similar to a single -playfield display,  differing only in these 
aspects:  
 

o Each playfield in a dual display is formed from one, two or three bit  planes.  
 
o The colors in each playfie ld (up to seven plus transparent) are taken  from different sets 
of color registers.  
 
o You must set a bit to activate dual -playfield mode.  
 
Figure  3-12 shows a dual -playfield display.  
 
In Figure  3-12, one of the colors in each playfield is "transparent" (c olor  0 in playfield 1 
and color 8 in playfield 2). You can use transparency to  allow selected features of the 
background playfield to show through.  
 
In dual -playfield mode, each playfield is formed from up to three bitplanes.  Color registers 

0 through 7 ar e assigned to playfield 1, depending upon how  many bit -planes you use. 
Color registers 8 through 15 are assigned to  playfield 2.  
 
BIT -PLANE ASSIGNMENT IN DUAL -PLAYFIELD MODE 
 
The three odd -numbered bit -planes (1, 3, and 5) are grouped together by  the hardw are 
and may be used in playfield 1. Likewise, the three even -numbered bit -planes (2, 4, and 
6) are grouped together and may be used in  playfield 2. The bit -planes are assigned 
alternately to each playfield,  as shown in Figure  3-13.  
 
NOTE 
In high - resolution  mode, you can have up to two bit -planes in each playfield,  bit -planes 1 
and 3 in playfield 1 and bit -planes 2 and 4 in playfield 2.  
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Figure  3- 12: A dual Playfield display.  
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 Number of Bitplanes  

    "turned on"          Playfield 1*       Playfield 2*  

 

         0                   None               None  

 

                          __________  

         1               |1         |  

                         |__________|  

                          __________         __________  

         2               |1         |       |2         |  

                         |__________|       |__________ |  

                          __________         __________  

         3               |1 ________|_      |2         |  

                         |_|3         |     |__________|  

                           |__________|  

                          __________         __________  

         4               |1 ________|_      |2 ________|_  

                         |_|3         |     |_|4         |  

                           |__________|       |__________|  

                          __________         __________  

         5               |1 ________|_      |2 ________|_  

                         |_|3 ________|_    |_|4         |  

                           |_|5         |     |__________|  

                             |__________|  

                          __________         _____ _____  

         6               |1 ________|_      |2 ________|_  

                         |_|3 ________|_    |_|4 ________|_  

                           |_|5         |     |_|6         |  

                             |__________|       |__________|  

 

     *NOTE:  Either playfield may be placed "in front of" or  

             "behind" the other using the "swap - bit"  

 

 

       Figure  3- 13: How Bitplanes are assigned to duel playfields.  
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COLOR REGISTERS IN DUAL -PLAYFIELD MODE 
When you are using dual playfields, the hardware interprets color numbers for  playfield 1 
from the bit combinations of bit -planes 1, 3, and 5. Bits from  PLANE 5 have the highest 
significance and form the most significant d igit of  the color register number. Bits from 

PLANE O have the lowest significance.  These bit combinations select the first eight color 
registers from the color  palette as shown in Table  3-10.  
 

    Table  3- 10: Playfield 1 Color Registers Low - resolution Mode  

 

             PLAYFIELD 1  

 

          Bit           Color  

      Combination      Selected  

 

          000      Transparent mode  

          001           COLOR1  

          010           COLOR2  

          011           COLOR3  

          100           COLOR4  

          101           COLORS  

          110           COLOR6  

          111           COLOR7  

 

The hardware interprets color numbers for playfield 2 from the bit  combinations of bit -
planes 2, 4, and 6. Bits from PLANE 6 have the highest  significance. Bits from P LANE 2 
have the lowest significance. These bit  combinations select the color registers from the 
second eight colors in the  color Table  as shown in Table  3-11.  
 

    Table  3  Playfield 2 Color Registers Low - resolution Mode  

 

             PLAYFIELD 2  

 

          Bit           Color  

      Combination      Selected  

 

          000      Transparent mode  

          001           COLOR09  

          010           COLOR10  

          011           COLOR11  

          100           COLOR12  

          101           COLOR13  

          110           COLOR14  

          111           COLOR15  
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Combination 000 selects transparent mode, to show the color of whatever  object (the 
other playfield, a sprite, or the background color) may be  "behind" the playfield.  
 
Table  3-12 shows the color registers for high - resolution, dual -playfield  mode.  
 

    Table  3- 12: Playfields 1 and 2 Color Registers -  High - resolution Mode  

 

            PLAYFIELD 1  

 

          Bit           Color  

      Combination      Selected  

 

          00       Transparent mode  

          01            COLOR1  

          10            COLOR2  

          11            COLOR3  

 

            PLAYFIELD 2  

 

          Bit           Color  

      Combination      Selected  

 

          00        Transparent mode  

          01            COLOR09  

          10            COLOR10  

          11            COLOR11  

 

DUAL-PLAYFIELD PRIORITY AND CONTROL  
Either playfield 1 or 2 may have priority; that is, either one may be  displayed in front of 
the oth er. Playfield 1 normally has priority. The  bit known as PF2PRI (bit 6) in register 
BPLCON2 is used to control  priority. When PF2PRI = 1, playfield 2 has priority over 
playfield 1.  When PF2PRI = 0, playfield 1 has priority.  
 
You can also control the relativ e priority of playfields and sprites.  Chapter 7, "System 

Control Hardware" shows you how to control the priority  of these objects.  
 
You can control the two playfields separately as follows:  
 
o They can have different -sized representations in memory, and di fferent  portions of each 
one can be selected for display.  
 

o They can be scrolled separately.  
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NOTE 
You must take special care when scrolling one playfield and holding the  other stationar y. 
When you are scrolling low - resolution playfields, you must  fetch one word more than the 
width of the playfield you are trying to scroll  (two  words more in high - resolution mode) in 

order to provide some data to  display, when the actual scrolling takes p lace. Only one 
data - fetch start  register and one data -fetch stop register are available, and these are  
shared by both playfields. If you want to scroll one playfield and hold  the other, you must 
adjust the data - fetch start and data - fetch stop to  handle the  playfield being scrolled. 
Then, you must adjust the modulo and  the bit -plane pointers of the playfield that is not 
being scrolled to  maintain its position on the display. In low - resolution mode, you adjust  
the pointers by -2 and the modulo by -2. In high - resolution mode, you adjust  the pointers 

by -4 and the modulo by -4.  
 
ACTIVATING DUAL PLAY -FIELD MODE  
Writing a 1 to bit 10 (called DBLPF) of the bit -plane control register  BPLCON0 selects dual -
playfield mode. Selecting dual -playfield mode changes  both the  way the hardware groups 
the bit -planes for color interpretation  all odd -numbered bit -planes are grouped together 
and all even -numbered  bit -planes are grouped together, and the way hardware can move 
the  bit -planes on the screen.  
 
DUAL PLAYFIELD SUMMARY  
The  steps for defining dual playfields are almost the same as those for  defining the basic 
playfield.  Only in the following steps does the dual -playfield creation process differ from 
that used for the basic playfield.  
 

o Loading colors into the registers. Ke ep in mind that color registers 0 -7 are used by 
playfield 1 and registers 8 through 15 are used by playfield  2 (if there are three bit -planes 
in each playfield).  
 
o Building bit -planes. Recall that playfield 1 is formed from PLANES 1, 3,  and 5 and 
playfiel d 2 from PLANES 2, 4, and 6.  
 
o Setting the modulo registers. Write the modulo to both BPLlMOD and  BPL2MOD as you 
will be using both odd - and even -numbered bit -planes.  
 
These steps are added:  
 
o Defining priority. If you want playfield 2 to have priority, set bit 6  (PF2PRI) in BPLCON2 
to 1.  

 
o Activating dual -playfield mode. Set bit 10 (DBLPF) in BPLCON0 to 1.  
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BIT -PLANES AND DISPLAY WINDOWS OF ALL SIZES  
 
You have seen how to form single and  dual playfields in which the playfield  in memory is 
the same size as the display window. This section shows you  how to define and use a 

playfield whose big picture in memory is larger  than the display window, how to define 
display windows that are larger or  smaller than the normal playfield size, and how to 
move the display window  in the big picture.  
 
WHEN THE BIG PICTURE IS LARGER THAN THE DISPLAY WINDOW  
If you design a memory picture larger than the display window, you must  choose which 
part of it to dis play. Displaying a portion of a larger  playfield differs in the following ways 

from displaying the basic  playfields described up to now:  
 
o If the big picture in memory is larger than the display window, you must  respecify the 
modules . The modulo must be s ome value other than 0.  
 
o You must allocate more memory for the larger memory picture.  
 
SPECIFYING THE MODULO  
For a memory picture wider than the display window, you need to respecify  the modulo so 
that the correct data words are fetched for each line of the  display. As an example, 
assume the display window is the standard 320 pixels  wide, so 40 bytes are to be 
displayed on each line. The big picture in  memory, however, is exactly twice as wide as 
the display window, or 80  bytes wide. Also, assume that you  wish to display the left half 
of the big  picture. Figure  3-14 shows the relationship between the big picture and the  

picture to be displayed.  
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        START                                                START+78 

              -------------------------------------------------  

              |      Width of the Bit - Plane Defined in RAM    |  

              |                       |                       |  

              | Width of defined      |                       |  

              | screen on which       |                       |  

              | bit - plane data is     |                       |  

              | to appear             |                       |  

              |                       |                       |  

              -------------------------------------------------  

 

Figure  3- 14: Memory Picture Larger than the Display  

 

Because 40 bytes are to be fetched for each line, the data fetch for line 1  is as shown in 
Figur e 3-15.  
 

Data for Line 1:  

 

Location:            START      START+2      START+4    .....START+38  

                    Leftmost   Next Word    Next Word      Last Display  

                  Display Word                                Word  

                                                                ^  

Screen data fetch stops (DDFSTOP) for                           |  

each horizontal line after the last word ----------------------- |  

on the line has been fetched.  

 

Figure  3- 15: Data Fetch for the First Line When  Modulo = 40  

 

 

At this point, BPLxPTH and BPLxPTL contain the value START+40. The modulo,  which is 
40, is added to the current value of the pointer so that when it  begins the data fetch for 
the next line, it fetches the data you intend for  that line. The d ata fetch for line 2 is shown 
in Figure  3-16.  
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Data for Line 2:  

 

Location:         START+80    START+82   START+84...    START+118  

                  Leftmost   Next Word   Next W ord     Last Display  

                Display Word                               Word  

 

Figure  3- 16: Data Fetch for the Second  Line When Modulo = 40  

 

To display the right half of the big picture, you set up a vertical blanking  routine to start 
the bit -plane pointers at location START+40 rather than  START with the modulo remaining 
at 40. The data layout is shown in Figure s 3-17 and 3 -18.  
 

Data for Line 1:  

 

Location             START+40   START+42   START - 44...   START+78  

                     Leftmost   Next Wo rd  Next Word   Last Display  

                   Display Word                             Word  

 

    Figure  3- 17: Data Layout for First Line Right Half of Big Picture  

 

 

Now, the bit -plane pointers contain the value START+80. The modulo (40) is  added to the 
pointers so that when they begin the data fetch for the second  line, the correct  data is 
fetched . 
 

Data for Line 2:  

 

Location:           START+120   START+122   START+124...   START+158  

                     Leftmost   Next Word   Next Word     Last Display  

                   Display Word                               Word  

 

   Figure  3- 18: Data Layout for Second Line Right Half of Big Picture  

 

Remember, in high - resolution mode, you need to fetch twice as many bytes as  in low -

resolution mode. For a normal -sized display, you fetch 80 bytes for  each horizontal line 
instead of 40.  
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SPECIFYING THE DATA FETCH  
The data -fetch registers specify the beginning and end positions for data  placement on 
each horizontal line of the display. You specify data fetch in  the same way as shown in the 
section called "Forming a Basic Playfield."  

 
MEMORY ALLOCATION  
For larger memory pictures, you need to allocate more memory. Here is a  formula for 
calculating me mory requirements in general:  
 
bytes per line * lines in playfield * # of bit -planes  
 

Thus, if the wide playfield described in this section is  formed from two bit -planes, it 
requires:  
 
80 * 200 * 2 = 32,000 bytes of memory  
 
Recall that this is the memory r equirement for the playfield alone. You need  more memory 
for any sprites, animation, audio, or application programs you  are using.  
 
SELECTING THE DISPLAY WINDOW STARTING POSITION  
The display window starting position is the horizontal and vertical  co-ordina tes of the 
upper left -hand corner of the display window. One  register, DIWSTRT, holds both the 
horizontal and vertical coordinates, known  as HSTART and VSTART. The eight bits 
allocated to HSTART are assigned to the  first 256 positions, counting from the le ftmost 
possible position. Thus, you  can start the display window at any pixel position within this 

range.  
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FULL SCREEN AREA 
 

                 0                  255                 361  

                ---------------------------------------------  

                |                    |                      |  

                |  HSTART of DISPLAY |                      |  

                |  WINDOW occurs in  |                      |  

                |  this region.      |                      |  

                |                    |                      |  

                ---------------------------------------------  

 

          Figure  3- 19: Display Window Horizontal Starting Positio n 

 

The eight bits allocated to VSTART are assigned to the first 256 positions  counting down 
from the top of the display.  
 

FULL SCREEN AREA 

                ---------------------------------------------  0 

                |                                         ^ |  

                |                                         | |  

                |                  Vstart of display window |  

                |                     occurs in this region |  

                |                                       __v_| ___255  

                |                             (NTSC)____________262  

                |                                           |  

                ---------------------------------------------  

 

          Figure  3- 20: Display Window Vertical Starting Position  

 

 

Recall that you select the  values for the starting position as if the  display were in low -
resolution, non - interlaced mode. Keep in mind, though,  that for interlaced mode the 
display window should be an even number of  lines in height to allow for  equal -sized odd 
and even fields.  

 
To set the display window starting position, write the value for HSTART  into bits 0 through 
7 and the value for VSTART into bits 8 through 15 of  DIWSTRT.  
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SELECTING THE STOPPING POSITION  
The stopping position for the display window is the horizontal and vertical  coordinates of 
the lower right -hand corner of the display window. One  register, DIWSTOP, contains both 
coordinates, known as HSTOP and VSTOP . 

 
See the notes in the "Forming a Basic Playfield" section for instructions on  setting these 
registers.  
 

 

FULL SCREEN AREA 

 

                 0                  255                 361  

                ------------------------------------------------  

                |                      |                       |  

                |                      |   HSTOP of DISPLAY    |  

                |                      |   WINDOW occurs in    |  

                |                      |   this region.        |  

                |                      |                       |  

                ------------------------------------------------  

 

Figure  3- 21: Display Window Horizontal Stopping Position  

 

 

Select a value that represents the correct position in low - resolutio n,  non - interlaced mode.  
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FULL SCREEN AREA 
                ---------------------------------------------  0 

                |                                           |  

                |          _________________________________|___128  

                |     Vstop of display                      |  

                |     window occurs in                      |  

                |     the region. |             (NTSC)______|___2 62 

                |                 |                         |  

                |                 |                         |  

                ---------------------------------------------  

 

          Figure  3- 22: Display Window Vertical Stopping Position  

 

 

To set the display window stopping position, write HSTOP into bits 0 through  7 and VSTOP 
into bits 8 through 15 of DIWSTOP.  
 
MAXIMUM DISPLAY WINDOW SIZE  
The maximum size of a playfield display is determined by the maximum number  of lines 
and the maximum n umber of columns. Vertically, the restrictions are  simple. No data can 
be displayed in the vertical blanking area. The  following Table  shows the allowable vertical 
display area.  
 

    Table  3- 13: Maximum Allowable Vertical Screen Video  

 

      Vertical Blank      NTSC                    PAL  

 

         Start            0                       0  

         Stop             $15 (21)                $1D (29)  

 

                          NTSC      NTSC          PAL       PAL  

                         Normal    Interlaced    Normal Interlaced  

      Displayable lines  

       of screen video    241       483           283       567  

                                    =525 - (21*2)             =625 - (29*2)  

 

Horizontally, the situation is similar. Strictly speaking, the hardware se ts  a rightmost limit 
to DDFSTOP of ($D8) and a leftmost limit to DDFSTRT of  ($18).  This gives a maximum of 
25 words fetched in low - resolution mode. In  high - resolution mode the maximum here is 
49 words,  
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because the rightmost limit remains ($D8) and only one word is fetched at  this limit. 
However, horizontal blanking actually limits the displayable  video to 368 low - resolution 
pixels (23 words). These numbers are the same  both for NTSC an d for PAL. In addition, it 
should be noted that using a  data - fetch start earlier than ($38) will disable some sprites.  
 

    Table  3- 14: Maximum Allowable Horizontal Screen Video  

 

                           LoRes          HiRes  

 

      DDFSTRT (standard)   $ 0038          $003C  

      DDFSTOP (standard)   $00D0          $00d4  

 

      DDFSTRT (hw limits)  $0018          $0018  

      DDFSTOP (hw limits)  $00D8          $00D8  

 

      max words fetched    25             49  

      max display pixels   368 (low res)  

 

MOVING (SCROLLING) PLAYFIELDS  

 
If you want a background display that moves, you can  design a playfield  larger than the 
display window and scroll it. If you are using dual  playfields, you can scroll them 
separately.  
 
In vertical scrolling, the playfield appear s to move smoothly up or down on  the screen. All 
you need do for vertical scrolling is progressively increase  or decrease the starting address 
for the bit -plane pointers by the size of a  horizontal line in the playfield. This has the 
effect of showing a lo wer or  higher part of the picture  each field time.  
 
In horizontal scrolling the playfield appears to move from right - to - left or  left - to - right on 
the screen. Horizontal scrolling works differently from  vertical scrolling you must arrange 
to fetch one more w ord of data for each  display line and delay the display of this data.  
 

For either type of scrolling, resetting of pointers or data - fetch registers  can be handled by 
the Copper during the vertical blanking interval.  
 
VERTICAL SCROLLING  
You can scroll a play field upward or downward in the window. Each time you  display the 
playfield, the bit -plane pointers start at a progressively higher  or lower place in the big 
picture in memory. As the value of the pointer  increases, more of the lower part of the 
picture is  shown and the picture  appears to scroll upward. As the value of the pointer 
decreases, more of the  upper part  
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is shown and the picture scrolls downward. On an NTSC system, with a display  that has 
200 vertical lines, each step can be as little as 1/200th of the  screen. In interlaced mode 
each step could be 1/400th of the screen if clever  manipulation of the pointers is used, 
but it is recommended that scrolling be  done two lines at a time t o maintain the odd/even 

field relationship.  Using a PAL system with 256 lines on the display, the step can be 
1/256th of  a screen, or 1/512th of a screen in interlace.  
 

 

 
 

 

Figure  3- 23: Vertical Scrolling  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To set up a pl ayfield for vertical scrolling you need to form bit -planes tall  enough to allow 
for the amount of scrolling you want, write software to  calculate the bit -plane pointers for 
the scrolling you want, and allow for  the Copper to use the resultant pointers.  
 
Assume you wish to scroll a playfield upward one line at a time. To  accomplish this, before 
each field is displayed, the bit -plane pointers have  to increase by enough to ensure that 
the pointers begin one line lower each  time. For a normal -sized, low - resolut ion display in 

which the modulo is 0,  the pointers would be incremented by 40 bytes each time.  
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HORIZONTAL SCROLLING  
You can scroll playfields horizontally from left to right or right to left  on the screen. You 
cont rol the speed of scrolling by specifying the amount  of delay in pixels. Delay means 
that an extra word of data is fetched but  not immediately displayed. The extra word is 

placed just to the left of the  window's leftmost edge and before normal data fetch. A s the 
display shifts  to  the right, the bits in this extra word appear on -screen at the  left -hand 
side of the window as bits on the right -hand side disappear  off -screen. For each pixel of 
delay, the on -screen data shifts one pixel to  the right each display  field. The greater the 
delay, the greater the speed  of scrolling. You can have up to 15 pixels of delay. In high -
resolution  mode, scrolling is in increments of 2 pixels. Figure  3-24 shows how the  delay 
and extra data fetch combine to cause the scrolling e ffect.  

 
To set up a playfield for horizontal scrolling, you need to;  
 
o Define bit -planes wide enough to allow for the scrolling you need.  
 
o Set the data - fetch registers to correctly place each horizontal line,  including the extra 
word, on the screen.  
 
o Set the delay bits.  
 
o Set the modulo so that the bit -plane pointers begin at the correct word for  each line.  
 
o Write Copper instructions to handle the changes  during the vertical blanking  interval.  
 

SPECIFYING DATA FETCH IN HORIZONTAL SCROLLING  
The norma l data - fetch start for non -scrolled displays is ($38). If horizontal  scrolling is 
desired, then the data fetch must start one word sooner  (DDFSTRT = $0030). 
Incidentally, is will disable sprite 7. DDFSTOP remains  unchanged. Remember that the 
settings of th e data -fetch registers affect both  playfields.  
 
SPECIFYING THE MODULO IN HORIZONTAL SCROLLING  
As always, the modulo is two counts less than the difference between the  address of the 
next word you want to fetch and the address of the last word  that was fetc hed. As an 
example for horizontal scrolling, let us assume a 40 -byte display in an 80 -byte "big 
picture." Because horizontal scrolling  requires a data fetch of two extra bytes, the data for 
each line will be 42  bytes long.  
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Figure  3- 24: Horizontal Scrolling  
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              START                START+38               START+78  

                 ______________________________________________  

                |                      |                       |  

                |  Display             |                       |  

                |  window              |                       |  

                |  width               |                       |  

                |                      |                       |  

                |                      |                       |  

                |                      |                       |  

                | < ---------  Memory Picture Width ----------- > |  

                |______________________|_______________________|  

 

Figure  3- 25: Memory Picture Larger Than the Display Window  

 

 

 

Data for Line 1:  

 

       Location:     START     START+2      START+4...   START+40  

                   Leftmost   Next Word    Next Word    Last Display  

                 display word                               word  

 

Figure  3- 26: Data for Line 1 -  Horizontal Scrolling  

 

 

 

At this point, the  bit -plane pointers cont ain the value START+42. Adding the  modulo of 38 

gives the correct starting point for the next line.  
 

Data for Line 2:  

 

       Location:    START+80   START+82    START+84    START+120  

                    Leftmost   Next Word  Next Word  Last Display  

                  Display Word                           word  

 

Figure  3- 27: Data for Line 2 Horizontal Scrolling  

 

 

In the  BPLxMOD registers you set the modulo for each bit -plane used.  
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SPECIFYING AMO UNT OF DELAY 
The amount of delay in horizontal scrolling is controlled by bits 7 -0 in  BPLCON1. You set 
the delay separately  for each playfield; bits 3 -0 for  playfield 1 (bit -planes 1, 3, and 5) and 
bits 7 -4 for playfield 2 (bit -planes  2, 4, and 6).  

 
NOTE 
Always set all six bits, even if you have only one playfield. Set 3 -0 and  7-4 to the same 
value if you are using only one playfield.  
 
The following example sets the horizontal scroll delay to 7 for both  playfields.  
 

    MOVE.W #$77,BPLCON1+CUSTOM 

 

SCROLLED PLAYFIELD SUMMARY 
The steps for defining a scrolled playfield are the same as those for  defining the basic 
playfield, except for the following steps:  
 
o Defining the data fetch. Fetch one extra word per horizontal line and start  it 16 pixels 
before the nor mal (unscrolled) data - fetch start.  
 
o Defining the modulo. The modulo is two counts less than when there is no  scrolling.  
 
These steps are added:  
 
o For vertical scrolling, reset the bit -plane pointers for the amount of the  scrolling 

increment. Reset BPLxP TH and BPLxPTL during the vertical blanking  interval.  
 
o For horizontal scrolling, specify the delay. Set bits 7 -0 in BPLCON1 for  0 to 15 bits of 
delay.  
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ADVANCED TOPICS  
 
This section describes features that are used less often or are optional.  
 

INTERACTIONS AMONG PLAYFIELDS AND OTHER OBJECTS  
Playfields share the display with sprites. Chapter 7, "System Control  Hardware," shows 
how playfields can be given different video display  priorities  relative to the sprites and 
how playfields can collide with  (overlap) the sprites or each other.  
 
HOLD-AND-MODIFY MODE  
This is a special mode that allows you to produce up to 4,096 colors on the  screen at the 

same time. Normally, as each value formed by the combination  of bit -planes is selected, 
the data contained in the selected  color register  is loaded into the color output circuit for 
the pixel being written on the  screen. Therefore, each pixel is colored by the contents of 
the selected  color  register.  
 
In hold -and -modify mode, however, the value in the color output circuitry is  held, and one 
of the three components of the color (red, green, or blue) is  modified by bits coming from 
certain preselected bit -planes. After  modification, the pixel is written to the screen.  
 
The hold -and -modify mode allows very fine g radients of color or shading to be produced 
on the screen. For example, you might draw a set of 16 vases, each a  different color, 
using all 16 colors in the color palette. Then, for each  case, you use hold -and -modify to 
very finely shade or highlight or add a  completely different color to each of the vases. 
Note that a particular hold -and -modify pixel can only change one of the three color values 

at a time.  Thus, the effect has a limited  control.  
 
In hold and modify mode, you use all six bit -planes. Planes 5 and 6 are used  to modify the 
way bits from planes 1 - 4 are treated, as follows:  
 
o If the 6 -5 bit combination from planes 6 and 5 for any given pixel is 00,  normal color 
selection proc edure is followed. Thus, the bit combinations from  planes 4 -1, in  that order 
of significance, are used to choose one of 16 color  registers (registers 0 -  15).  
 
o If only five bit -planes are used, the data from the sixth plane is  automatically supplied 
with  the value as 0.  
 
o If the 6 -5 bit combination is 01, the color of the pixel immediately to the  left of this pixel 
is duplicated  and then modified. The bit -combinations from  planes 4 -1 are used to replace 

the four "blue" bits in the corresponding color  reg ister.  
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o If the 6 -5 bit combination is 10, the color of the pixel immediately to the  left of this pixel 
is duplicated and then modified. The bit -combinations from  planes 4 -1 are used to  
replace the four "red" bits.  
 

o If the 6 -5 bit combination is 11, the color of the pixel immediately to the  left of this pixel 
is duplicated and then modified. The bit -combinations from  planes 4 -1 are used to 
replace the four "green" bits.  
 
Using hold -and-modify mode, it is possible to get by with defining only one  color register, 
which is COLOR0, the color of the background. You treat the  entire screen as a 
modification of that original color, according to the  scheme  above.  

 
Bit 11 of register BPLCON0 se lects hold -and -modify mode. The following bits  in BPLCON0 
must be set for hold -and -modify mode to be active:  
 
o Bit HOMOD, bit 11, is 1.  
 
o Bit DBLPF, bit 10, is 0 (single -playfield mode specified).  
 
o Bit HIRES, bit 15, is 0 (low - resolution mode specified ).  
 
o Bits BPU2, BPUI, and BPU0 - bits 14, 13, and 12, are 101 or 110 (five or  six bit -planes 
active).  
 
The following example code generates a six -bit -plane display with hold -and -modify mode 

turned  on. All 32 color registers are loaded with black to prove  that the colors are being 
generated by hold -and -modify. The  equates are the  usual and are not repeated here.  
 

; First, set up the control registers.  

;  

    LEA    CUSTOM,a0                 ; Point a0 at custom chips  

    MOVE.W #$6A00,BPLCON0(a0)        ; Si x bit - planes, hold - and- modify mode  

    MOVE.W #0,BPLCON1(a0)            ; Horizontal scroll = 0  

    MOVE.W #0,BPL1MOD(a0)            ; Modulo for odd bit - planes = 0  

    MOVE.W #0,BPL2MOD(a0)            ; Ditto for even bit - planes  

    MOVE.W #$0038,DDFSTRT( a0)        ; Set data - fetch start  

    MOVE.W #$00D0,DDFSTOP(a0)        ; Set data - fetch stop  

    MOVE.W #$2C81,DIWSTRT(a0)        ; Set display window start  

    MOVE.W #$F4C1,DIWSTOP(a0)        ; Set display window stop  

;  

;Set all color registers = black t o pro ve that hold - and- modify mode is ;  

; working  

;  

    MOVE.W #32,d0                    ; Initialize counter  

    LEA    CUSTOM+COLOR00,a1         ; Point al at first color register  

CREGLOOP: 

    MOVE.W #$0000,(a1)+              ; Write black to a color reg ister  

    DBRA   d0,CREGLOOP               ; Decrement counter and loop till  done  

;  

; Fill six bit - planes with an easily recognizable pattern.  

;  

; NOTE: This is just for example use. Normally these bit planes would  

;       need to be allocated from the sys tem MEMF_CHIP memory pool.  

;  
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    MOVE.W  #2000,d0                ; 2000 longwords per bit - plane  

    MOVE.L  #$21000,a1              ; Point a1 at bit - plane 1  

    MOVE.L  #$23000,a2              ; Poin t a2 at bit - plane 2  

    MOVE.L  #$25000,a3              ; Point a3 at bit - plane 3  

    MOVE.L  #$27000,a4              ; Point a4 at bit - plane 4  

    MOVE.L  #$29000,a5              ; Point a5 at bit - plane 5  

    MOVE.L  #$2B000,a6              ; Point a6 at bit - plane 6  

FPLLOOP: 

    MOVE.L  #$55555555,(a1)+        ; Fill bit - plane 1 with $55555555  

    MOVE.L  #$33333333,(a2)+        ; Fill bit - plane 2 with $33333333  

    MOVE.L  #$0F0F0F0F,(a3)+        ; Fill bit - plane 3 with $0F0F0F0F  

    MOVE.L  #$00FF00FF,(a 4)+        ; Fill bit - plane 4 with $00FF00FF  

    MOVE.L  #$CF3CF3CF,(a5)+        ; Fill bit - plane 5 with $CF3CF3CF  

    MOVE.L  #$3CF3CF3C,(a6)+        ; Fill bit - plane 6 with $3CF3CF3C  

    DBRA    d0,FPLLOOP              ; Decrement counter & loop till don e 

;  

; Set up a Copper list at $20000.  

;  

; NOTE: As with the bit planes, the copper list location should be allocated  

;       from the system MEMF_CHIP memory pool.  

;  

    MOVE.L #$20000,a1               ; Point al at Copper list dest  

    LEA    COPPERL(pc), a2           ; Point a2 at Copper list image  

CLOOP: 

    MOVE.L (a2),(a1)+               ; Move a long word  

    CMPI.L #$FFFFFFFE,(a2)+         ; Check for end of Copper list  

    BNE    CLOOP                    ; Loop until entire Cop list moved  

;  

;Point Co pper at Copper list  

;  

    MOVE.L #$20000,COP1LCH(a0)      ; Load Copper jump register  

    MOVE.W COPJMP1(a0),d0           ; Force load into Copper P.C.  

;  

; Start DMA.  

;  

    MOVE.W #$8380,DMACON(a0)        ; Enable bit - plane and Copper DMA  

 

    BRA ....next  stuff to do  

;  

; Copper list for six bit - planes. Bit - plane 1 is at $21000; 2 is at $23000;  

; 3 is at $25000; 4 is at $27000; 5 is at $29000; 6 is at $2B000.  

;  

; NOTE: These bit - plane addresses are for example purposes only.  

;       See note above.  

;  

COPPERL:  

    DC.W   BPL1PTH,$0002            ; Bit - plane 1 pointer = $21000  

    DC.W   BPL1PTL,$1000  

    DC.W   BPL2PTH,$0002            ; Bit - plane 2 pointer = $23000  

    DC.W   BPL2PTL,$3000  

    DC.W   BPL3PTH,$0002            ; Bit - plane 3 pointer = $25000  

    DC.W   BPL3PTL,$5000  

    DC.W   BPL4PTH,$0002            ; Bit - plane 4 pointer = $27000  

    DC.W   BPL4PTL,$7000  

    DC.W   BPL5PTH,$0002            ; Bit - plane 5 pointer = $29000  

    DC.W   BPL5PTL,$9000  

    DC.W   BPL6PTH,$0002            ; Bit - plane 6  pointer = $2B000  

    DC.W   BPL6PTL,$B000  

    DC.W   $FFFF,$FFFE              ; Wait or the impossible, i.e., quit  
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FORMING A DISPLAY WITH SEVERAL DIFFERENT PLAYFIELDS  
The graphics library provides the ability to split the scree n into several  "ViewPorts", each 
with its own colors and resolutions. See the Amiga ROM  Kernel Manual for more 
information.  

 
USING AN EXTERNAL VIDEO SOURCE  
An optional board that provides genlock is available for the Amiga. Genlock  allows you to 
bring in y our graphics display from an external  video source  (such as a VCR, camera, or 
laser disk player). When you use genlock, the  background color is replaced by the display 
from this external video source.  For more information, see the instructions furnished wi th 
the optional board.  

 
SUMMARY OF PLAYFIELD REGISTERS  
This section summarizes the registers used in this chapter and the meaning  of their bit 
settings. The color registers are summarized in the next  section. See Appendix A for a 
summary of all registers.  
 
BPLCON0 -  Bit Plane Control  

 

NOTE 

Bits in this register cannot be independently set.  

 

    Bit 0 -  unused  

 

    Bit 1 -  ERSY ( external  synchronization enable)  

        1 = External  synchronization enabled (allows genlock synchronization  

              to occu r)  

        0 = External  synchronization disabled  

 

    Bit 2 -  LACE ( interlace  enable)  

        1 = interlaced mode enabled  

        0 = non - interlaced mode enabled  

 

    Bit 3 -  LPEN (light pen enable)  

 

    Bits 4 - 7 not used (make 0)  
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    Bit 8 -  GAUD (genlock audio enable)  

        1 = Genlock audio enabled  

        0 = Genlock audio disabled (in blanking periods, this bit goes out  

            on the pixel switch  

 

    Bit 9 -  COLOR ON (c olor enable)  

        1 = composite video color - burst enabled  

        0 = composite video color - burst disabled  

 

   Bit 10 -  DBLPF (double - playfield enable)  

        1 = dual playfields enabled  

        0 = single playfield enabled  

 

   Bit 11 -  HOMOD (hold - and- modify enable)  

        1 = hold - and- modify enabled  

        0 = hold - and- modify disabled  

 

   Bits 14, 13,12 -  BPU2, BPU1, BPU0  

        Number of bit - planes used.  

 

        000 = only a background color  

        001 = 1 bit - plane, PLANE 1  

        010 = 2 bit - planes, PLANES 1 and 2  

        011 = 3 bit - planes, PLANES 1 -  3 

        100 = 4 bit - planes, PLANES 1 -  4 

        101 = 5 bit - planes, PLANES 1 -  5 

        110 = 6 bit - planes, PLANES 1 -  6 

        111 not used  

 

   Bit 15 -  HIRES (high - resolution enable)  

        1 = high - resolution mode  

        0 = low - resolution mode  

 

BPLCON1 -  Bit - plane Control  

 

   Bits 3 - 0 -  PF1H(3 - 0)  

        Playfield 1 delay  

 

   Bits 7 - 4 -  PF2H(3 - 0)  

        Playfield 2 delay  

 

   Bits 15 - 8 not used  
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BPLCON2 -  Bit - plane Control  

 

   Bit 6 -  PF2PRI  

 

           1 = Playfield 2 has priority  

           0 = Playfield 1 has priority  

 

   Bits 0 - 5 Playfield sprite priority  

 

   Bits 7 - 15 not used  

 

DDFSTRT -  Data - fetch Start  

   (Beginning  position for data fetch)  

 

   Bits 15 - 8 -  not used  

 

   Bits  7 - 2 -  pixel position H8 - H3 

 

   Bits  1 - 0 only respected in HiRes Mode.  

 

   Bits  1 - 0 -  not used  

 

DDFSTOP -  Data - fetch Stop  

   (Ending position for data fetch)  

 

   Bits 15 - 8 -  not used  

 

   Bits 7 - 2 -  pixel position H8 - H3 

       Bit H3 only respected in HiRes Mode.  

 

   Bits 1 - 0 -  not used  

 

BPLxPTH -  Bit - plane Pointer  

   (Bit - plane pointer high word, where x is the bit - plane number)  

 

BPLxPTL -  Bit - plane Pointer  

   (Bit - plane pointer low word, where x  is the bit - plane number)  

 

DIWSTRT -  Display Window Start  

   (Starting vertical and horizontal coordinates)  

 

   Bits 15 - 8 -  VSTART (V7 - V0)  

   Bits 7 - 0 -  HSTART (H7- H0)  
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DIWSTOP -  Display Win dow Stop  

   (Ending vertical and horizontal coordinates)  

 

   Bits 15 - 8 -  VSTOP (V7 - V0)  

 

   Bits 7 - 0 -  HSTOP (H7- H0)  

 

BPL1MOD -  Bit - plane Modulo  

   (Odd - numbered bit - planes, playfield 1)  

 

BPL2MOD -  Bit - plane Modulo  

   (Even - numbered bit - planes, playfield 2)  

 

SUMMARY OF COLOR SELECTION  
 
This section contains summaries of playfield color selection including color  register 
contents, example colors, and the differences in color selection in  high - resolution and low -
resolution modes.  
 
COLOR REGISTER CONTENTS  
Table  3-15 shows the contents of each color register. All color registers are  write -only.  
 

    Table  3- 15: Colo r register contents  

 

         Bits         Contents  

 

         15- 12   (Unused -  set to 0)  

         11-  8          Red  

          7-  4          Green  

          3-  0          Blue  
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SOME SAMPLE COLOR REGISTER CONTENTS  
Table  3-16 shows a variety of colors and the hexadecimal values to load into  the color 
registers for these colors . 
 

Table  3- 16: Some Register Values and Resulting Colors  

 

    Value  Color                   Value  Color  

 

    $FFF   White                   $1FB   Light aqua  

    $D00   Brick red               $6FE   Sky blue  

    $F00   Red                     $6CE   Lig ht blue  

    $F80   Red - orange              $00F   Blue  

    $F90   Orange                  $61F   Bright blue  

    $FB0   Golden orange           $06D   Dark blue  

    $FD0   Cadmium yellow          $91F   Purple  

    $FF0   Lemon yellow            $ClF   Viol et  

    $BF0   Lime green              $FlF   Magenta  

    $8E0   Light green             $FAC   Pink  

    $0F0   Green                   $DB9   Tan  

    $2C0   Dark green              $C80   Brown  

    $0B1   Forest green            $A87   Dark brown  

    $0BB   Blue green              $CCC   Light grey  

    $0DB   Aqua                    $999   Medium grey  

                                   $000   Black  

 

COLOR SELECTION IN LOW -RESOLUTION MODE  
Table  3-17 shows playfield color selection in low - resolution mode. If the  bit combinations 

from the playfields are as shown, the color is taken from  the color register number 
indicated.  
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Table  3- 17: Low - resolution Color Selection  

 

             Singe Playfield             Dual Playfields  

     Normal Mode        Hold - and- modify Mode            Color Register  

 (Bit - planes 5,4,3,2,1)  (Bit - planes 4,3,2,1)               Number  

 

                                           Playfield 1  

                                         Bit - planes 5,3,1  

 

        00000                   0000                000            0 *  

        00001                   0001                001            1  

        00010                   0010                010            2  

        00011                   0011                011            3  

        00100                   0100                100            4  

        00101                   0101                101            5  

        00110                   0100                11 0            6  

        00111                   0111                111            7  

 

                                           Playfield 2  

                                         Bit - planes 6,4,2  

 

        01000                   1000                000 * *         8  

        01001                   1001                001            9  

        01010                   1010                010           10  

        01011                   1011                011           11  

        01100                   1100                100           12  

        01101                   1101                101           13  

        01110                   1110                110           14  

        01111                   1111                111           15  

        10000                    |                   |            16  

        10001                    |                   |            17  

        10010                    |                   |            18  

        10011                    |                   |            19 

        10100                   NOT                 NOT           20  

        10101                   USED                USED          21  

        10110                    IN                  IN           22  

        10111                   THIS                THIS          23  

        11000                   MODE                MODE          24  

        11001                    |                   |            25  

        11010                    |                   |            26  

        11011                    |                   |            27  

        11100                    |                   |            28  

        11101                    |                   |            29  

        11110                    |                   |            30  

        11111                    |                   |            31  

 

* Color register 0 always defines the background color.  

 

** Selects "transparent" mode instead of selecting color register 8.  
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COLOR SELECTION IN HOLD -AND-MODIFY MODE  
In hold -and -modify mode, the color register contents are changed as shown  in Table  3-
18. This mode is in effect only if bit 10 of BPLCON0 = 1.  
 

    Table  3- 18: Color Selection in Hold - and- modify Mode  

 

      Bitplane 6  Bitplane 5                       Result  

 

        0           0       Normal operation     (use color register itself)  

        0           1       Hold green and red    B = Bit - plane 4 - 1 contents  

                    0       Hold green and blue   R = Bit - pla ne 4 - 1 contents  

                            Hold blue and red     G = Bit - plane 4 - 1 contents  

 

COLOR SELECTION IN HIGH -RESOLUTION MODE  
Table  3-19 shows playfield color selection in high - resolution mode. If  the bit -combinations 
from the playfields are as sho wn, the color is taken  from the color register number 
indicated.  
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    Table  3- 19 High - resolution Color Selection  

 

                    Single                    Du al        Color  

                  Playfield                Playfields    Register  

              Bit - planes 4,3,2,1                          Number  

 

                                          Playfield 1  

                                         Bit - planes 3, 1 

 

                     0000                     00 *          0 **  

                     0001                     01            1  

                     0010                     10            2  

                     0011                     11            3  

                     0100                     |             4  

                     0101                   NOT USED        5  

                     0110                 IN THIS MODE      6  

                     0111                     |             7  

 

                                          Playfield 2  

                                        Bit - planes 4.2  

 

                     1000                      00 *          8  

                     1001                      01            9  

                     1010                      10           10  

                     1011                      11           11  

                     1100                      |            12  

                     1101                   NOT USED        13  

                     1110                 IN THIS MODE      14  

                     1111                      |            15  

 

* Selects "transparent" mode.  

 

* *  Color register 0 always defines the background color.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-  Playfield Hardware 91 -  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-  92 Playfield Hardware -  



CHAPTER 4 
 

SPRITE HARDWARE  
 

 
INTRODUCTION  
 
Sprites are hardware objects that are created and moved independently of the  playfield 
display and independently of each other. Together with playf ields,  sprites form the 
graphics display of the Amiga. You can create more complex  animation effects by using 
the blitter, which is described in the chapter  called "Blitter Hardware." Sprites are 

produced on -screen by eight special -purpose sprite DMA chann els. Basic sprites are 16 
pixels wide and any number  of lines high . You can choose from three colors for a sprite's 
pixels, and a  pixel may also be transparent,  
 
Showing any object behind the sprite. For larger or more complex objects, or  for more 
color ch oices, you can combine sprites.  
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Sprite DMA channels can be reused several times within the same display  field. Thus, you 
are not limited to having only eight sprit es on the  screen at the same time.  
 
ABOUT THIS CHAPTER  

This chapter discusses the following topics:  
 
o Defining the size, shape, color, and screen position of sprites.  
 
o Displaying and moving sprites.  
 
o Combining sprites for more complex images, addition al width, or  additional colors.  

 
o Reusing a sprite DMA channel multiple times within a display field to  create more than 
eight sprites on the screen at one time.  
 
FORMING A SPRITE  
 
To form a sprite, you must first define it and then create a formal data  structure in 
memory. You define a sprite by specifying its  characteristics:  
 
o On -screen width of up to 16 pixels.  
 
o Unlimited height.  
 
o Any shape.  

 
o A combination  of three colors, plus transparent.  
 
o Any position on the screen.  
 
SCREEN POSITION  
A sprit e's screen position is defined as a set of X,Y coordinates.  Position (0,0), where X = 
0 and Y = 0, is the upper left -hand corner of  the display. You define a sprite's location by 
specifying the coordinates  of its upper left -hand pixel. Sprite position is a lways defined as 
though  the display modes were  low - resolution and non -interlaced. The X,Y  coordinate 
system and definition of a sprite's position are graphically  represented in Figure  4-1. 
Notice that because of display overscan,  position (0,0)  (that is, X  = 0, Y = 0) is not 
normally in a viewable  region of the screen.  
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   (0,0)  

        \                                   Visible screen area  

         \ _______________________        /  

         |                |             /  

         |    ____________|____________/  

         |   |            Y            |  

         |   |            |            |  

         |   |            |______      |  

         | ------- X-------- |  / \   |     |  

         |   |            |__ \ /__|     |  

         |   |                         |  

         |   |                         |  

 

            Figure  4- 1: (Defining Sprite On - screen Position)  

 

 

The amount of viewable area is also affected by the size of the playfield  display wind ow 
(defined by the values in DDFSTRT, DDFSTOP, DIWSTRT, DIWSTOP,  etc.). See the 
"Playfield Hardware" chapter for more information about  overscan and display windows.  

 
HORIZONTAL POSITION  
A sprite's horizontal position (X value) can be at any pixel on the s creen  from 0 to 447. To 
be visible, however, an object must be within the  boundaries of the playfield display 
window. In the examples in this chapter,  a window with horizontal positions from pixel 64 
to pixel 383 is used (that  is, each line is 320 pixels l ong). Larger or smaller windows can 
be defined  as  required, but it is recommended that you read the "Playfield  Hardware" 

chapter before attempting to do so. A larger area is actually  scanned by the video beam 
but is not usually visible on the screen.  
 
If you specify an X value for a sprite that takes it outside the display  window, then part or 
all of the sprite may not appear on the screen. This is  sometimes desirable; such a sprite 
is said to be "clipped. "  
 

To make a sprite appear in its correct on -scree n horizontal position in the  display window, 
simply add its left offset to the desired X value. In the  example given above, this would 
involve adding 64 to the X value. For example,  to make the upper leftmost pixel of a 
sprite appear at a position 94 pixel s from the left edge of the screen, you would perform 
this calculation:  
 
Desired X position + horizontal -offset of display window = 94 + 64 = 158  
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Thus, 158 becomes the X value, which will  be written into the data structure.  
 
NOTE 
The X position represents the location of the very first (leftmost) pixel in  the full 16 -bit -

wide sprite. This is always the case, even if the leftmost  pixels are specified as 
transparent and do not appear on the screen.  
 
If the sprite shown in Figure  4-2 were located at an X value of 158, the  actual image 
would begin on -screen four pixels later at 162. The first four  pixels in this sprite are 
transparent and allow the background to show  through.  
 

 
 

Figure  4- 2: (Position of Sprites)  

 

 

 

 

 

 

VERTICAL POSITION  
You can select any position from line 0 to line 262 for the topmost edge of  the sprite. In 
the examples in this chapter, an NTSC window with vertical  positions from line 44 to line 
243 is used. This  allows the normal display  height of 200 lines in non -interlaced mode. If 
you specify a vertical position  (Y value) of less than 44 ( i.e. , above the top of the display 
window) the top  edge of the sprite may not appear on screen.  

 
To make a sprite appear in  its correct on -screen vertical position, add the Y  value to the 
desired position. Using the above numbers, add 44 to the desired  Y position. For example, 
to make the upper leftmost pixel appear 25 lines  below the top edge of the screen, 
perform this calcu lation:  
 

Desired Y position + vertical -offset of the display window = 25 + 44 = 69  
 
Thus, 69 is the Y value you will write into the data structure.  
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CLIPPED SPRITES 
As noted above, sprites will be pa rtially or totally clipped if they pass  across or beyond the 
boundaries of the display window. The values of 64  (horizontal) and 44 (vertical) are 
"normal" for a centred  display on a  standard NTSC video monitor. See Chapter 3, 

"Playfield Hardware", for  mor e information on display offsets. Information on PAL displays 
will be  found there. If you choose other values to establish your display window,  your 
sprites will be clipped accordingly.  
 
SIZE OF SPRITES  
Sprites are 16 pixels wide and can be almost any heig ht you wish... as  short as one line or 
taller than the screen. You would probably move a  very tall sprite vertically to display a 

portion of it at a time.  
 
Sprite size is based on a pixel that is 1/320th of a screen's width,  1/200th of a NTSC 
screen's heig ht, or 1/256 of a PAL screen's height.  This pixel size corresponds to the low -
resolution and non -interlaced  modes of the normal full -size playfield. Sprites, however, 
are  independent of playfield modes of display, so changing the resolution or  interlace 
mo de of the playfield has no effect on the size or resolution  of a sprite.  
 
SHAPE OF SPRITES 
A sprite can have any shape that will fit within the 16 -pixel width. You  define a sprite's 
shape by specifying which pixels actually appear in  each of the sprite's l ocations. For 
example, Figure s 4 -3 and 4 -4 show a  spaceship whose shape is marked by Xs. The first 
Figure  shows only the  spaceship as you might sketch it out on graph paper. The second 
Figure  shows the spaceship  within the 16 -pixel width. The 0s around the spaceship mark 

the part of the sprite not covered by the spaceship and  transparent when displayed.  
 

                                   x x  

                                x x x x x  

                           x x x x x x x x x x  

                           x x x x x x x x x x  

                               x x x x x x  

                                   x x  

 

                      Figure  4- 3: Shape of Spaceship  
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                           o o o o x x o o o o o o o o o o  

                           o o x x x x x x o o o o o o o o  

                           x x x x x x x x x x o o o o o o  

                           x x x x x x x x x x o o o o o o  

                           o o x x x x x x o o o o o o o o  

                           o o o o x x o o o o o o o o o o  

 

                  Figure  4- 4: Sprite with Spaceship Shape Defined  

 

 

In this example, the widest part of the shape is ten pixels and the shape is  shifted to the 
left of the sprite. Whenev er the shape is narrower than the  sprite, you can control which 
part of the sprite is used to define the shape.  This particular shape could also start at any 
of the pixels from 2 -7 instead  of pixel 1.  
 
SPRITE COLOR 
When sprites are used individually (that is, not "attached" as described  under "Attached 
Sprites" later), each pixel can be one of three colors or  transparent. Colors are selected in 
much the same manner as playfield colors.  

 
Figure  4-5 shows how the color of each pixel in a sprite is determined.  
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Figure  4- 5: (Sprite Color Definition)  

 

 

The 0s and 1s in the two data words that define each line of a sprite in the  data structure 
form a binary number. This binary  number points to one of the  four color registers 
assigned to that particular sprite DMA channel. The eight  sprites use system color 
registers 16 -  31. For purposes of color selection,  the eight sprites are organized into pairs 
and each pair uses four of t he  color registers as shown in Figure  4-6.  
 

NOTE 
The color value of the first register in each group of four registers is  ignored by sprites. 
When the sprite bits select this register, the  "transparent" value is used.  
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Codes 01,10,or 11 select one of three possible registers from the normal  color register 
from the normal color register group, from which the  actual color data is taken.  
 

                             COLOR REGISTER SET 

                          _________________________  

                   __    |                  Unused | 16  

                  |   00 |_________________________|    \  

    Sprite 0 or 1 |   01 |_________________________|     \  

                  |   10 |_________________________|      \  

                  |__ 11 |_________________________|       \  

                   __    |                  Unused | 20     \  

                  |   00 |_________________________|   \      \  

    Sprite 2 or 3 |    01 |_________________________|    \      \  

                  |   10 |_________________________|     \      \  

                  |__ 11 |_________________________|      \      \  

                   __    |                  Unused | 24 --------- > Yields  

                  |   00 |_________________________|      /     / Trans -  

    Sprite 4 or 5 |   01 |_________________________|     /     /  parent  

                  |   10 |_________________________|    /     /  

                  |__ 11 |_________________________|    /     /  

                   __    |                  Unused | 28     /  

                  |   00 |_________________________|       /  

    Sprite 6 or 7 |   01 |_________________________|      /  

                  |   10 |_________________________|     /  

                  |__ 11 |_________________________| 31 /  

 

                Figure  4- 6: (Color Register Assignments)  

 

 

If you require certain colors in a sprite, you will want to load the sprite's  color registers 
with those colors. The "Playfield Hardware" cha pter contains  instructions on loading color 
registers.  
 
The binary number 00 is special in this color scheme. A pixel whose value is  00 becomes 

transparent and shows the color of any other sprite or playfield  that has lower video 
priority. An object  with l ow priority appears "behind"  an object with higher priority. Each 
sprite has a fixed video priority with  respect to all the other sprites. You can vary the 
priority between sprites  and playfields. (See Chapter 7, "System Control Hardware," for 
more  informa tion about sprite priority.)  
 

                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-  100 Sprite Hardware -  



DESIGNING A SPRITE  
For design purposes, it is convenient to lay out the sprite on paper first.   You can show 
the desired colors as numbers from 0 to 3. For example, the  spaceship shown above 
might look like this:  
 

        0000122332210000  

        0001223333221000  

        0012223333222100  

        0001223333221000  

        0000122332210000  

 

The next step is to convert the numbers 0 -3 into binary numbers, which w ill  be used to 

build the color descriptor words of the sprite data structure.  The section below shows how 
to do this.  
 
BUILDING THE DATA STRUCTURE  
After defining the sprite, you need to build its data structure, which is a  series of 16 -bit 
words in a conti guous memory area. Some of the words contain  position and control 
information  and some contain color descriptions. To  create a sprite's data structure, you 

need to:  
 
o Write the horizontal and vertical position of the sprite into the first  control word.  
 
o Write the vertical stopping position into the second control word.  
 
o Translate the decimal color numbers 0 -  3 in your sprite grid picture into  binary color 

numbers. Use the binary values to build color descriptor (data)  words and write these 
words into the data structure.  
 
o Write the control words that indicate the end of the sprite data structure.  
 
NOTE 
Sprite data, like all other data accessed by the custom chips, must be loaded  into Chip 

RAM. Be sure all of your sprite data structures are word aligne d in  Chip Memory.  
 
Table  4-1 shows a sprite data structure with the memory location and function  of each 
word:  
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    Table  4- 1: Sprite Data Structure  

 

      Memory 

     Location      16 - bit Word                     Function  

 

      N         Sprite control word 1       Vertical and horizontal start  

                                            position  

      N+1       Sprite control word 2       Vertical stop position  

      N+2       Color d escriptor low word   Color bits for line 1  

      N+3       Color descriptor high word  Color bits for line 1  

      N+4       Color descriptor low word   Color bits for line 2  

      N+5       Color descriptor high word  Color bits for line 2  

                        .  

                        .  

                        .  

                End- of - data words           Two words indicating  

                                            the next usage of this sprite  

 

All memory addresses for sprites are word addresses. You will need enough  contiguous 
memory to provide room for two words for the control information,  two words for each 
horizontal line in the sprite, and two end -of -data words.  
 
Because this data structure must be accessible by the special -purpose chips,  you  must 
ensure that this data is located within chip memory.  
 
Figure  4-7 shows how the data structure relates to the sprite.  
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Figure  4- 7 PART ONE: (Data Str ucture  Layout)  

 

   
 

Figure  4- 7 PART TWO: (Data Structure Layout)  

 

 

  /| \    <-------------  16 Bits ----------- > 

   |      _________________________________ ---- \     _ Each group of words  

   |    |                                 |   |   /  defines one vertical  

   |    |          VSTART, HSTART         |   |  /   usage of a sprite.  

   |    |________________________________ _|   | /    Contains starting  

        |                                 |   |/     location & physical  

   I    |       VSTOP, control bits       |   |      appearance of this  

   N    |_________________________________|   |      sprite image.  

   C     _____ ____________________________ ___|___  

   R    |                                 |   |   |  

   E    |     Low word of data, line 1    |   |   |  

   A    |_________________________________|   |   |  

   S    |                                 |   |   | \  

   I    |    High word of data, line 1    |   |   | \  

   N    |_________________________________|   |   |  \ _ Pairs of words  

   G      _____                               |   |     containing color  

          _____ Data describing central       |   |     information for  

   A      _____ lines of this sprite.         |   |     pixel lines.  

   D     _________________________________    |   |  

   D    |                                 |   |   |  

   R    |   low word of data, last line   |   |   |  

   E    |__________________ _______________|   |   |  

   S    |                                 |   |   |  

   S    |  High word of data, last line   |   |   |  

   E    |_________________________________|___|___|  

   S                                      ____|  

         __________________ _______________  

   |    |                                 | \  

   |    | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | \  

   |    |_________________________________|  \ _ Last word pair contains  

   |     _________________________________      all zeros if this sprite  

   |     |                                 |     processor is to be used  

   |    | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |     only once vertically in  

  \ |/   |_________________________________|     the display frame.  

   V 
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SPRITE CONTROL WORD 1: SPRxPOS  
This word contains the vertical (VSTART) and horizontal (HSTART) starting  position for the  
sprite. This is where the topmost line of the sprite will  be positioned.  
 

    Bits 15 - 8 contain the low 8 bits of VSTART  

    Bits  7 - 0 contain the high 8 bits of HSTART  

 

SPRITE CONTROL WORD 2: SPRxCTL  
This word contains the vertical stopping position of t he sprite on the screen  (i.e., the line 
AFTER the last displayed row of the sprite). It also contains  some data having to do with 
sprite attachment, which is described later on.  
 
                                      SPRxCTL 

 

                 Bits 15 - 8          The low eight bits of VSTOP  

                 Bit  7             (Used in attachment)  

                 Bits 6 - 3           Unused (make zero)  

                 Bit  2             The VSTART high bit  

                 Bit  1             The VSTOP high bit  

                 Bit  0             The HSTART low bit  

 

The value (VSTOP -  VSTART) defines how many scan lines high the sprite will  
be when it is displayed.  
 
SPRITE COLOR DESCRIPTOR WORDS  
It takes two color descriptor words to describe each horizontal lin e of a  sprite; the high -

order word and the low -order word. To calculate how many  color descriptor words you 
need, multiply the height of the sprite in lines  by 2. The bits in the high -order color 
descriptor word contribute the left  most digit of the binary  color selector number for each 
pixel; the low -order  word contributes the rightmost digit.  
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To form the color descriptor words, you first need to form a picture of the  sprite, s howing 
the color of each pixel as a number from 0 - 3. Each number  represents one of the colors 
in the sprite's color registers. For example,  here is the spaceship sprite again:  
 

        0000122332210000  

        0001223333221000  

        0012223333222100  

        0001223333221000  

        0000122332210000  

 

Next, you translate each of the numbers in this picture into a binary number.  The first line 
in binary is shown below. The binary numbers are represented  vertically with the low digit 

in the top line and the  high digit right below  it. This is how the two color descriptor words 
for each sprite line are  written in memory.  
 

        0000100110010000 < --- LowSpriteWord  

        0000011111100000 < --- HighSpriteWord  

 

The first line above becomes the color descriptor lo w word for line 1 of the  sprite. The 
second line becomes the color descriptor high word. In this  fashion, you translate each 
line in the sprite into binary 0s and 1s. See  Figure  4-7.   Each of the binary numbers 
formed by the combination of the two data wor ds for  each line refers to a specific color 
register in that particular sprite  channel's segment of the color Table . Sprite channel 0, for 
example, takes its  colors from registers 17 - 19. The binary numbers corresponding to the 
color  reg isters for sprite DMA channel 0  are shown in Table  4-2.  
 

    Table  4- 2: Sprite Color Registers  

 

      BINARY NUMBER COLOR REGISTER NUMBER 

 

          00          Transparent  

          01              17  

          10              18  

          11              19  

 

Recall  that b inary 00 always means transparent and never refers to a color  except 
background.  
 
END-OF-DATA WORDS  
When the vertical position of the beam counter is equal to the VSTOP value in  the sprite 
control words, the next two words fetched from the sprite data  stru cture are written into 
the sprite control registers instead of being sent  to the color registers. These two words 
are interpreted by the  
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hardware in the same manner as the original words th at were first loaded into  the control 
registers. If the VSTART value contained in these words is lower  than the current beam 
position, this sprite will not be reused in this  display field. For consistency, the value 0 
should be used for both words  when end ing the usage of a sprite. Sprite reuse is 

discussed later.  
 
The following data structure is for the spaceship sprite. It will be located  at V = 65 and H 
= 128 on the normally visible part of the screen.  
 

SPRITE:  

    DC.W   $6D60, $7200     ;VSTART, HSTART , VSTOP  

    DC.W   $0990, $07E0     ;First pair of descriptor words  

    DC.W   $13C8, $0FF0  

    DC.W   $23C4, $1FF8  

    DC.W   $13C8, $0FF0  

    DC.W   $0990, $07E0  

    DC.W   $0000, $0000     ;End of sprite data  

 

DISPLAYING A SPRITE  

 
After building the dat a structure, you need to tell the system to display it.  This section 
describes the display of sprites in "automatic" mode. In this  mode, once the sprite DMA 
channel begins to retrieve and display the data,  the display continues until the VSTOP 
position is reached. Manual mode is  described later on in this chapter.  
 
The following steps are used in displaying the sprite:  
 
1. Decide which of the eight sprite DMA channels to use (making certain that  the chosen 
channel is available).  
 
2. Set the sprite pointers to tell the system where to find the sprite data.  
 
3. Turn on sprite direct memory access if it is not already on.  

 
4. For each subsequent display field, during the vertical blanking interval,  rewrite the 
sprite pointers.  
 
CAUTION  
If sprite DMA is turned  off while a sprite is being displayed (that is, after  VSTART but 
before VSTOP), the system will continue to display the line of  sprite data that was most 
recently fetched. This causes a vertical bar to  appear on the screen. It is recommended 
that sprite DMA  be turned  off only  during vertical blanking or during some portion of the 
display where you are  sure that no sprite is being displayed.  
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SELECTING A DMA CHANNEL AND SETTING THE POINTERS  
In d eciding which DMA channel to use, you should take into consideration the  colors 
assigned to the sprite and the sprite's video priority.  
 

The sprite DMA channel uses  two pointers to read in sprite data and control  words. During 
the vertical blanking interva l before the first display of the  sprite, you need to write the 
sprite's memory address into these pointers.  The pointers for each sprite are called 
SPRxPTH and SPRxPTL, where "x" is the  number of the sprite DMA channel. S PRxPTH 
contains the high three bit s of the  memory address of th e first word in ,the sprite and 
SPRxPTL contains the low  sixteen bits. The  least significan t bit of SPRxPTL is ignored, as 
sprite data  must be word aligned. Thus, only fifteen bits of SPRxPTL are used. As usual,  

you can write a  long word into SPRxPTH.  
 
In the following example the processor initializes the data pointers for  sprite 0. Normally, 
this is done by the Copper. The sprite is at address  $20000.  
 

    MOVE.L #$20000,SPR0PTH+CUSTOM ;Write S20000 to sprite 0 pointer...  

 

These pointers are dynamic; they are incremented by the sprite DMA channel  to point first 
to the control words, then  to the data words, and finally  to the end -of -data words. After 
reading in the sprite control information  and storing it in other registers, th ey proceed to 
read in the color  descriptor words. The color descriptor words are stored in sprite data  
registers, which are used by the sprite DMA channel to display the data  on screen. For 
more information about how the sprite DMA channels handle  the disp lay, see the 
"Hardware Details" section below.  

 
RESETTING THE ADDRESS POINTERS  
For one single display field, the system will automatically read the data  structure and 
produce the sprite on -screen in the colors that are specified  in the sprite's color regis ters. 
If you want the sprite to be displayed in  subsequent display fields, you must rewrite the 
contents of the sprite  pointers during each vertical blanking interval. This is necessary 
because  during the display field, the pointers are incremented to poin t to the data  which is 

being fetched as the screen display progresses.  
 
The rewrite becomes part of the vertical blanking routine, which can be  handled by 
instructions in the Copper lists.  
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SPRITE DISPLAY EXAMPLE  
This example displays the spaceship sprite at location V = 65, H = 128.  Remember to 
include the file "hw_examples.i", located in Appendix J.  
 

; First, we set up a single bit - plane.  

;  

   LEA CUSTOM,a0                    ; Point a0 at custom chips  

   MOVE.W #$1200,BPLCON0(a0)        ; 1 bit - plane color is on  

   MOVE.W #$0000,BPL1MOD(a0)        ; Modulo = 0  

   MOVE.W #$0000,BPLCON1(a0)        ; Horizontal scroll value = 0  

   MOVE.W #$0024,BPLCON2(a0)        ; Sprites have priority over playfields  

   MOVE.W #$0038,DDFSTRT(a0)        ; Set data - fetch alert  

   MOVE.W #$00D0,DDFSTOP(a0)        ; Set data - fetch stop  

 

; Display window definitions.  

 

   MOVE.W #$2C81,DIWSTRT(a0)        ; Set display window start  

                                    ; Vertical start in high byte.  

                                    ; Horizontal start * 2 in low byte.  

   MOVE.W #$F4C1,DIWSTOP(a0)        ; Set display window stop  

                                    ; Vertical stop in high byte.  

                                    ; Horizontal stop * 2 in low byte.  

;  

; Set up color registers.  

;  

   MOVE.W #$0008,COLOR00(a0)        ; Background color = dark blue  

   MOVE.W #$0000,COLOR01(a0)        ; Foreground color = black  

   MOVE.W #$0FF0,COLOR17(a0)        ; Colo r 17 = yellow  

   MOVE.W #$00FF,COLOR18(a0)        ; Color 18 = cyan  

   MOVE.W #$0FOF,COLORl9(a0)        ; Color 19 = magenta  

;  

; Move Copper list to $20000.  

;  

   MOVE.L #$20000,a1                ; Point A1 at Copper list destination  

   LEA    COPPERL(pc),a 2            ; Point A2 at Copper list source  

 

CLOOP: 

   MOVE.L (a2),(a1)+                ; Move a long word  

   CMP.L  #$FFFFFFFE,(a2)+          ; Check for end of list  

   BNE    CLOOP                     ; Loop until entire list is moved  

;  

; Move sprite t o $25000.  

;  

   MOVE.L #$25000,a1                ; Point A1 at sprite destination  

   LEA    SPRITE(pc),a2             ; Point A2 at sprite source  

 

SPRLOOP: 

   MOVE.L (a2),(a1)+                ; Move a long word  

   CMP.L  #$00000000,(a2)+          ; Check fo r end of sprite  

   BNE    SPRLOOP                   ; Loop until entire sprite is moved  

;  

; Now we write a dummy sprite to $30000, since all eight sprites are   

; activated  

; at the same time and we're only going to use one. The remaining sprites  

; will po int to this dummy sprite data.  

;  

   MOVE.L #$00000000,$30000         ; Write it  

;  

; Point Copper at Copper list.  
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;  

   MOVE.L #$20000,COP1LC(a0)  

;  

; Fill bit - plane with $FFFFFFFF.  

;  

   MOVE.L #$21000,a1                ; Point A1 at  bit - plane  

   MOVE.W #l999,d0                ; 2000 - 1(for dbf) long words = 8000 bytes  

FLOOP 

   MOVE.L #$FFFFFFFF,(al)+          ; Move a long word of $FFFFFFFF  

   DBF    d0,FLOOP                  ; Decrement, repeat until false.  

;  

; Start DMA.  

;  

   MOVE.W d0,COPJMP1(a0)            ; Force load into Copper  

                                    ; program counter  

   MOVE.W #$83A0,DMACON(a0)         ; Bit - plane, Copper, and sprite  DMA 

   RTS                              ; ..return to rest of program  

;  

; This is a Copper list for one bit - plane, and 8 sprites.  

; The bit - plane lives at $21000.  

; Sprite 0 lives at $25000; all others live at $30000 (the dummy sprite).  

;  

COPPERL: 

   DC.W   BPL1PTH,$0002             ; Bit plane 1 pointer = $21000  

   DC.W   BPL1PTL,$1000  

   DC.W   SPR0PTH,$0002             ; Sprite 0 pointer = $25000  

   DC.W   SPR0PTL,$5000  

   DC.W   SPR1PTH,$0003             ; Sprite 1 pointer = $30000  

   DC.W   SPR1PTL,$0000  

   DC.W   SPR2PTH,$0003             ; Sprite 2 pointer = $30000  

   DC.W   SPR2P TL,$0000  

   DC.W   SPR3PTH,$0003             ; Sprite 3 pointer = $30000  

   DC.W   SPR3PTL,$0000  

   DC.W   SPR4PTH,$0003             ; Sprite 4 pointerÑ$30000  

   DC.W   SPR4PTL,$0000  

   DC.W   SPR5PTH,$0003             ; Sprite 5 pointer = $30000  

   DC.W   SPR5PTL,$0000  

   DC.W   SPR6PTH,$0003             ; Sprite 6 pointer -  S30000  

   DC.W   SPR6PTL,$0000  

   DC.W   SPR7PTH,$0003             ; Sprite 7 pointer = $30000  

   DC.W   SPR7PTL,$0000  

   DC.W   $FFFF,$FFFE               ; End of Copper list  

;  

; Spri te data for spaceship sprite. It appears on the screen at V - 65 and  

; H - 128.  

;  

SPRITE:  

   DC.W   $6D60,$7200               ; VSTART, HSTART, VSTOP  

   DC.W   $0990,$07E0               ; First pair of descriptor words  

   DC.W   $13C8,$0FF0  

   DC.W   $23C4,$1F F8 

   DC.W   $13C8,$0FF0  

   DC.W   $0990,$07E0  

   DC.W   $0000,$0000               ; End of sprite data  
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MOVING A SPRITE  
 
A sprite generated in automatic mode can be moved by specifying a different  position in 
the data structure. For each display field, the data is reread  and the sprite redrawn. 

Therefore, if you change the position data before the  sprite is redrawn, it will appear in a 
new position and will seem to be  moving.  
 
You must take care that you are not moving the sprite (that is, changing  control word 
data) at the same time that the system is using that data to find  out where to display the 
object. If you do so, the system might find the start  position for one field and the stop 
position for the following field as it  retrieves data for display. This would cause a "glitch" 

and would mess up the  screen.  Therefore, you should change the content of the control 
words only during a  time when the system is not trying to read them. Usually, the vertic al 
blanking period is a safe time, so moving the sprites becomes part of the  vertical blanking 
tasks and is handled by the Copper as shown in the example  below.  
 
As sprites move about on the screen, they can collide with each other or with  either of the 
tw o playfields. You can use the hardware to detect these  collisions and exploit this 
capability for special effects. In addition, you  can use collision detection to keep a moving 
object within specified on -screen  boundaries. Collision Detec tion is described in Chapter 7, 
"System Control  Hardware. " 
 
In this example of moving a sprite, the spaceship is bounced around on the  screen, 
changing direction whenever it reaches an edge.  
 

The sprite position data, containing VSTART and HSTART, lives in memory at  $25000.  
VSTOP is located at $25002. You write to these locations to move the  sprite. Once during 
each frame, VSTART is incremented  (or decremented) by 1  and HSTART by 2. Then a new 
VSTOP is calculated, which will be the new VSTART+6.  
 

    MOVE.B #151,d0          ; Initialize horizontal count  

    MOVE.B #194,d1          ; Initialize vertical count  

    MOVE.B #64,d2           ; Initialize horizontal position  

    MOVE.B #44,d3           ; Initialize vertical position  

    MOVE.B #1,d4            ; Initialize horizonta l increment value  

    MOVE.B #1,d5            ; Initialize vertical increment value  

;  

; Here we wait for the start of the screen updating.  

; This ensures a glitch - free display.  

;  

    LEA CUSTOM,a0           ; Set custom chip base pointer  

VLOOP: 

    MOVE.B VHPOSR(a0),d6    ; Read Vertical beam position.  

 

; Only insert the following  line if you are using a PAL machine.  

;   CMP.B  #$20,d6          ; Compare with end of PAL screen.  

    BNE.S  VLOOP            ; Loop if not end of screen.  

 

; Alternatively you ca n use the following code:  

; VLOOP:  
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;  MOVE.W INTREQR(a0),d6    ; Read interrupt request  word  

;  AND.W  #$0020,d6         ; Mask off all but vertical blank bit  

;  BEQ    VLOOP             ; Loop unt il bit is a 1  

;  MOVE.W #$0020,INTREQ(a0) ; Vertical bit is on, so reset it  

 

;Please note that this will only work if you have turned OFF the Vertical  

;blanking interrupt  enable (not recommended for long periods).  

 

   ADD.B  d4,d2             ; Increment h orizontal value  

   SUBQ.B #1,d0             ; Decrement horizontal counter  

   BNE    L1  

   MOVE.B #151,d0           ; Count exhausted, reset to 151  

   EOR.B  #$FE,d4           ; Negate the increment value  

L1:  

   MOVE.B d2,$25001         ; Write new HSTART value to sprite  

   ADD.B  d5,d3             ; Increment vertical value  

   SBQ.B  #1,d1             ; Decrement vertical counter  

   BNE    L2  

   MOVE.B #194,d1           ; Count exhausted, reset to 194  

   EOR.B  #$FE,d5           ; Negate the increment valu e 

 

L2:  

   MOVE.B d3,$25000         ; Write new VSTART value to sprite  

   MOVE.B d3,d6             ; Must now calculate new VSTOP  

   ADD.B  #6,d6             ; VSTOP always VSTART+6 for spaceship  

   MOVE.B d6,$25002         ; Write new VSTOP to sprite  

   BRA    VLOOP             ; Loop forever  

 

CREATING ADDITIONAL SPRITES  
 
To use additional sprites, you must create a data structure for each one and  arrange the 
display as shown in the previous  section, naming the pointers  SPR1PTH and SPR1PTL for 
sprite DMA ch annel 1, SPR2PTH and SPR2PTL for sprite  DMA channel 2, and so on.  
 
NOTE 
When you enable sprite DMA for one sprite, you enable DMA for all the  sprites and place 
them all in automatic mode. Thus, you do not need to  repeat this step when using 
additional spri te DMA channels.  
 
Once the sprite DMA channels are enabled, all eight sprite pointers must be  initialized to 
either a real sprite or a safe null sprite. An uninitialized  sprite could cause spurious sprite 

video to appear.  
 
Remember that some sprites can be come unusable when additional DMA cycles are  
allocated to displaying the screen, for example when an extra wide display or  horizontal 
scrolling is enabled (see Figure  6-9: DMA Time Slot Allocation).  
 
Also, recall that each pair of sprites takes its color f rom different color  registers, as shown 
in Table  4-3.  
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      Table  4- 3: Color Registers for Sprite Pairs  

 

      SPRITE NUMBERS    COLOUR REGISTERS 

      0 and 1           17 - 19 

      2 and 3           21- 23 

      4 and 5           25 - 27 

      6 and 7           29 - 31 

 

NOTE 
Some sprites become unusable when additional  DMA cycles are allocated to  displaying the 
screen, e.g. when enabling an extra wide display or horizontal  scrolling. (See Figure  6 
DMA Time Slot Allocation.)ÿ  
 
SPRITE PRIORITY  
When you have more Than one sprite on the screen, you may need to take into  
consideration their relative video priority, that is, which sprite appears in  front of or 
behind another. Each sprite has a fixed video pr iority with  respect to all the others. The 
lowest numbered sprite has the highest priority  and appears in front of all other sprites; 
the highest  numbered sprite has the  lowest priority. This is illustrated in Figure  4-8.  

 
NOTE 
See Chapter 7, "System Contr ol Hardware", for more information on sprite  priorities.  
                           ____  

                        __|_  7|  

                     __|_  6|__|  

                  __|_  5|__|  

               __|_  4|__|  

            __|_  3|__|  

         __|_  2|__|  

      __|_  1|__|  

     |   0|__|  

     |____|  

 

                      Figure  4- 8: (Sprite Priority)  
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REUSING SPRITE DMA CHANNELS 
 
Each of the eight sprite DMA channels can produce m ore than one independently  
controllable image. There may be times when you want more than eight objects,  or you 

may be left with fewer than eight objects because you have attached  some of the sprites 
to produce more colors or larger objects or overlapped  some to produce more complex 
images. You can reuse each sprite DMA channel  several times within the same display 
field, as shown in Figure  4-9.  
 

 
Figure  4- 9: (Typical Example of Sprite Reuse)  

 

 

In single -sprite usage, two all -zero words are placed at the en d of the data  structure to 
stop the DMA channel from retrieving any more data for that  particular sprite during that 
display fiel d. To reuse a DMA channel, you replace this pair of zero words with another 
complete sprite data structure,  which describes the  reuse of the DMA channel  at a position 
lower on  the screen  than the first use . You place the two all -zero words at the end, of the 

data  structure that contains the information for all usages  of the  DMA channel. For  
example, Figure  4-10 shows the data stru cture that describes the picture  above.  
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                     SPRITE DISPLAY LIST  

                                            ------ \    _ Data describing  

               ________________________________   |  /  the 1st vertical  

 Increasing   |________________________________|  | /    usage of this  

    RAM       |________________________________|  |/    sprite.  

   memory      ________________________________   |  

  addres ses   |________________________________|  |  

              |________________________________|  |  

      |                    _________              |  

      |                    _________              |  

      |                    _________              |  

      |        ________________________________   |  

      |       |________________________________|  |  

      |       |________________________________|  |  

      |                                      ----- /  

      |  

      |                                      ----- \    _ Data describing  

      |        ________________________________   |  /  the 2nd vertical  

      |       |________________________________|  | /   usage of this  

      |       |________________________________|  |/    sprite. Contents  

      |        ________________________________   |     of vertical start  

      |       |________________________________|  |     word must be at  

      |       |________________________________|  |      least one video  

      |                    _________              |     line below actual  

      |                    _________              |     end of preceding  

      |                    _________              |     usage.  

     \ |/       ________________________________   |  

      V       |____________________________ ____|  |  

              |________________________________|  | \  

                                                  | \  

                                             ----- /  \ _ End - of - data words  

                                                        ending the  usage  

                                                        of this sprite.  

 

 

         Figure  4- 10: (Typical Data Structure for Sprite Re - use)  

 

 

The only restrictions on the reuse of sprites during a single display field  is that the bottom 
line of one u sage of a sprite must be separated from the  top line of the next usage by at 
least one horizontal scan line. This  restriction is necessary because only two DMA cycles 
per horizontal scan  line are allotted to each of the eight channels. The sprite channel 
needs the  time during the blank line to fetch the control word describing the next  usage of 
the sprite.  
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The following example displays the spaceship sp rite and then redisplays it as a differ ent 
object . Only the sprite data list is affected, so only the data list is shown here.  However, 
the sprite looks best with the color registers set as shown in the  
 xample.  
 

    LEA CUSTOM,a0 

    MOVE.W #$0F00,COLOR17(a0)       ; Color 17 red  

    MOVE.W #$0FF0,COLOR18(a0)       ; Color 18 yellow  

    MOVE.W #$0FFF,COLORl9(a0)       ; Color 19 white  

SPRITE:  

    DC.W   $6D60,$7200  

    DC.W   $0990,$07E0  

    DC.W   $13C8,$0FF0  

    DC.W   $23C4,$1FF8  

    DC.W   $13C8,$0FF0  

    DC.W   $0990,$07E0  

    DC.W   $8080 ,$8D00              ; VSTART, HSTART, VSTOP for new sprite  

    DC.W   $1818,$0000  

    DC.W   $7E7E,$0000  

    DC.W   $7FFE,$0000  

    DC.W   $FFFF,$2000  

    DC.W   $FFFF,$2000  

    DC.W   $FFFF,$3000  

    DC.W   $FFFF,$3000  

    DC.W   $7FFE,$1800  

    DC.W   $7 FFE,$0C00  

    DC.W   $3FFC,$0000  

    DC.W   $0FF0,$0000  

    DC.W   $03C0,$0000  

    DC.W   $0180,$ÿ0000  

    DC.W   $0000,$0000              ; End of sprite data  

 

OVERLAPPED SPRITES 
 
For more complex or larger moving objects, you can overlap sprites.  Overlap ping simply 
mean that the sprites have the same or relatively close  screen positions. A relatively close 
screen position can result in an object  that is wider than 16 pixels.  
The built - in sprite video priority ensures that one sprite appears to be  behind t he other 
when sprites are overlapped . The priority circuitry gives  the lowest -numbered sprite the 
highest priority and the highest numbered  sprite the lowest priority. Therefore , when 
designing displays with overlapped sprites, make sure the "foreground" s prite has a lower 

number  than the "background" sprite. In Figure  4-11, for example, the cage should  be 
generated by a lower -numbered sprite DMA channel than the monkey.  
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Figure  4- 11: overlap ping Sprites (Not attached)  

 

 
 

You can create a wider sprite display by placing two sprites next to each  other.  For 
instance, Figure  4-12 shows the spaceship sprite and how it  can be made twice as large 
by using two sprites placed next to each  other.  
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     (128,65)  

        o_____________________  

        |     _|        |_    |  

        |   _|            |_  |  

        |  |_              _| |  

        |    |_          _|   |  

        |______|________|_____|  

 

     (128,65)              (144,65)  

        o_____________________o_____________________  

        |         |           |          |          |  

        |       __|           |          |__        |  

        |      |              |             |       |  

        |    __|              |             |__     |  

        |   |                 |                |    |  

        |   |__               |              __|    |  

        |      |              |             |       |  

        |      |__            |           __|       |  

        |         |           |          |          |  

        |_________|___________|__________|__________|  

               Sprite 0               Sprite 1  

 

             Figure  4- 12: Placing Sprites Next to Each Other  

 

 

ATTACHED SPRITES  
 
You can create sprites that have fifteen possible color choices (plus  transparent) instead 
of three (plus transparent), by "attaching" two  sprites. To create attached sprites, you 
must:  
 
o Use two channels per sprite,  creating two sprites of the same size and  located at the 
same position.  
 

o Set a bit called ATTACH in the second sprite control word.  
 
The fifteen colors are selected from the full range of color registers  available to sprites -  
registers 17 through 31. T he extra color choices  are possible because each pixel contains 
four bits instead of only two as  in the normal, unattached sprite. Each sprite in the 
attached pair  contributes two bits to the binary color selector number. For example, if  you 
are using spri te DMA channels 0 and 1, the high -  and low -order color  descriptor words for 
line 1 in both data structures are combined into  line 1 of the attached object.  
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Sprites can be attached in the fol lowing combinations:  
 
    Sprite 1 to sprite 0  
    Sprite 3 to sprite 2  

    Sprite 5 to sprite 4  
    Sprite 7 to sprite 6  
 
Any or all of these attachments can be active during the same displayfield. As an example, 
assume that you wish to have more colors i n the  spaceship sprite and you are using sprite 
DMA channels 0 and 1. There are  five colors plus  transparent in this sprite.  
 

    0000154444510000  

    0001564444651000  

    0015676446765100  

    0001564444651000  

    0000154444510000  

 

The first line in this s prite requires the four data words shown in Table  4-4 to form the 
correct binary color selector numbers.  
 

Table  4- 4: Data Words for First Line of Spaceship Sprite  

 

                            PIXEL NUMBER 

       15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0  

----------------------------------------------------------------------  

Line 1  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  

Line 2  0   0   0   0   0   1   1   1   1   1   1   0   0   0   0   0  

Line 3  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  

Line 4  0   0   0   0   1   1   0   0   0   0   1   1   0   0   0   0  

 

The highest numbered sprite (number 1, in this example) contributes the  highest order 
bits (left -most) in the binary number. The high -order d ata  word in each sprite contributes 
the leftmost digit. Therefore, the lines  above are written to the sprite data structures as 
follows:  
 
    Line 1 Sprite 1 high -order word for sprite line 1  
    Line 2 Sprite 1 low -order word for sprite line 1  
    Line 3 Sprite 0 high -order word for sprite line 1  
    Line 4 Sprite 0 low -order word for sprite line 1  
 

See Figure  4-7 for the order these words are stored in memory. Remember  that this data 
is contained in two sprite structures.  
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The binary numbers 0 through 15 select registers 17 through 31 as shown  in Table  4-5.  
 

    Table  4- 5: Color Registers in Attached Sprites  

 

      Decimal   Binary   ColorRegister  

      Number    Number      Number  

 

        0       0000         16 *  

        1       0001         17  

        2       0010         18  

        3       0011         19  

        4       0100         20  

        5       0101         21  

        6       0110         22  

        7       0111         23  

        8       1000         24  

        9       1001         25  

       10       1010         26  

       11       1011         27  

       12       1100         28  

       13       1101         29  

       14       lll0         30  

       15       1111         31  

 

* Unuse d; yields transparent pixel.  

 

Attachment is in effect only when the ATTACH bit, bit 7 in sprite control  

word 2, is set to 1 in the data structure for the odd - numbered sprite.  So, 

in this example, you set bit 7 in sprite control word 2 in the data  

structure  for sprite 1.  

 

When the sprites are moved, the Copper list must keep them both at  exactly 

the same position relative to each other. If they are not kept  together on 

the screen, their pixels will change color. Each sprite will  revert to three 

colors plus t ransparent, but the colors may be different  than if they were 

ordinary, unattached sprites. The color selection for  the lower numbered 

sprite will be from color registers 17 - 19. The color  selection for the 

higher numbered sprite will be from color register s 20,  24, and 28.  
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The following data structure is for the six -color spaceship made with two  attached sprites.  
 

SPRITE0:  

    DC.W    $6D60,$7200     ;VSTART = 65, HSTART = 128  

    DC.W    $0C30,$0000     ;First color descriptor  word  

    DC.W    $1818,$0420  

    DC.W    $342C,$0E70  

    DC.W    $1818,$0420  

    DC.W    $0C30,$0000  

    DC.W    $0000,$0000     ;End of sprite 0  

SPRITE1:  

    DC.W    $6D60,$7280     ;Same as sprite 0 except attach  bit on  

    DC.W    $07E0,$0000     ;First descriptor word for sprite 1  

    DC.W    $0FF0,$0000  

    DC.W    $1FF8,$0000  

    DC.W    $0FF0,$0000  

    DC.W    $07E0,$0000  

    DC.W    $0000,$0000     ;End of sprite 1  

 

MANUAL MODE  
 
It is almost always best to l oad sprites using the automatic DMA  channels. Sometimes, 
however, it is useful to load these registers  directly from one of the microprocessors. 
Sprites may be activated  "manually" whenever they are not being used by a DMA channel. 
The same  sprite that is showing a DMA -controlled icon near the top of the screen  can also 
be reloaded manually to show a vertical colored bar near the  bottom of the screen. Sprites 

can be activated manually even when the  sprite DMA is turned  off.  
 
You display sprites manually by writing to the sprite data registers  SPRxDATB and 
SPRxDATA, in that order. You write to SPRxDATA last because  that address "arms'' the 
sprite to be output at the next horizontal  comparison. The data written will then  be 
displayed on every line, at the  hori zontal position given in the "H" portion of the position 
registers  SPRxPOS and SPRxCTL.  If the data is unchanged, the result will be a vertical 
bar. If the data  is reloaded for every line, a complex sprite can be produced.  
 
The sprite can be terminated ("d isarmed") by writing to the SPRxCTL  register. If you write 
to the SPRxPOS register, you can manually move the  sprite horizontally at any time, even 
during normal sprite usage.  
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SPRITE HARDWARE DETAILS  
 
Sprites are produced by the circuitry shown in Figure  4-13. This Figure  shows in block 
form how a pair of data words becomes a set of pixels  displayed on the screen.  

 
The circuitry elements for sprite display are explained below.  
 
o Sprite d ata registers. The registers SPRxDATA and SPRxDATB hold the bit  patterns  that 
describe one horizontal line of a sprite for each of the  eight sprites. A line is 16 pixels 
wide, and each line is defined by two  words to provide election of three colors and 
tr ansparent.  

 
o Parallel - to -serial converters. Each of the 16 bits of the sprite data  bit pattern is 
individually sent to the color select circuitry at the  time that the pixel associated with that 
bit is being displayed on -screen.  
 
Immediately after the data  is transferred from the sprite data registers,  each parallel - to -
serial converter begins shifting the bits out of the  converter, most significant (leftmost) bit 
first. The shift occurs once  during each low - resolution pixel time and continues until all 16 
bits  have been transferred to the display circuitry. The shifting and data  output does not 
begin again until the next time this converter is loaded  from the data registers.  
 
Because the video image is produced by an electron beam that is being  swept from le ft to 
right on the screen, the bit - image of the data  corresponds exactly to the image that 
actually appears on the screen  (most significant data on the left).  

 
o Sprite serial video data. Sprite data goes to the priority circuit to  establish the priority 
between sprites and playfields.  
 
o Sprite position registers. These registers, called SPRxPOS, contain the  horizontal 
position value (X value) and vertical position value (Y value)  for each of the eight sprites.  
 
o Sprite control registers. These registers,  called SPRxCTL, contain the  stopping position 
for each of the eight sprites and whether or not a  sprite is attached.  
 
o Beam counter. The beam counter tells the system the current location of  the video 
beam that is producing the picture.  
 
o Comparator. Th is device compares the value of the beam counter to the Y  value in the 

position register SPRxPOS. If the beam has reached the  position at which the leftmost 
upper pixel of the sprite is to appear,  the comparator issues a load signal to the serial - to -
parall el converter  and the sprite display begins.  
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      _________________  

     |    Beam counter |  

     |( Horizontal  pos.)|                          ____________________  

     |_________________|                         |SPRxDATA load decode|  

             \   /                                |  (68000 or DMA)    |  

      ________ \ /_______                          |____________________|  

     |                 | Equal                             |  

     |   Compensator   |______        ___________________  |  

     |_________________|      |      |SPRxPOS load decode| |  

              / \       ________|______|  (68000 or DMA)   | |  

      _______/__ \ ____|_       |      |___________________| |  

     |                 |      |                            |  

     | SPRxPOS (Horiz.)|      |                            |  

     |_________________|      |       < - "ARM SPRITE" - >     |  

              / \       ________|____________________________o  

 ____________/  \     |        | ___            _______      |  

|                |   |       |AND | - |        |       |     |  

| ___________    |   |        \ __/  | -------- |Q     S| ----- |  

||           \   /    |         |             |       |   _____________  

||    ________ \ /_____|_        |         ---- |Q     R| -- |SPRxCTL load |  

||   |                 |       |             |_______|  |   decode    |  

||   |    SPRxDATA     |       |                        |(68000 or DMA|  

||   |_________________|   ____o                        |_____________|  

| |              \   /      |    |  

||         ______ \ /_______|_   |           _____   ______________  

||    ____|   Parallel  to   |  |                | |Sprite serial |  

|| __|__  |serial converter  | ----------------- > | |  video data  |  

||  ___   |_____________ ____|  |                | |              |  

||   _     _________________   |                | |   Output to  |  

||        |   Parallel  to   |  |                | |video priority|  

||        |serial converter | ----------------- > | |     logic    |  

||        |_ ________________|  |           _____| |______________|  

||            / \           |    |  

||    _______/__ \ ______   |____|  

||   |                 |  

||   |    SPRxDATB     |  

||   |_________________|         ____________________  

||        / \         ^           |SPRxDATB load decode|  

||       /  \        |___________|(68000 or DMA       |  

||_______|  |                   |____________________|  

| __________|  

||  

||______________________________________________________________________  

|_______________________________ ________________________________________  

             DATA BUS 

 

 

                  Figure  4- 13: Sprite Control Circuitry  

 

 
Figure  4-13 shows the following:  
 
o Writing to the sprite control registers disables the horizontal  comparator circuitry. This 
preven ts the system from sending any output  from the data registers to the serial 
converter or to the screen.  
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o Writing to the sprite A data register enables the horizontal comparator.  This enables 
output to  the screen  when the horizontal position of the  video beam equals the horizontal 
value in the position register.  
 

o If the comparator is enabled, the sprite data will be sent to the  display, with the 
leftmost pixel of the sprite data placed at the  position  defined in the horizontal part of 
SPRxPOS. 
 
o As long as the comparator remains enabled, the current contents of the  sprite data 
register will be output at the selected horizontal position  on a video line.  
 

o The data in the sprite data registers does not  change. It is either  rewritten by the user 
or modified under DMA control.  
 
The components described above produce the automatic DMA display as  follows: When 
the sprites are in DMA mode, the 18 -bit sprite pointer  register (composed of SPRxPTH and 
SPRxPTL) is used to read the first two  words from the sprite data structure. These words 
contain the starting  and stopping position of the sprite. Next, the pointers write these  
words  into SPRxPOS and SPRxCTL. After this write, the value in the pointers  points to t he 
address of the first data word (low word of data for line 1  of the sprite.)  
 
Writing into the SPRxCTL register disabled the sprite. Now the sprite DMA  channel will 
wait until the vertical beam counter value is the same as  the data in the VSTART (Y value ) 
part of SPRxPOS. When these values  match, the system enables the sprite data access.  
 

The sprite DMA channel examines the contents of VSTOP (from SPRxCTL,  which is the 
location of the line after the last line of the sprite) and  VSTART (from SPRxPOS) to s ee 
how many lines of sprite data are to be  fetched. Two words are fetched per line of sprite 
height, and these words  are written into the sprite data registers. The first word is stored 
in  SPRxDATA and the second word in SPRxDATB.  
 
The fetch and store for each horizontal scan line occurs during a  horizontal blanking 
interval, far to the left of the start of the screen  display. This arms the sprite horizontal 
comparators and allows them to  start the output of the sprite data to the screen when the 
horizontal  beam count value matches the value stored in the HSTART (X value) part of  
SPRxPOS. 
 
If the count of VSTOP -  VSTART equals zero, no sprite output occurs. The  next data word 
pair will be fetched, but it will not be stored into the  sprite data registers. It will instead 

become the next pair of data words  for SPRxPOS and SPRxCTL.  
 
When a sprite is used only once within a single display field, the final  pair of data words, 
which follow the sprite color descriptor words, is  loaded automatically as the next conte nts 
of the SPRxPOS and SPRxCTL  registers. To stop the sprite after that first data set, the pair 
of  words should contain all zeros.  
 
Thus, if you have formed  a sprite pattern  in memory, this same pattern  will  be produced 
as pixels automatically under DMA c ontrol one line at a time.  
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SUMMARY OF SPRITE REGISTERS  
 
There are eight complete sets of registers used to describe the sprites.  Each set consists 
of five registers. Only the registers for sprite O are  described here. All of the others are 

the same, except for the name of  the register, which includes the appropriate number.  
 
POINTERS 
Pointers are registers that are used by the system to point to the  current data being used. 
During screen display, the  registers are  incremented to point to the data being used as 
the screen display  progresses. Therefore, pointer registers must be freshly written during  
the start of the vertical blanking period.  

 
SPR0PTH and SPR0PTL  
This pair of registers contains the 32 -bit word address of Sprite 0 DMA  data.  
 
Pointer register names for the other sprites are:  
 
    SPR1PTH SPR1PTL 
    SPR2PTH SPR2PTL 
    SPR3PTH SPR3PTL 
    SPR4PTH SPR4PTL 
    SPRSPTH SPRSPTL 
    SPR6PTH SPR6PTL 
    SPR7PTH SPR7PTL 
 

CONTROL REGISTERS 
 
SPR0POS 
This is the sprite 0 position register. The word written into this  register controls  the 
position on the screen at which the upper left -hand  corn er of the sprite is to be placed. 
The most significant bit of the  first data word will be placed in this pos ition on the screen.  
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NOTE 
 
The sprites have a placement resolution on a full screen of 320 by 200  NTSC (320 by 256 
PAL). The sprite resolution is independent of the bit -plane resol ution.  

 
BIT POSITIONS:  
 
o Bits 15 -8 specify the vertical start position, bits V7 -  V0.  
 
o Bits 7 -0 specify the horizontal start position, bits H8 - H1.  
 

NOTE 
This register is normally only written by the lsprite DMA channel itself.  See the details 
above re garding the organization of the sprite data. This  register is usually updated 
directly by DMA.  
 
SPR0CTL 
This register is normally used only by the sprite DMA channel. It  contains control 
information that is used to control the sprite data - fetch process. Bi t positions:  
 
o Bits 15 -8 specify vertical stop position for a sprite image, bits  V7 -  V0.  
 
o Bit 7 is the attach bit. This bit is valid only for odd -numbered  sprites. It indicates that 
sprites 0, 1 (or 2,3 or 4,5 or 6,7) will, for  color interpretation, be  considered as paired, 
and as such will be called  four bits deep. The odd -numbered (higher number) sprite 

contains bits  with the higher binary significance.  
 
During attach mode, the attached sprites are normally moved horizontally  and vertically 
together u nder processor control. This allows a greater  selection of colors within the 
boundaries of the sprite itself. The  sprites, although attached, remain capable of 
independent motion,  however, and they will assume this larger color set only when their 
edges  ov erlay one another.  
 
o Bits 6 -3 are reserved for future use (make zero).  
 
o Bit 2 is bit V8 of vertical start.  
 
o Bit 1 is bit V8 of vertical stop.  
 

o Bit 0 is bit H0 of horizontal start.  
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Position and control registers for the other sprites are:  
 
    SPR1POS SPR1CTL 
    SPR2POS SPR2CTL 

    SPR3POS SPR3CTL 
    SPR4POS SPR4CTL 
    SPR5POS SPRSCTL 
    SPR6POS SPR6CTL 
    SPR7POS SPR7CTL 
 
DATA REGISTERS  

The following registers, although defined in  the address space of the  main processor, are 
normally used only by the display processor. They are  the holding registers for the data 
obtained by DMA cycles.  
 
    SPR0DATA, SPR0DATB data registers for Sprite 0  
    SPR1DATA, SPR1DATB data registers for Spr ite 1  
    SPR2DATA, SPR2DATB data registers for Sprite 2  
    SPR3DATA, SPR3DATB data registers for Sprite 3  
    SPR4DATA, SPR4DATB data registers for Sprite 4  
    SPR5DATA, SPR5DATB data registers for Sprite 5  
    SPR6DATA, SPR6DATB data registers for Spri te 6  
    SPR7DATA, SPR7DATB data registers for Sprite 7  
 
SUMMARY OF SPRITE COLOR REGISTERS  

 
Sprite data words are used to select the color of the sprite pixels from  the system color 
register set as indicated in the following Table s. 
 
If the bit combination s from single sprites are as shown in Table  4-6,  then the colors will 
be taken from the registers shown.  
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    Table  4- 6: Color Registers for Single Sprites  

 

     SINGLE SPRITES              COLOR 

    Sprite       Value          Register  

 

    0 or 1        00            Not used *  

                  01               17  

                  10               18  

                  11               19  

 

    2 or 3        00            Not used *  

                  01               21  

                  10               22  

                  11               23  

 

    4 or 5        00            Not used *  

                  01               25  

                  10               26  

                  11               27 

 

    6 or 7        00            Not used *  

                  01               29  

                  10               30  

                  11               31  

 

* Selects transparent mode.  
 
If the bit combinations from attached sprites are as shown in Table  4-7,  then the colors 
will be taken from the registers shown.  
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    Table  4- 7: Color Registers for Attached Sprites  

 

         ATTACHED SPRITES 

                          Color  

    Value                Register  

 

    0000         Selects transparent mode  

    0001                    17  

    0010                    18  

    0011                    19  

    0100                    20  

    0101                    21  

    0110                    22 

    0111                    23  

    1000                    24  

    1001                    25  

    1010                    26  

    1011                    27  

    1100                    28  

    1101                    29  

    1110                    30 

    1111                    31  

 

INTERACTIONS AMONG SPRITES AND OTHER OBJECTS  
Playfields share the display with sprites. Chapter 7, "System Control  Hardware," shows 
how playfields can be given different video display  priorities relative to the  sprites and 
how playfields can collide with  (overlap) the sprites or each other.                           
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CHAPTER 5 
 

AUDIO HARDWARE  
 

 
INTRODUCTION  
This chapter shows you how to directly access the  audio hardware to  produce sounds. The 
major topics in this chapter are:  
 
o A brief overview of how a computer produces sound.  
 

o How to produce simple steady and changing sounds and more complex ones.  
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o How to use the audio channels for special effects, wiring them for  stereo sound if 
desired, or using one channel to modulate another.  
 
o How to produce quality sound within the system limitations.  

 
A section at th e end of the chapter gives you values to use for creating  musical notes on 
the equal - tempered musical scale.  
 
This chapter is not a tutorial on computer sound synthesis; a thorough  description of 
creating sound on a computer would require a far longer  docu ment. The purpose here is 
to point the way and show you how to use  the Amiga's features. Computer sound 

production is fun but complex, and  it usually requires a great deal of trial and error on the 
part of the  user. You  use the instructions to create some sound and play it back,  readjust 
the parameters and play it again, and so on.  
 
The following works are recommended for more information on creating  music with 
computers:  
 
o Wayne A. Bateman, Introduction to Computer Music (New York: John Wiley  and Sons, 
19 80).  
 
o Hal Chamberlain, Musical Applicators  of Microprocessors (Rochelle Park,  New Jersey: 
Hayden, 1980).  
 
INTRODUCING SOUND GENERATION  

Sound travels through air to your ear drums as a repeated cycle of air  pressure variations, 
or sound waves. Sounds can be represented as graphs  that model how the air pressure 
varies over time. The attributes of a  sound, as you hear it, are related to the shape of the 
graph. If the  waveform is regular and repetitive, it will sound like a tone with steady  
pitch (highness or  lowness), such as a single musical note. Each  repetition of a waveform 
is called a cycle of the sound.  If the waveform is irregular, the sound will have little or no 
pitch,  like a loud clash or rushing water. How often the waveform repeats (its  
frequency)  has an effect upon its pitch; sounds with higher frequencies  are higher in 
pitch. Humans can hear sounds that have a frequency of  between 20 and 20,000 cycles 
per second. The amplitude of the waveform  (highest point o n the graph), is related to the 
percei ved loudness of the  sound. Finally, the general shape of the waveform determines 
its tone  quality, or timbre. Figure  5-1 shows a particular kind of waveform,  called a sine 
wave, that represents one cycle of a simple tone.  
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Figure  5- 1: Sine waveform  

 

 
 

 

In electronic sound recording and output devices, the attributes of  sounds are represented 
by the parameters of amplitude and frequency.  Frequency is the number of cycles per 
second, and the mos t common unit of  frequency is the Hertz (Hz), which is 1 cycle per 
second. Large values,  or high frequencies, are measured in kilohertz (KHz) or megahertz 
(MHz).  
 

Frequency is strongly related to the perceived pitch of a sound. When  frequency 
increases, pi tch rises. This relationship is exponential. An  increase from 100 Hz to 200 Hz 
results in a large rise in pitch, but an  increase from 1,000 Hz to 1,100 Hz is hardly 
noticeable. Musical pitch is  represented in octaves. A tone that is one octave higher than 
another has  a frequency twice as high as that of the first tone, and its perceived  pitch is 
twice as high.  
 

The second parameter that defines a waveform is its amplitude. In an  electronic circuit, 
amplitude relates to the voltage or current in the  circuit. When a signal is going to a 
speaker, the amplitude is expressed  in watts. Perceived sound intensity is measured in 
decibels (db). Human  hearing has a range of about 120 db; 1 db is the faintest audible 
sound.   Roughly every 10 db corresponds to a doubling of sound, and 1 db is the  smallest 
change in amplitude that is noticeable in a moderately loud  sound. Volume, which is the 
amplitude of the sound signal which is  output, corresponds logarithmically to decibel level.  

 
The frequency and amplitude parameters of a sine wave are completely  independent. 
When sound is heard, however, there is interaction between  loudness and pitch. Lower -
frequency sounds decrease in loudness much  faster than high - frequency sounds.  
 

                          

 

 

 

 

 

 

 

 

 

 

 

 

-  Audio Hardware 131 -  



The third attribute of a sound, timbre, depends on the presence or  absence of overtones, 
or harmonics. Any complex waveform is actually a  mixture of sine waves of different 
amplitudes, frequencies, and phases  (the starting point  of the waveform on the time 
axis). These component  sine waves are called harmonics. A square waveform, for 

example, has an  infinite number of harmonics.  
 
In summary, all steady sounds can be described by their frequency,  overall amplitude, 
and relative ha rmonic amplitudes. The audible  equivalents of these parameters are pitch, 
loudness, and timbre,  respectively. Changing sound is a steady sound whose parameters 
change  over time.  
 

In electronic production of sound, an analog device, such as a tape  recorder,  records 
sound waveforms and their cycle frequencies as a  continuously variable representation of 
air pressure. The tape recorder  then plays back the sound by sending the waveforms to 
an amplifier where  they are changed into analog voltage waveforms. The a mplifier sends 
the  voltage waveforms to a loudspeaker, which translates them into air  pressure 
vibrations that the listener perceives as sound.  
 
A computer cannot store analog waveform information. In computer  production of sound, 
a waveform has to be repr esented as a finite string  of numbers. This transformation is 
made by dividing the time axis of the  graph of a single waveform into equal segments, 
each of which represents  a short enough time so the waveform does not change a great 
deal. Each of  the resul ting points is called a sample. These samples are stored in  memory, 
and you can play them back at a frequency that you determine. The  computer feeds the 
samples to a digital - to -analog converter (DAC), which  changes them into an analog 

voltage waveform. To produce the sound, the  analog waveforms are sent first to an 
amplifier, then to a loudspeaker.  
 
Figure  5-2 shows an example of a sine wave, a square wave, and a triangle  wave, along 
with a Table  of samples for each.  
 
NOTE 
The illustrations are not to scale  and there are fewer dots in the wave  forms than there 
are samples in the Table . The amplitude axis values 127  and -128 represent the high and 
low limits on relative amplitude.  
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Figure  5- 2: Digitized Amplitude Values  

 

 
 

         DIGITISED AMPLITUDE VALUES  

 

      TIME      SINE    SQUARE   TRIANGLE  

 

        0            0      100         0  

        1           39      100        20  

        2           75      100        40  

        3          103      100        60  

        4          121      100        80  

        5          127      100       100  

        6          121      100        80  

        7          103      100        60  

        8           75      100        40  

        9           3 9      100        20  

       10            0     - 100         0  

       11          - 39     - 100       - 20  

       12          - 75     - 100       - 40  

       13         - 103     - 100       - 60  

       14         - 121     - 100       - 80  

       15         - 127     - 100      - 100  

       16         - 121     - 100       - 80  

       17         - 103     - 100       - 60  

       18          - 75     - 100       - 40  

       19          - 39     - 100       - 20  

 

 

THE AMIGA SOUND HARDWARE  
The Amiga has four hardware sound channels. You can independently program  each of the 
channels to produce complex sound effects. You can also  attach channels so that one 
channel modulates the sound of another or  combine two channels for stereo effects.  
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Each audio channel includes an eight -bit digital - to -analog converter  driven by a direct 
memory access (DMA) channel. The audio DMA can  retrieve two data samples during each 
horizontal video scan line. For  simple, steady tones, the DMA can automatically play a 
waveform  repeatedly; you can also program all kinds of complex sound effects.  

 
There are two methods of basic sound production on the Amiga ï automatic  (DMA) sound 
generation and direct (non -DMA) sound generation. When you  use automatic sound 
generation, the system retrieves data automatically  by direct memory access.  
 
FORMING AND PLAYING A SOUND  
 

This section shows you how to create a simple, steady sound and play it.  Many basic 
concepts that apply to all sound generation o n the Amiga are  introduced in this section.  
 
To produce a steady tone, follow these basic steps:  
 
1. Decide which channel to use.  
 
2. Define the waveform and create the sample Table  in memory.  
 
3. Set registers telling the system where to find the data and  the length  of the data.  
 
4. Select the volume at which the tone is to be played.  
 
5. Select the sampling period, or output rate of the data.  

 
6. Select an audio channel and start up the DMA.  
 
DECIDING WHICH CHANNEL TO USE  
The Amiga has four audio channels . Channels 0 and 3 are connected to the  left -side 
stereo output jack. Channels 1 and 2 are connected to the  right -side output jack. Select a 
channel on the side from which the  output is to appear.  
 
CREATING THE WAVEFORM DATA  
The waveform used as an example  in this section is a simple sine wave,  which produces a 
pure tone. To conserve memory, you normally define only  one full cycle of a waveform in 
memory.  For a steady, unchanging sound,  the values at the waveformôs beginning and 
ending points and the trend  or slope of the data at the beginning and end should be 
closely related.  This ensures that a continuous repetition of the waveform sounds like a  

continuous stream of sound.  
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Sound data is or ganized as a set of eight -bit data items; each item is a  sample from the 
waveform. Each data word retrieved for the audio channel  consists of two samples. 
Sample values can range from -128 to +127.  
 

As an example, the data set shown below produces a close approximation to  a sine wave.  
 
NOTE 
The data is stored in byte address order with the first digitized  amplitude value at the 
lowest byte address, the second at the next byte  address, and so on. Also, note that the 
first byte of data must start at  a word -address boundary. This is because the audio DMA 
retrieves one word  (16 bits) at a time and uses the sample it reads as two bytes of data.  

 
To use audio channel 0, write the address of "audiodata" into AUD0LC,  where the audio 
data is organized as shown below.  For simplicity,  "AUDxLC" in the Table  below stands for 
the combination of the two actual  location registers (AUDxLCH and AUDxLCL). For the 
audio DMA channels to  be able to retrieve the data, the data address to which AUDOLC 
points  must be somewhere in chi p RAM.  
 

 

             Table  5- 1: Sample Audio Data Set for Channel 0  

 

  audiodata --- >   AUD0LC *       100  98  

                   AUD0LC +2 **    92  83  

                   AUD0LC +4       71  56  

                   AUD0LC +6       38  20  

                   AUD0LC +8        0 - 20  

                   AUD0LC +10     - 38 - 56  

                   AUD0LC +12     - 71 - 83  

                   AUD0LC +14     - 92 - 83  

                   AUD0LC +16    - 100 - 98  

                   AUD0LC +18     - 92 - 83  

                   AUD0LC +20     - 71 - 56  

                   AUD0LC +22     - 38 - 20  

                   AUD0LC +24       0  20  

                   AUD0LC +26      38  56  

                   AUD0LC +28      71  83  

                   AUD0LC +30      92  98  

 

NOTES 

 

*  Audio data is l ocated on a word - address boundary.  

 

** AUD0LC stands for AUD0LCL and AUD0LCH.  
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TELLING THE SYSTEM ABOUT THE DATA  
In order to retrieve the sound data for the audio channel, the system  needs to k now 
where the data is located and how long (in words) the data  is.  
 

The location registers AUDxLCH and AUDxLCL contain the high three bits  and the low 
fifteen bits, respectively, of the starting address of the  audio data. Since these two 
register addresses  are contiguous, writing a  long word into AUDxLCH moves the audio 
data address into both locations.  The "x" in the register names stands for the number of 
the audio  channel where the output will occur. The channels are numbered 0, 1, 2,and 3.  
 
These regist ers are location registers, as distinguished from pointer  registers. You need to 

specify the contents of these registers only once;  no resetting is necessary when you wish 
the audio channel  to keep on  repeating the same waveform. Each time the system 
retri eves the last  audio word from the data area, it uses the contents of these location  
registers to again find the start of the data. Assuming the first word of  data starts at 
location "audiodata" and you are using channel 0, here is  how to set the location 
registers:  
 

WHERE0DATA: 

        LEA CUSTOM,a0         ; Base chip address...  

        LEA AUDIODATA,a1  

        MOVE.L a1,AUDOLCH(a0) ;Put address (32 bits)  

                              ; into location register.  

 

The length of the data is the number of sampl es in your waveform divided  by 2, or the 
number of words in the data set. Using the sample data set  above, the length of the data 

is 16 words. You write this length into the  audio data length register for this channel. The 
length register is  called AUDxLEN , where "x" refers to the channel number. You set the  
length register AUD0LEN to 16 as shown below.  
 

SETAUDOLENGTH: 

        LEA CUSTOM,a0             ; Base chip address  

        MOVE.W #16,AUD0LEN(a0)    ; Store the length...  

 

 

SELECTING THE VOLUME  
The vol ume you set here is the overall volume of all the sound coming  from the audio 
channel.  The relative loudness of sounds, which will  concern you when you combine 
notes, is determined  by the amplitude of the  wave form. There is a six -bit volume register 
for each audio channel. To  control the volume of sound that will be output through the 

selected  audio channel, you write the desired value into the register AUDxVOL,  where "x" 
is replaced by the channel number. You can specify values from  64 to 0. These volume  
values correspond to decibel levels. At the end of  this chapter is a Table  showing the 
decibel value for each of the 65  volume levels.  
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For a typical output at volume 64, with maximum data value s of -128 to  127, the voltage 
output is between +.4 volts and - .4 volts. Some volume  levels and the corresponding 
decibel values are shown in Table  5-2.  
 

 

                        Table  5- 2: Volume Values  

 

                VOLUME   DECIBEL   VALUE  

 

                 64        0      (maximum volume)  

                 48       - 2.5  

                 32       - 6.0  

                 16      - 12.0    (12db down from the  

                                   volume at maximum level)  

 

For any volume setting from 64 to 0, you write the value into bits 5 -0 of  AUD0VOL. For 
example:  
 

SETAUDOVOLUME: 

         LEA CUSTOM,a0 

         MOVE.W #48,AUD0VOL(a0)  

 

The decibels are shown as negative values from a maximum of 0 because  this is the way a 
recording device, such as a tape reco rder, shows the  recording level. Usually, the recorder 
has a dial showing 0 as the  optimum recording level. Anything less than the optimum 
value is shown as  a minus quantity.  
 

SELECTING THE DATA OUTPUT RATE  
The pitch of the sound produced by the waveform d epends upon its  frequency. To tell the 
system what frequency to use, you need to specify  the sampling period. The sampling 
period specifies the number of system  clock ticks, or timing intervals, that should elapse 
between each sample  (byte of audio data) f ed to the digital - to -analog converter in the 
audio  channel. There is a period register for each audio channel. The value of  the period 
register is used for count -down purposes;  each time the register counts down to 0, 
another sample is retrieved from  the w aveform data set for output. In units, the period 
value represents  clock ticks per sample. The minimum period value you should use is 124  
ticks per sample NTSC (123 PAL) and the maximum is 65535.  These limits apply to both 
PAL and NTSC machines. For high -quality sound,  there are other constraints on the 
sampling period (see the section  called "Producing High -quality Sound").  
 

NOTE 
A low period value corresponds to a higher frequency sound and a high  period value 
corresponds to a lower frequency sound.  
 

                          

 

 

 

 

 

 

 

 

 

 

 

 

 

-  Audio Hardware 137 -  



LIMITATIONS ON SELECTION OF SAMPLING PERIOD  
The sampling period is limited by the number of DMA cycles allocated to  an audio channel. 
Each audio channel is allocated one DMA slot per  horizontal scan  line of the screen 
display. An audio channel can retrieve  two data samples during each horizontal scan line. 

The following  calculation gives the maximum sampling rate in samples per second.  
 
                2 samples/line * 262.5 frames/frame * 59.94 fram es/second  

              = 31,469 samples/second  

 

The Figure  of 31,469 is a theoretical maximum . In order to save buffers,  the hardware is 
designed to handle 28,867 samples/second. The system  timing interval is 279.365 

nanoseconds, or .279365 microseconds. The  maximum sampling rate of 28,867 samples 
per second is 34.642 microseconds  per sample (1/28,867 = .000034642). The formula for 
calculating the  sampling period is:  
 

                sample interval     clock constant  

Period value  = ---------------   =  -- ------------  

                clock interval      samples per second  

 

Thus, the minimum period value is derived by dividing 34.642 microseconds  per sample 
by the number of microseconds per interval:  
 

                 34.642 microseconds/sample  

Maximum perio d = --------------------------  = 124 timing intervals/sample  

                 0.279365 microseconds/interval  

 

or:  
                 3,579,545 ticks/second  

Minimum  period = ----------------------  =124 ticks/sample  

                  28,867 samples/second  

 

Therefore, a value of at least 124 must be written into the period  register to assure that 
the audio system DMA will be able to retrieve the  next data sample. If the period value is 

below 124, by the time the cycle  count has reached 0, the audio DMA will not have had 
enough time to  retrieve the next data sample and the previous sample will be reused.  
 
28,867 samples/second is also the maximum sampling rate for PAL systems.  Thus, for 
PAL systems, a value of at least 123 ticks/sample must be  written into the per iod register.  
 

                  CLOCK VALUES 

                   NTSC   PAL      UNITS 

 

Clock Constant   3579545 3546895   ticks per second  

Clock Interval  0.279365 0.281937  microseconds per interval  
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NOTE 
The Clock Interval is derived from the clock constant, where:  
 

 

                        1 

clock interval = --------------  

                 clock constant  

 

then scale the result to microseconds. In all of these calculations  "ticks" and "timing  
intervals" refer to the same thing.  
 
SPECIFYING THE PERIOD VALUE  

After you have selected the desired interval between data samples, you  can calculate the 
value to place in the period register by using the  period formula:  
 

                desired interval       clock constant  

Period value =  ----------------   =  ------------------  

                 clock interval      samples per second  

 

As an example, say you wanted to produce a 1 KHz sine wave, using a Table  of eight data 
samples (four data words) (see Figure  5-3).  
 

 

Figure  5- 3: Example Sine Wave  
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Sampled Values:  0  

                90 

               127  

                90 

                 0 

               - 90 

              - 127 

               - 90 

 

To output the series of eight samples at 1 KHz (1,000 cycles per second),  each full cycle is 
output in 1/1000th of a second. Therefore, each  individual value must be retrieved in 
1/8th of that time.  This translates to 1,000 microsecon ds per waveform or 125 

microseconds  per sample. To correctly produce this waveform , the period value should  be:  
 

                  125 microseconds/sample  

Period  value = ----------------------------  = 447 timing Intervals/sample  

              0.279365 micr oseconds/interval  

 

To set the period register, you must write the period value into the  register AUDxPER, 

where "x" is the number of the channel you are using.  For example, the following 
instruction shows how to write a period value  of 447 into the period register for channel 0.  
 

SETAUDOPERIOD: 

              LEA    CUSTOM,a0  

              MOVE.W #447,AUD0PER(a0)  

 

To produce high -quality sound, avoiding aliasing distortion, you should  observe the 
limitations on period values that are discussed in the  section  below called "Producing 
Quality Sound."  
 
For the relationship between period and musical pitch, see the section at  the end of the 
chapter, which contains a listing of the equal - tempered  musical scale.  
 

PLAYING THE WAVEFORM  
After you have defined the audio  data location, length, volume and  period, you can play 
the waveform by starting the DMA for that audio  channel. This starts the output of sound. 
Once started, the DMA continues  until you specifically stop it. Thus, the waveform is 
played over and  over aga in, producing the steady tone. The system uses the value in the  
location registers each time it replays the waveform.  
 
For any audio DMA to occur (or any other DMA, for that matter), the DMAEN  bit in 
DMACON must be set. When both DMAEN and AUDxEN are set, the DMA  will start for 
channel x. All these bits and their meanings are shown in  Table  5-3.  
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              Table  5- 3: DMA and Audio Channel Enable Bits  

 

                        DMACON REGISTER 

 

             Bit    Name          Function  

 

              15   SET/CLR   When this bit is written as a 1, it  

                             sets any bit in DMACONW for which  

                             the corresponding bit position is  

                             also a 1, leaving all other bits alone.  

 

               9   DMAEN     Only while this bit is a 1 can  

                             any direct memory access occur.  

 

               3   AUD3EN    Audio channel 3 enable.  

 

               2   AUD2EN    A udio channel 2 enable.  

 

               1   AUD1EN    Audio channel 1 enable.  

 

               0   AUD0EN    Audio channel 0 enable.  

 

For example, if you are using channel 0, then you write a 1 into bit 9 to  enable DMA and a 
1 into bit 0 to enable the audio channel, as shown  below.  
 

BEGINCHAN0: 

            LEA    CUSTOM,a0  

            MOVE.W #(DMAF_SETCLR!DMAF_AUD0!DMAF_MASTER),DMACON(a0) 

 

 

STOPPING THE AUDIO DMA  
You can stop the channel by writing a 0 into the AUDxEN bit at any time.  However, you 
cannot resu me the output at the same point in the waveform  by just writing a 1 in the bit 
again. Enabling an audio channel almost  always starts the data output again from the top 
of the list of data  pointed to by the location registers for that channel. If the channe l is  
disabled for a very short time  (less than two sampling periods) it may  stay on and thus 
continue from where it left off.  
 
The following example shows how to stop audio DMA for one channel.  
 

STOPAUDCHAN0: 

      LEA    CUSTOM,a0  

      MOVE.W #(DMAF_AUD0),DMACON(a0)  

 

                         -  
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SUMMARY 
These are the steps necessary to produce a steady tone:  
 
1. Define the waveform.  

 
2. Create the data set containing the pairs of data samples (data words).  Normally, a d ata 
set contains the definition of one waveform.  
 
3. Set the location registers:  
 
           AUDxLCH (high three bits)  

           AUDxLCL (low fifteen bits)  
 
4. Set the length register, AUDxLEN, to the number of data words to be  retrieved before 
starting a t the address currently in AUDxLC.  
 
5. Set the volume register, AUDxVOL.  
 
6. Set the period register, AUDxPER  
 
7. Start the audio DMA by writing a 1 into bit 9, DMAEN, along with a 1  in the SET/CLR bit 
and a 1 in the position of the AUDxEN bit of the  chann el or channels you want to start.  
 
EXAMPLE 
In this example, which gathers together all of the program segments from  the preceding 

sections, a sine wave is played through channel 0. The  example assumes exclusive access 
to the Audio hardware, and will not wo rk  directly in a multitasking environment.  
 

MAIN:  

       LEA CUSTOM,a0         ; Custom chip base address  

       LEA SINEDATA(pc),a1   ; Address of data to  

                             ; audio location register 0  

 

WHEREODATA: 

       MOVE.L a1,AUD0LCH(a0) ;  The 68000 writes  

                             ; this as though it were  

                             ; a 32 - bit register at the  

                             ; low - bits location  

                             ; (common to all locations  

                             ; and pointer registers  

                             ; in the system).  

 

SETAUDOLENGTH: 

       MOVE.W #4,AUD0LEN(a0) ;Set length in words  
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SETAUDOVOLUME: 

       MOVE.W #64,AUD0VOL(a0) ;Use m aximum volume  

 

SETAUDOPERIOD: 

       MOVE.W #447,AUD0PER(a0)  

 

BEGINCHAN0: 

       MOVE.W #(DMAF_SETCLR!DMAF_AUD0!DMAF_MASTER),DMACON(a0) 

       RTS                   ; Return to main code  

       DS.W 0                ; Be sure word - aligned  

 

SINEDATA:  

       DC.B 0, 90, 127, 90, 0, - 90, - 127, - 90 

 

       END 

 

 

PRODUCING COMPLEX SOUNDS  
 

In addition to simple tones, you can create more complex sounds, such as  different 
musical notes joined into a one -voice melody, different notes  played at the same time, or 
mod ulated sounds.  
 
JOINING TONES  
Tones are joined by writing the location and length registers, starting  the audio output, 
and rewriting the registers in preparation for the next  audio waveform that you wish to 
connect to the first one. This is made  easy by t he timing of the audio interrupts and the 
existence of back -up registers. The location and length registers are read by the DMA 
channel  before audio output begins.  
The DMA channel then stores the values in back -up registers. Once the  original registers 
hav e been read by the DMA channel, you can change  their values without disturbing the 
operation you started with the  original register contents. Thus, you can write the contents 
of these  registers, start an audio output, and then rewrite the registers in  prep aration for 

the next waveform you want to connect to this one.  
 
Interrupts occur immediately after the audio DMA channel has read the  location and 
length registers and stored their values in the back -up registers. Once the interrupt has 
occurred, you can r ewrite the registers  with the location and length for the next waveform 
segment. This  combination of back -up registers and interrupt timing lets you keep one  
step ahead of the audio DMA channel, allowing your sound output to be  continuous and 

smooth.  
 
If y ou do not rewrite the registers, the current waveform will be  repeated. Each time the 
length counter reaches zero, both the location  and length registers are reloaded with the 
same values to continue the  audio output.  
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EXAMPLE 
This example details the system audio DMA action in a step -by -step  fashion.  
 
Suppose you wanted to join together a sine and a triangle waveform, end -to -end, for a 

special audio effect, alternating  between them. The  following sequence shows the action 
of your program as well as its  interaction with the audio DMA system. The example 
assumes that the  period, volume, and length of the da ta set remains the same for the 
sine  wave and the triangle wave.  
 
INTERRUPT PROGRAM 
 

If (wave =  triangle)  
             write AUD0LCL with address of sine wave data.  
 
Else if (wave = sine)  
             write AUD0LCL with address of triangle wave data.  
 
 
MAIN PROGRAM  
 
1. Set up volume, period, and length.  
2. Write AUD0LCL with address of sine wave dat a.  
3. Start DMA.  
4. Continue with something else.  
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SYSTEM RESPONSE 
 
As soon as DMA starts,  
 

a. Copy to "back -up" length register from AUDOLEN.  
 
b. Copy to "back -up'' location register from AUDOLCL (will be used as a  pointer showing 
current data word to fetch).  
 
c. Create an interrupt for the 68000 saying that it has completed  retrieving working copies 
of length and location registers.  

 
d. Start retrieving audio data each alloca ted DMA time slot.  
 
 
PLAYING MULTIPLE TONES AT THE SAME TIME  
You can play multiple tones either by using several channels  independently or by 
summing the samples in several data sets, playing the  summed data sets through a single 
channel.  
 
Since all four a udio channels  are independently programmable, each  channel has its own 
data set; thus a different tone or musical note can  be played on each channel.  
 
MODULATING SOUND  
To provide more complex audio effects, you can use one audio channel to  modulate 

another . This increases the range and type of effects that can  be produced. You can 
modulate a channel's frequency or amplitude, or do  both types of modulation on a channel 
at the same time.  
 
Amplitude modulation affects the volume of the waveform. It is often us ed to produce 
vibrato or tremolo effects. Frequency modulation affects the  period of the waveform. 
Although the basic waveform itself remains the  same, the pitch is increased or decreased 
by frequency modulation.  
 
The system uses one channel to modulate an other when you attach two  channels. The 
attach bits in the ADKCON register control how the data  from an audio channel is 
interpreted (see the Table  below). Normally,  each channel produces sound when it is 
enabled. If the "attach" bit for  an audio channel i s set, that channel ceases to produce 
sound and its  data is used to modulate the sound of the next higher -numbered channel.  

When a channel is used as a modulator, the words in its data set are no  longer treated as 
two individual bytes. Instead, they are us ed as  "modulator" words. The data words from 
the modulator channel are written  into the corresponding registers of the modulated 
channel each time the  period register of the modulator channel times out.  
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To modulate only the amplitude of the audio output, you must attach a  channel as a 
volume modulator. Define the modulator channel's data set as  a series of words, each 
containing volume information in the following  format:  
 

        BITS   FUNCTION  

 

       15 -  7   Not used  

        6 -  0   Volume information, V6 - V0 

 

To modulate only the frequency, you must attach a channel as a period  modulator. Define 
the modulator channel's data set as a series of words,  each containing period information 
in the f ollowing format:  
 

        BITS   FUNCTION  

 

       15 -  0   Period information, P15 - P0 

 

If you want to modulate both period and volume on the same channel , you  need to attach 
the channel as both a period and volume modulator. For  instance, if channel 0 is u sed to 
modulate both the period and frequency  of channel 1, you set two attach bits -  bit 0 to 
modulate the volume and  bit 4 to modulate the period. When period and volume are both 
modulated,  words in the modulator channel's data set are defined alternatel y as  volume 
and period information.  
 
The sample set of data in Table  5-4 shows the differences in  interpretation of data when a 
channel is used directly for audio, when it  is attached as volume modulator, when it is 

attached as a period  modulator, and when  it is attache d as a modulator of both volume 
and  period.  
 

              Table  5- 4: Data Interpretation in Attach Mode  

 

       INDEPENDENT        MODULATING  

DATA     (NOT                BOTH             MODULATING       MODULATING  

WORDS   MODULATING)     P ERIOD AND VOLUME      PERIOD ONLY      VOL ONLY  

 

Word 1 |data|data|    |vol for other channel|    |period|       |volume|  

 

Word 2 |data|data|    |period for other channel| |period|       |volume|  

 

Word 3 |data|data|    |volume for other channel| |period|       |volume|  

 

Word 4 |data|data|    |period for other channel| |period|       |volume|  
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The lengths of the data sets of the modulator and the modulated channels  are completely 
independent.  
 
Channels are attached by the system in a predetermined order, as shown in  Table  5-5. To 

attach a channel as a modulator, you set its attach bit to  1. If you set either the volume 
or period attach bits for a channel, that  channel's audio output will be disa bled; the 
channel will be attached to  the next higher channel, as shown in Table  5-5. Because an 
attached  channel always modulates the next higher numbered channel, you cannot  attach 
channel 3. Writing a 1 into channel 3's modulate bits only  disables its a udio output.  
 

              Table  5- 5: Channel Attachment for Modulation  

 

                            ADKCON REGISTER 

 

             Bit    Name    Function  

 

               7   ATPER3   Use audio channel 3 to modulate nothing  

                            (di sables audio output of channel 3)  

 

               6   ATPER2   Use audio channel 2 to modulate period  

                            of channel 3  

 

               5   ATPER1   Use audio channel 1 to modulate period  

                            of channel 2  

 

               4   ATPER0   Use audio channel 0 to modulate period  

                            of channel 1  

 

               3   ATVOL3   Use audio channel 3 to modulate nothing  

                            (disables audio output of channel 3)  

 

               2   ATVOL2   Use audio channel 2 to modulate volume  

                            of channel 3  

 

               1   ATVOL1   Use audio channel 1 to modulate volume  

                            of channel 2  

 

               0   ATVOL0   Use audio channel 0 to mod ulate volume  

                            of channel 1  

 

                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-  Audio Hardware 147 -  



PRODUCING HIGH -QUALITY SOUND  
 
When trying to create high -quality sound, you need to consider the  following factors:  
 

o Waveform transi tions.  
 
o Sampling rate.  
 
o Efficiency.  
 
o Noise reduction.  

 
o Avoidance of aliasing distortion.  
 
o Limitations of the low pass filter.  
 
MAKING WAVEFORM TRANSITIONS  
To avoid unpleasant sounds when you change from one waveform to another,  you need to 
make t he transitions smooth. You can avoid "clicks" by making  sure the waveforms start 
and end at approximately the same value. You can  avoid "pops" by starting a waveform 
only at a zero -crossing point. You  can avoid "thumps" by arranging the average amplitude 
of each wave to be  about the same value. The average amplitude is the sum of the bytes 
in  the waveform divided by the number of bytes in the waveform.  
 
SAMPLING RATE  

If you need high precision in your frequency output, you may find that  the frequency you 
wi sh to produce is somewhere between two available  sampling rates, but not close 
enough to either rate for your  requirements. In those cases, you may have to adjust the 
length of the  audio data Table  in addition to altering the sampling rate.  
 
For higher fre quencies, you may also need to use audio data Table s that  contain more 
than one full cycle of the audio waveform to reproduce the  desired frequency more 
accurately, as illustrated in Figure  54.  
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Figure  5. 4: Waveform with Multiple Cycles  

 

 
 

 

EFFICIENCY 
A certain amount of overhead is involved in the handling of audio DMA. If  you are trying 
to produce a smooth continuous audio synthesis, you should  try to avoid as much of the 
system control overhead as possible.  Basically, the larger the audio buffer you provide to 
the system, the  less often it will need to interrupt to reset the pointers to the top of  the 
next buffer and, coincidentally, the lower the amount of system  interaction that will b e 

required. If there is only one waveform buffer,  the hardware automatically resets the 
pointers, so no software overhead  is used for resetting them.  
 
The "Joining Tones" section illustrated how you could join "ends" of  tones together by 
responding to inte rrupts and changing the values of the  location registers to splice tones 
together.  If your system is heavily loaded, it is possible that the response to the  interrupt 
might not happen in time to assure a smooth audio transition.  Therefore, it is advisable to 

utilize the longest possible audio Table  where a smooth output is required. This takes 
advantage of the audio DMA  capability as well as minimizing the number of interrupts to 
which the  68000 must respond.  
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NOISE REDUCTION  
To reduce noise levels and produce an accurate sound, try to use the full  range of -128 to 
127 when you represent a waveform. This reduces how much  noise (quantization error) 
will be added to the sign al by using more bits  of precision. Quantization noise is caused by 

the introduction of round -off error. If you are trying to reproduce a signal, such as a sine 
wave,  you can represent the amplitude of each sample with only so many digits  of 
accuracy. The difference between the real number and your  approximation is round -off  
error, or noise.  
 
By doubling the amplitude, you create half as much noise because the size  of the steps of 
the wave form stays the same and is therefore a smaller  fraction of the ampl itude.  

 
In other words, if you try to represent a waveform using, for example, a  range of only +3 
to -3, the size of the error in the output would be  considerably larger than if you use a 
range of +127 to -128 to represent  the same signal. Proportionally, the digital value used 
to represent the  waveform amplitude will have a lower error. As you increase the number 
of  possible sample levels, you decrease the relative size of each step and,  therefore, 
decrease the size of the error.  
 
To produce quiet sounds, continue to define the waveform using the full  range, but adjust 
the volume. This maintains the same level of accuracy  (signal - to -noise ratio) for quiet 
sounds as for loud sounds.  
 
ALIASING DISTORTION  
When you use sampling to produce a waveform , a side eff ect is caused when  sampling 

rate "beats" or combines with the frequency  you wish to  produce. This produces two 
additional frequencies, one at the sampling rate  plus the desired frequency  and the other 
at the sampling rate minus the  desired frequency. This phenomenon is called aliasing 
distortion.  
 
Aliasing distortion is eliminated when the sampling rate exceeds the  output frequency by 
at least 7 KHz. This puts the beat frequency outside  the range of the low -pass filter, 
cutting off the undesirable  frequenci es. Figure  5-5 shows a frequency domain plot of the 
anti -aliasing low -pass filter used in the system.  
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        ^  

       /| \  

        |  

        |  

   0 db |____  

        |    \  

        |     \     Filter response  

        |      \  

 - 30 db |_______ \ _________________________________ \  

              |     |     |     |     |     |     /  

             05    10    15    20    25    30  

                             KHz 

 

          Filter passes all fre quencies below about 5KHz  

 

 

          Figure  5- 5: Frequency Domain Plot of Low - Pass Filter  

 

Figure  5-6 shows that it is permissible to use a 12 KHz sampling rate to  produce a 4 KHz 
waveform. Both of the beat frequencies are outside the  range of the filter,  as shown in 
these calculations:  
 
                                 12+4= 16KHz  
                                 12 -4=  8KHz  
 

 

        ^ Filter response  

       /| \  

        |           12 KHz sampling frequency  

        |             |  

   0 db |____         |  

        |    \   Diff. |    Sum  

        |     \    |   |     |  

        |   4| \   |   |     |  

 - 30 db |____|__ \ _|___|_____|_____________________ \  

            / |     |     |     |     |     |     /  

           / 05    10    15    20    25    30  

          /                  KHz 

         /  

     Desired output frequency  

 

 

         Figure  5- 6: Noise - free Output (No Aliasing Distortion)  

 

You can see in Figure  5-7 that is unaccep table  to use a 10 KHz sampling  rate to produce a 
4 KHz waveform . One of the beat frequen cies (10 - 4)  is within the range of the filter, 
allowing some of that undesirable  frequency to show up in the audio output.  
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        ^ Filter response  

       /| \  

        |         10 KHz sampling frequency  

        |           |  

   0 db |____       |  

        |    \ Diff. |   Sum  

        |     \   |  |    |  

        |   4| \  |  |    |  

 - 30 db |____|__ \ |__|____|______________________ \  

            / |     |     |     |     |     |   /  

           / 05    1 0    15    20    25    30  

          /                  KHz  

         /  

     Desired output frequency  

 

 

                  Figure  5- 7: Some Aliasing Distortion  

 

All of this gives rise to the following equation, showing that the  sampling frequency must 
exceed the output frequency by at least 7 KHz, so  that the beat frequency will be above 
the cut -off  range of the anti -aliasing filter:  
 
    Minimum sampling rate = highest frequency component + 7 KHz  
 
The frequency component of the equation is stated as "highest frequency  component" 
because you may be producing a complex waveform with multiple  frequency elements, 

rather than a pure sine wave.  
 
LOW-PASS FILTER 
The system includes a low -pass filter that eliminates aliasing distortion  as described 
above. This filter becomes  active around 4 KHz and gradually  begins to attenuate (cut off) 
the signal. Generally, you cannot clearly  hear frequencies higher than 7 KHz. Therefore, 
you get the most complete  frequency response in the frequency range of 0 -  7 KHz. If you 
are ma king  frequencies from 0 to 7 KHz, you should select a sampling rate no less  
than 14 KHz, which corresponds to a sampling period in the range 124 to  256.  
 
At a sampling period around 320, you begin to lose the higher frequency  values between 
0 KHz and 7 KHz , as shown in Table  5-6.  
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           Table  5- 6: Sampling Rate and Frequency Relationship  

 

                     Sampling     Sampling     Maximum Output  

                      Period      R ate (KHz)   Frequency (KHz)  

 

Maximum sampling rate  124          29              7  

 

Minimum sampling rate  256          14              7  

 for 7 KHz output  

 

Sampling rate too low  320          11              4  

 for 7 KHz output  

 

In A2000s with 2 layer mot herboards and later AS00 models there is a  control bit that 
allows the audio output to bypass the low pass filter.  This control bit is the same output 
bit of the 8520 CIA that controls the  brightness of the red "power" LED. Bypassing the 
filter allows for  improved sound in some applications, but an external  filter with an  
appropriate cut -off  frequency may be required.  
 
USING DIRECT (NON -DMA) AUDIO OUTPUT  
 
It is possible to create sound by writing audio data one word at a time  to the audio output 
addresses, instead of setting up a list of audio data  in memory. This method of controlling 
the output is more  processor - intensive and is therefore not recommended.  
 
To use direct audio output, do not enable the DMA for the audio channel  you wish to use; 

this changes  the timing of the interrupts. The normal  interrupt occurs after a data address 
has been read; in direct audio  output, the interrupt occurs after one data word has been 
output.  
 
Unlike in the DMA -controlled automatic data output, in direct audio  output, if  you do not 
write a new set of data to the output addresses  before two sampling intervals have 
elapsed, the audio output will cease  changing. The last value remains as an output of the 
digital - to -analog  converter.  
 
The volume and period registers are set a s usual.  
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THE EQUAL-TEMPERED MUSICAL SCALE  
Table  5-7 gives a close approximation of the equal - tempered scale over  one octave when 
the sample size is 16 bytes. The "Period" column gives  th e period count you enter into the 
period register. The length register  AUDxLEN should be set to 8 (16 bytes = 8 words). The 

sample should  represent one cycle of the waveform.  
 

          Table  5- 7: Equal - tempered Octave for a 16 Byte Sample  

 

   NTSC    PAL            Ideal    Actual NTSC  Actual PAL  

  Period  Period  Note  Frequency   Frequency   Frequency  

 

   254     252     A      880.0       880.8        879.7  

   240     238     A#     932.3       932.2        931.4  

   226     224     B      987.8       9 89.9        989.6  

   214     212     C     1046.5      1045.4       1045.7  

   202     200     C#    1108.7      1107.5       1108.4  

   190     189     D     1174.7      1177.5       1172.9  

   180     178     D#    1244.5      1242.9       1245.4  

   170     168     E     1318.5      1316.0       1319.5  

   160     159     F     1396.9      1398.3       1394.2  

   151     150     F#    1480.0      1481.6       1477.9  

   143     141     G     1568.0      1564.5       1572.2  

   135     133     G#    1661.2      1 657.2       1666.8  

 

The Table  above shows the period values to use with a 16 byte sample to  make tones in 
the second octave above middle C. To generate the tones in  the lower octaves, there are 
two methods you can use, doubling the period  value or doubling  the sample size.  
 
When you double the period, the time between each sample is doubled so  the sample 
takes twice as long to play. This means the frequency of the  tone generated is cut in half 
which gives you the next lowest octave.  Thus, if you play a C wi th a period value of 214, 
then playing the same  sample with a period value of 428 will play a C in the next lower 
octave.  

 
Likewise, when you double the sample size, it will take twice as long to  play back the 
whole sample and the frequency of the tone gen erated will  be in the next lowest octave. 
Thus, if you have an 8 byte sample and a 16  byte sample of the same waveform played at 
the same speed, the 16 byte  sample will be an octave lower.  
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A sample for an equal - tempered scale typically represents one full cycle  of a note. To 
avoid aliasing distortion with these samples you should use  period values in the range 
124 -256 only.  Periods from 124 -256 correspond to playback rates in the range 14 -28K  
samples per second which makes the most effective use of the Amiga's 7  kHz cut -off filter 

to prevent noise. To stay within this range you will  need a different sample for each 
octave.  
 
If you cannot use a different sample for each octave, then you will  have  to adjust the 
period value over its full range 124 -65536. This is easier  for the programmer but can 
produce undesirable high - frequency noise in  the resulting tone. Read the section called 
"Aliasing Distortion" for  more about this.  

 
The values in Tabl e 5-7 were generated using the formula shown below. To  calculate the 
tone generated with a given sample size and period use:  
 

                Clock Constant        3579545  

    Frequency = --------------     =   -------   = 880.8hz  

              Sample Bytes* Period     16*Period  

 

The clock constant in an NTSC system is 3579545 ticks per second. In a  PAL system, the 
clock constant is 3546895 ticks per second. Sample bytes  is the number of bytes in one 
cycle of the waveform sample. (The clock  constant is derived  from dividing the system 
clock value by 2. The value  will vary when using an external  system clock, such as a 
genlock.)  
 

Using the formula above you can generate the values  needed for the even - tempered scale 
for any arbitrary sample. Table  5-8 gives a clo se approximation of a five octave even 
tempered -scale using five samples.  The values were derived using the formula above. 
Notice that in each  octave period values  are the same but the sample size is halved. The  
samples listed represent a simple triangular  wave form.  
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               Table  5- 8: Five Octave Even - tempered Scale  

 

   NTSC    PAL            Ideal    Actual NTSC  Actual PAL  

  Period  Period  Note  Frequency   Frequency   Fr equency  

 

   254     252     A      55.00       55.05       54.98  

   240     238     A#     58.27       58.26       58.21  

   226     224     B      61.73       61.87       61.85  

   214     212     C      65.40       65.34       65.35  

   202     200     C#     69.29       69.22       69.27  

   190     189     D      73.41       73.59       73.30  

   180     178     D#     77.78       77.68       77.83  

   170     168     E      82.40       82.25       82.47  

   160     159     F      87.30       87.39       87.13  

   151     150     F#     92.49       92.60       92.36  

   143     141     G      98.00       97.78       98.26  

   135     133     G#    103.82      103.57      104.17  

 

Sample size = 256 bytes, AUDxLEN = 128  

 

   254     252     A     110.00      110.10       109.96  

   240     238     A#    116.54      116.52       116.43  

   226     224     B     123.47      123.74       123.70  

   214     212     C     130.81      130.68       130.71  

   202     200     C#    138.59      138.44       138.55  

   190     189     D     146.83      147.18       146.61  

   180     178     D#    155.56      155.36       155.67  

   170     168     E     164.81      164.50       164.94  

   160     159     F     174.61      174.78       174.27  

   151     150     F#    184.99      185.20       184.73  

   143     141     G     196.00      195.56       196.52  

   135     133     G#    207.65      207.15       208.35  

 

Sample size = 128 bytes, AUDxLEN = 64  

 

   254     252     A     220.00      220.20       219.92  

   240     238     A#    233.08      233.04       232.86  

   226     224     B     246.94      247.48       247.41  

   214     212     C     261.63      261.36       261.42  

   202     200     C#    277.18      276.88       277.10  

   190     189     D     293.66      294.37       293.23  

   180     178     D#    311.13      310.72       311.35  

   170     168     E     329.63      329.00       329.88  

   160     159     F     349.23      349.56       348.55  

   151     150     F#    369.99      370.40       369.47  

   143     141     G     392.00      391.12       393.05  

   135     133     G#    415.30      414.30       416.70  

 

Sample size = 64 bytes, AUDxLEN = 32  

 

                          

 

 

 

 

 

 

 

 

 

-  156 Audio Hardware ï 



   NTSC    PAL            Ideal    Actual NTSC  Actual PAL  

  Period  Period  Note  Frequency   Frequency   Frequency  

 

   254     252     A      440.0       440.4       439.8  

   240     238     A#    466.16      466.09       465.72  

   226     224     B     493.88      494.96       494.82  

   214     212     C     523.25      522.71       522.83  

   202     200     C#    554.37      553.77       554.20  

   190     189     D     587.33      588.74       586.46  

   180     178     D#    622.25      621.45       622.70  

   170     168     E     659.26      658.00       659.76  

   160     159     F     698.46      699.13       697.11  

   151     150     F#    739.99      740.80       738.94  

   143     141     G     783.99      782.24       786.10  

   135     133     G#    830.61      828.60       833.39  

 

Sample size = 32 bytes, AUDxLEN = 16  

 

   254     252     A      880.0       880.8       879.7  

   240     238     A#     932.3       932.2       931.4  

   226     224     B      987.8       989.9       989.6  

   214     212     C     1046.5      1045.4       1045.7  

   202     200     C#    1108.7      1107.5       1108.4  

   190     189     D     1174.7      1177.5       1172.9  

   180     178     D#    1244.5      1242.9       1245.4  

   170     168     E     1318.5      1316.0       1319.5  

   160     159     F     1396.9      1398.3       1394.2  

   151     150     F#    1480.0      1481.6       1477.9  

   143     141     G     1568.0      1564.5       1572.2  

   135     133     G#     661.2      1657.2       1666.8  

 

Sample size = 16 bytes, AUDxLEN = 8  
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                             256 BYTE SAMPLE  

 

   0    2    4    6    8   10   12   14   16   18   20   22   24   26  

  28   30   32   34   36   38   40   42   44   46   48   50   52   54  

  56   58   60   62   64   66   68   70   72   74   76   78   80   82  

  84   86   88   90   92   94   96   98  100  102  104  106  108  110  

 112  114  116  118  120  122  124  126  128  126  124  122  120  118  

 116  114  112  110  108  106  104  102  100   98   96   94   92   90  

  88   86   84   82   80   78   76   74   72   70   68   66   64   62  

  60   58   56   54   52   50   48   46   44   42   40   38   36   34  

  32   30   28   26   24   22   20   18   16   14   12   10    8    6  

   4    2    0   - 2   - 4   - 6   - 8  - 10  - 12  - 14  - 16  - 18  - 20  - 22 

 - 24  - 26  - 28  - 30  - 32  - 34  - 36  - 38  - 40  - 42  - 44  - 46  - 48  - 50 

 - 52  - 54  - 56  - 58  - 60  - 62  - 64  - 66  - 68  - 70  - 72  - 74  - 76  - 78 

 - 80  - 82  - 84  - 86  - 88  - 90  - 92  - 94  - 96  - 98 - 100 - 102 - 104 - 106  

- 108 - 110 - 112 - 114 - 116 - 118 - 120 - 122 - 124 - 126 - 127 - 126 - 124 - 122  

- 120 - 118 - 116 - 114 - 112 - 110 - 108 - 106 - 104 - 102 - 100  - 98  - 96  - 94 

 - 92  - 90  - 88  - 86  - 84  - 82  - 80  - 78  - 76  - 74  - 72  - 70  - 68  - 66 

 - 64  - 62  - 60  - 58  - 56  - 54  - 52  - 50  - 48  - 46  - 44  - 42  - 40  - 38 

 - 36  - 34  - 32  - 30  - 28  - 26  - 24  - 22  - 20  - 18  - 16  - 14  - 12  - 10 

  - 8   - 6   - 4   - 2 

 

                             128 BYTE SAMPLE  

 

   0    4    8   12   16   20   24   28   32   36   40   44   48   52  

  56   60   64   68   72   76   80   84   88   92   96  100  104  108  

 112  116  120  124  128  124  120  116  112  108  104  100   96   92  

  88   84   80   76   72   68   64   60   56   52   48   44   40   36  

  32   28   24   20   16   12    8    4    0    4    8   12   16   20  

  24   28   32   36   40   44   48   52   56   60    64   68   72   76  

  80   84   88   92   96  100  104  108  112  116  120  124 - 127 - 124  

- 120 - 116 - 112 - 108 - 104 - 100  - 96  - 92  - 88  - 84  - 80  - 76  - 72  - 68 

 - 64  - 60  - 56  - 52  - 48  - 44  - 40  - 36  - 32  - 28  - 24  - 20  - 16  - 12 

  - 8   - 4 

 

                             64 BYTE SAMPLE 

 

   0    8   16   24   32   40   48   56   64   72   80   88   96  104  

 112  120  128  120  112  104   96   88   80   72   64   56   48   40  

  32   24   16    8    0   - 8  - 16  - 24  - 32  - 40  - 48  - 56  - 64  - 72 

 - 80  - 88  - 96 - 104 - 112 - 120 - 127 - 120 - 112 - 104  - 96  - 88  - 80  - 72 

 - 64  - 56  - 48   40  - 32  - 24  - 16   - 8 

 

                             32 BYTE SAMPLE 

 

   0   16   32   48   64   80   96  112  128  112   96   80   64   48  

  32   16    0  - 16  - 32  - 48  - 64  - 80  - 96 - 112 - 127 - 112  - 96  - 80 

 - 64    4    8  - 32  - 16 

 

                             16 BYTE SAMPLE 

 

   0   32   64   96  128   96   64   32    0  - 32  - 64  - 96 - 127  - 96 

 - 64  - 32 
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DECIBEL VALUES FOR VOLUME  RANGES 
 
Table  5-9 provides the corresponding decibel values for the volume ranges  of the Amiga 
system.  
 

 

               Table  5- 9: Decibel Values and Volume Ranges  

 

   Volume  Decibel Value     Volume  Decibel Value  

 

     64         0.0            32        - 6.0  

     63        - 0.1            31        - 6.3  

     62        - 0.3            30        - 6.6  

     61        - 0.4           129        - 6.9  

     60        - 0.6            28        - 7.2  

     59        - 0.7            27        - 7.5  

     58        - 0. 9            26        - 7.8  

     57        - 1.0            25        - 8.2  

     56        - 1.2            24        - 8.5  

     55        - 1.3            23        - 8.9  

     54        - 1.5            22        - 9.3  

     53        - 1.6            21        - 9. 7 

     52        - 1.8            20       - 10.1  

     51        - 2.0            19       - 10.5  

     50        - 2.1            18       - 11.0  

     49        - 2.3            17       - 11.5  

     48        - 2.5            16       - 12.0  

     47        - 2.7            15       - 12.6  

     46        - 2.9            14       - 13.2  

     45        - 3.1            13       - 13.8  

     44        - 3.3            12       - 14.5  

     43        - 3.5            11       - 15.3  

     42        - 3.7            10       - 16.1  

     41        - 3.9             9       - 17.0  

     40         4.1             8       - 18.1  

     39         4.3             7       - 19.2  

     38         4.5             6       - 20.6  

     37         4.8             5       - 22.1  

     36        - 5.0             4       - 24.1  

     35        - 5.2             3       - 26.6  

     34        - 5.5             2       - 30.1  

     33        - 5.8             1       - 36.1  

                                0    Minus infinity  
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THE AUDIO STATE MACHINE  
 
For an explanation of the various states, refer to Figure  5-8. There is  one audio state 
machine for each channel. The machine has eight states  and is clocked at the clock 

constant rate (3.58 MHz NTSC). Three of the  states are basically unused and just transfer 
back to the idle (000)  state.  One of the paths out of the idle state is designed for 
interrupt -driven  operation (processor provides the data), and the other path is designed  
for DMA -driven operation (the "Agnus"  special chip provides the data).  
 
In interrupt -driven operation, transfer to the  main loop (states 010 and  011) occurs 
immediately after data is written by the processor. In the  010 state the upper byte is 

output, and in the 011 state the lower byte  is ou tput. Transitions such as 010011010 
occur whenever the period  counter counts down to one. The period counter  is reloaded at 
these  transitions. As long as the interrupt is cleared by the processor in  time, the machine 
remains in the main loop. Otherwise, it  enters the idle  state. Interrupts are generated on 
every word transition (011010).  
 
In DMA -driven operation, transition to the 001 state occurs and DMA  requests are sent to 
Agnus as soon as DMA is turned  on. Because of  pipelining in Agnus, the first data word 
must be thrown away. State 101  is entered as soon as this word arrives; a request for the 
next data word  has already gone out. When the data arrives, state 010 is entered and the  
main loop continues until the DMA is turned off. The length counter  coun ts down once 
with each word that comes in.  When it finishes, a DMA restart request goes to Agnus 
along with the  regular DMA request. This tells Agnus to reset the pointer to the  beginning 
of the Table  of data. Also, the length counter is reloaded and  an in terrupt request goes 

out soon after the length counter finishes  (counts to one).  The request goes out just as 
the last word of the waveform starts its  output.  
 
DMA requests and restart requests are transferred to Agnus once each  horizontal line, and 
the da ta comes back about 14 clock cycles later (the  duration of a clock cycle is 280 ns).  
 
In attach mode, things run a little differently. In attach volume,  requests occur as they do 
in normal operation (on the 011010 transition).  In attach period, a set of re quests occurs 
on the O10011 transition. When  both attach period and attach volume are high, requests 
occur on both  transitions.  
 
If the sampling rate is set much higher than the normal maximum sampling  rate 
(approximately 29 KHz), the two samples  in the bu ffer register will  be repeated. If the 
filter on the Amiga is bypassed and the volume is set  to the maximum ($40), this feature 

can be used to make modulated carriers  up to 1.79 MHz. The modulation is placed in the 
memory map, with plus  values in the even bytes and minus values in the odd bytes.  
 
The symbols used in the state diagram are explained in the following  list. Upper -case 
names indicate external  signals; lower -case names  indicate local signals.  
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AUDxON     DMA on "x" indicates channel number (signal from DMACON).  

 

AUDxIP     Audio interrupt pending (input to channel from interrupt  

           circuitry).  

 

AUDxIR     Audio interrupt request (output from channel to interrupt  

           circuit ry)  

 

intreq1    Interrupt request that combines with intreq2 to form AUDxIR  

 

intreq2    Prepare for interrupt request. Request comes out after the  

           next 011 -- >010 transition in normal operation.  

 

AUDxDAT    Audio data load signal. Loads 16 bits o f data to audio channel.  

 

AUDxDR     Audio DMA request to Agnus for one word of data.  

 

AUDxDSR    Audio DMA request to Agnus to reset pointer to start of block.  

 

dmasen     Restart request enable.  

 

percntrld  Reload period counter from back - up latch typica lly written by  

           processor with AUDxPER (can also be written by attach mode).  

 

percount   Count period counter down one latch.  

 

perfin     Period counter finished (value = 1).  

 

lencntrld  Reload length counter from back - up latch.  

 

lencount   Count  length counter down one notch.  

 

lenfin     Length counter finished (value = 1).  

 

volcntrld  Reload volume counter from back - up latch.  

 

pbufld1    Load output buffer from holding latch written to by AUDxDAT.  

 

pbufld2    Like pbufld1, but only during 010 -- >011 with attach period.  

 

AUDxAV     Attach volume. Send data to volume latch of next channel  

           instead of to D -- >A converter.  

 

AUDxAP     Attach period. Send data to period latch of next channel  

           instead of to the DA converter.  

 

penhi      Enable the high 8 bits of data to go to the D -- >A converter.  
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napnav     /AUDxAV * /AUDxAP + AUDxAV -  no attach stuff or else attach  

           volume. Condition for normal DMA and interrupt re quests.  

 

sq2,1,0    The name of the state flip - flops, MSB to LSB.  

 

Figure  5- 8: Audio State Diagram  
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Chapter 6  
 

BLITTER HARDWARE  
 

 
INTRODUCTION  
 
The blitter is one of the two co -pro cessors in the Amiga. Part of the  Agnus chip, it is used 
to copy rectangular blocks of memory around and to  draw lines. When copying memory, it 
is approximately twice as fast as the  68000, able to move almost four megabytes per 
second. It can draw  lines at  almost a million pixels per second.  

 
In block move mode, the blitter can perform any logical operation on up  to three source 
areas, it can shift up to two of the source areas by one  to fifteen bits, it can fill outlined 
shapes, and it can mask the first  and last words of each raster row. In line mode, any 
pattern can be  imposed on a line, or the line can be drawn such that only one pixel per  
horizontal line is set.  
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The blitter can only access CHIP memory -  that portion of memory  accessible by the 
display hardware. Attempting to use the blitter to read  or write FAST or other non -CHIP 
memory may result in destruction of the  contents of CHIP memory.  
 

A "blit" is a single  operation of the blitter -  perhaps the drawing of a  line or movement of 
a block of memory. A blit is performed by  initializing the blitter registers with appropriate 
values and then  starting the blitter by writing the BLTSIZE register. As the blitter is  an 
asynchronous coprocessor, the 68000 continues to run as the blit is  executing.  
 
MEMORY LAYOUT 
 

The blitter is a word blitter, not a bit blitter. All data fetched,  modified, and written are in 
full 16 -bit words. Through careful  programming, the blitter ca n do many "bit" type 
operations.  
 
The blitter is particularly well suited to graphics operations. As an  example, a 320 by 200 
screen set up to display 16 colors is organized as  four bitplanes of 8,000 bytes each. Each 
bitplane consists of 200 rows of  40 by tes or 20 16 -bit words. (From here on, a "word" will 
mean a 16 -bit  word.)  
 
DMA CHANNELS  
 
The blitter has four DMA channels -  three source channels, labelled  A, B,  and C, and one 
destination channel, called D. Each of these channels has  separate address poi nter, 
modulo and data registers and an enable bit.  Two have shift registers, and one has a first 

and last word mask  register. All four share a single blit size register.  
 
The address pointer registers are each composed of two words, named  BLTxPTH and 
BLTxPTL. (Here and later, in referring to a register, any "x"  in the name should be 
replaced by the channel label, A, B, C, or D.) The  two words of each register are adjacent 
in the 68000 address space, with  the high address word first, so they can both be writ ten 
with one 32 -bit  write from the processor. The pointer registers should be written with an  
address in bytes. Because the blitter works only on words, the least  significant bit of the 
address is ignored. Because only CHIP memory is  accessible, some of th e most significant 
bits will be ignored as well. On  machines with 512 KB of CHIP memory, the most 
significant 13 bits are  ignored. Future machines will have more CHIP memory and fewer 
bits will  be ignored. A valid, even, CHIP memory address should always b e written  to 
these registers.  
 

NOTE 
Be sure to write zeros to all unused bits in the custom chip registers.  These bits may be 
used by later versions of the custom chips. Writing  non -zero values to these bits may 
cause unexpected results on future  machines.  
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Each of the DMA channels can be independently enabled or disabled. The  enable bits are 
bits SRCA, SRCB, SRCC, and DEST in control register zero  (BLTCON0).  
 
When disabled, no memory cycles wil l be executed for that channel and,  for a source 

channel, the constant value stored in the data register of  that channel will be used for 
each blitter cycle. For this purpose, each  of the three source channels have preloadable 
data registers, called  BLTxDA T. 
 
Images in memory are usually stored in a linear fashion; each word of  data on a line is 
located at an address that is one greater than the word  on its left. i.e. Each line is a "plus 
one" continuation of the previous  line. (See Figure  6-1.)  
 

          20  21   22  23  24   24  26  

          27  28   29  30  31   32  33  

          34  35   36  37  38   39  40  

          41  42   43  44  45   46  47  

          48  49   50  51  52   53  54  

          55  56   57  58  59   60  61  

 

          Figure  6- 1: How Image s are Stored in Memory  

 

 

The map in Figure  6-1 represents a single bit -plane (one bit of color) of  an image at word 
addresses 20 through 61. Each of these addresses  accesses one word (16 pixels) of a 
single bitplane. If this image  required sixteen colors, four bit -planes like this would be 
required in  memory, and four copy (move) operations would be required to completely  

move the image.  
 
The blitter is very efficient at copying such blocks because it needs to  be told only the 
starting address (20), the des tination address, and the  size of the block (height = 6, width 
= 7). It will then automatically  move the data, one word at a time, whenever the data bus 
is available.  When the transfer is complete, the blitter will signal the processor with  a flag 
and an i nterrupt.  
 
NOTE 
 
This copy (move) operation operates on memory and may or may not change  the memory 
currently being used for display.  
 
All data copy blits are performed as rectangles of words, with a given  width and height. All 

four DMA channels use a sing le blit size register,  called BLTSIZE, used for both the width 
and height.  The width can take a value of from 1 to 64 words (16 to 1024 bits). The  
height can run from 1 to 1024 rows. The width is stored in the least  significant six bits of 
the BLTSIZE regi ster. If a value of zero is  stored, a width count of 64 words is used. This 
is the only parameter in  the blitter  
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t hat is given in words. The height is stored in the upper ten bits of the  BLTSIZE  register, 
with zero representing a height of 1024 rows. Thus, the  largest blit possible with the 
current Amiga blitter is 1024 by 1024  pixels. However, shifting and masking operations 
may require an extra  word be fetched for each raster scan line, making the maximum 

practical  horizontal width 1008 pixels.  
 
NOTE 
To emphasize the above paragraph: Blit width is in words with a zero  representing 64 
words. Blit height is in lines with a zero representing  1024 lines.  
 
The blitter also has facilities, called modu les, for accessing images  smaller than the entire 

bitplane. Each of the four DMA channels has 16  bit modulo register called BLTxMOD. As 
each word is fetched (or written)  for an enabled channel, the address pointer register is 
incremented by  two (bytes, or one word.) After each row of the blit is completed, the  
signed 16 -bit modulo value for that DMA channel is added to the address  pointer. (A row 
is defined by the width stored in BLTSIZE.)  
 
NOTE 
The modulo values are in bytes, not words. Since the blitter c an only  operate on words, 
the least significant bit is ignored. The value is  sign -extended to the full width of the 
address pointer registers.  Negative modules  can be useful in a variety of ways, such as 
repeating a  row by setting the modulo to the negativ e of the width of the bitplane.  
 
As an example, suppose we want to operate on a section of a full 320 by  200 pixel bitmap 
that started at row 13, byte 12 (where both are numbered  from zero) and the section is 

10 bytes wide.  We would initialize the pointer register to the address of the bitplane  plus 
40 bytes per row times 13 rows, plus 12 bytes to get to the correct  horizontal position. 
We would set the width to 5 words (10 bytes). At the  end of each row, we would want to 
skip over 30 bytes to get to the  beginning of the next row, so we would use a modulo 
value of 30. In  general, the width (in words) times two plus the modulo value (in bytes)  
should equal the full width, in bytes, of the bitplane containing the  image.  
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Figure  6- 2: BLTxPTR and BLTxMOD calculations  

 

 
 

NOTE 
The blitter can be used to process linear rather than rectangular regions  by setting the 
horizontal or vertical count in BLTSIZE to 1.  
 
Because each DMA channel has it s own modulo register, data can be moved  among 
bitplanes of different widths. This is most useful when moving  small images into larger 
screen bitplanes.  
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FUNCTION GENERATOR  
 
The blitter can combine the data from the three source DMA channels in up  to 256 
different ways to generate the values stored by the destination  DMA channel. These 

sources might be one bitplane from each of three  separate graphics images. While each of 
these sources is a rectangular  region composed of many points, the same logic operation 
will be  performed on each point throughout the rectangular region. Thus, for  purposes of 
defining the blitter logic operation it is only necessary to  cons ider what happens for all of 
the possible combinations of one bit  from each of the three sources.  
 
There are eight possible combinations of values of the three bits, for  each of which we 

need to specify the corresponding destination bit as a  zero or one. T his can be visualized 
with a standard truth Table , as shown  below. We have listed the three source channels, 
and the possible values  for a single bit from each one.  
 

A  B  C  D  BLTCON0 position MINTERM  

                               ___  

0  0  0  ?         0           ABC  

                               __ 

0  0  1  ?         1           ABC  

                               _ _  

0  1  0  ?         2           ABC  

                               _ 

0  1  1  ?         3           ABC  

                                __  

1  0  0  ?         4           ABC  

                                _ 

1  0  1  ?         5           ABC  

                                 _ 

1  1  0  ?         6           ABC  

 

1  1  1  ?         7           ABC  

 

 

This information is collected in a standa rd format, the LF control byte  in the BLTCON0 
register. This byte programs the blitter to perform one of  the 256 possible logic operations 
on three sources for a given blit.  
 
To calculate the LF control byte in BLTCON0, fill in the truth Table  with  desired  values for 
D, and read the function value from the bottom of the  Table  up.  

 
For example, if we wanted to set all bits in the destination where the  corresponding A 
source bit is 1 or the corresponding B source bit is 1,  we would fill in the last four entri es 
of the truth Table  with 1 (because  the A bit is set) and the third, fourth, seven, and eight 
entries with 1  (because the B bit is set), and all others (the first and second) with 0,  
because neither A nor B is set. Then, we read the truth Table  from the  bottom up, reading 
11111100, or $FC.  
 
 -   "$" indicates hex notation.  
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For another example, an LF control byte of $80 ( = 1000 0000 binary)  turns on bits only 
for those points  of the D destination re ctangle where  the corresponding bits of A, B, and C 
sources were all on (ABC = 1, bit 7  of LF on). All other points in the rectangle, which 
correspond to other  combinations for A, B, and C, will be 0. This is because bits 6 through 

0 of the LF control byte , which specify the D output for these situations,  are set to 0.  
 
DESIGNING THE LF CONTROL BYTE WITH MINTERMS  
One approach to designing the LF control byte uses logic equations. Each  of 

the rows in the truth Table  corresponds to a "minterm", which is a  

par ticular arrangement  of values to the A, B, and C bits. For instance, the  

                                 ___  

first minterm is usually written ABC, or "not A and not B and not C".  The 

last is written as ABC.  

 

NOTE 

Two terms that are adjacent are AND'ed, an d two terms that are separated  by 

"+" are OR'ed. "And" has a higher precedence, so AB + BC is equal to  (AB) + 

(BC).  

 

Any function can be written as a sum of minterms. If we wanted to  calculate 

the function where D is one when the A bit is set and the C bit  

                                                          _ 

is clear, or when the B bit is set, we can write that as AC+B, or "A and  not 

C or B". Since "1 and A" is "A":  

         _ 

    D = AC + B  

            _ 

    D = A(1)C + (1)B(1)  

                  _                  _ 

Since either A or A is true (1 = A + A), and similarly for B, and C; we  

can expand the above equation further:  

            _ 

    D = A(1)C + (1)B(1)  

      _ _   _  _   _  

    D=A(B+B)C+(A+A)B(C+C)  

        _  __      _  _    _  

    D=ABC+ABC+AB(C+C)+AB(C+C)  

        _  __       _ _   _ _  

    D=ABC+ABC+ABC+ABC+ABC+ABC 

 

After eliminating  duplicates, we end up with the five minterms:  

     _     _  __     _   _ _  

   AC+B=ABC+ABC+ABC+ABC+ABC 

 

These correspond to BLTCON0 bit positions of 6, 4, 7, 3,  and 2, according  to 

our truth Table , which we would then set, and clear the rest.  

 

The wide range of logic operations allow some sophisticated graphics  

techniques. For instance, you can move the image of a car across some  pre -

existing building images with  a few blits. Producing this effect  requires 

predrawn images of the car, the buildings (or background), and a  car  
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"mask" that contains bits set wherever the car image is not transparent.  This mask c an be 
visualized as the shadow of the car from a light source  at the same position as the viewer.  
 
NOTE 

The mask for the car need only be a single bitplane regardless of the  depth of the 
background bitplane. This mask can be used in turn on each  of the bac kground bitplanes.  
 
To animate the car, first save the background image where the car will be  placed. Next 
copy the car to its first location with another blit. Your  image is now ready for display. To 
create the next image, restore the old  background, save  the next portion of the 
background where the car will  be, and redraw the car, using three separate blits. (This 

technique works  best with beam -synchronized blits or double buffering.)  
 
To temporarily save the background, copy a rectangle of the background  (from the A 
channel, for instance) to some backup buffer (using the D  channel). In this case, the 
function we would use is "A", the standard  copy function. From Table  6-1, we note that 
the corresponding LF code has  a value of $F0.  
 
To draw the car, we mig ht use the A DMA channel to fetch the car mask,  the B DMA 
channel to fetch the actual car data, the C DMA channel to  fetch the background, and the 
D DMA channel to write out the new image.  
 
NOTE 
We must fetch the destination background before we write it, as only a  portion of a 
destination word might need to be modified, and there is no  way to do a write to only a 

portion of a word.  
 
When blitting the car to the background we would want to use a function  that, whenever 
the car mask (fetched with DMA channel  A) had a bit set,  we would pass through the car 
data from B, and whenever A did not have a  bit set, we would pass through the original 
background from C.  The  corresponding function, commonly referred to as the cookie -cut 
function,  
      _ 

is AB+AC, which  works out to an LF code value of $CA.  

 
To restore the background and prepare for the next frame, we would copy  the information 
saved in the first step back, with the standard copy  function ($F0).  
 
If you shift the data and the mask to a new location and r epeat the above  three steps 
over and over, the car will appear to move across the  background (the buildings).  
 
NOTE 
This may not be the most effective method of animation, depending on the  application, 
but the cookie -cut function will appear often.  
 
Table  6-1 lists some of the most common functions and their values, for  easy reference.  
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Table  6- 1: Table  of Common Minterm Values  

 

    Selected     BLTCON0       Selected    BLTCON0  

    Equation     LF Code       Equation    LF Code  

 

    D = A          $F0         D = AB         $C0  

        _                           _  

    D = A          $0F         D = AB         $30  

                                   _ 

    D = B          $CC         D = AB         $0C  

        _                          __  

    D = B          $33         D = AB         $03  

 

    D = C          $AA         D = BC         $88  

        _                           _  

    D = C          $55         D = BC         $44  

                                   _ 

    D = AC         $A0         D = BC         $22  

         _                         __  

    D = AC         $50         D = AC         $11  

        _                            _  

    D = AC         $0A         D = A+B        $F3  

        __                         _ _  

    D = AC         $05         D = A+B        $3F  

                                     _ 

    D = A+B        $FC         D = A+C        $FS  

        _                          _ _  

    D = A+B        $CF         D = A+C        $5F  

                                     _ 

    D = A+C        $FA         D = B+C        $DD  

        _                          _ _  

    D = A+C        $AF         D = B+C        $77  

                                      _ 

    D = B+C        $EE         D = AB+AC      $ CA 

        _ 

    D = B+C        $BB  
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DESIGNING THE LF CONTROL BYTE WITH VENN DIAGRAMS  
Another way to arrive at a particular function is through the use of Venn  diagrams:  
 

 

Figure  6- 3:  Blitter Minterm Venn Diagram  

 

 
 

1. To select a function D=A (that is, destination = A source only),  select only the 
minterms that are totally enclosed by the A -circle in the  Figure  above. This is the set of 
minterms 7, 6, 5, and 4. When written as  a set of  1s for the selected minterms and 0s for 
those not selected, the  value becomes:  
 

    Minterm Number     7 6 5 4 3 2 1 0  

    Selected Minterms  1 1 1 1 0 0 0 0  

                       ---------------  

                             F 0        equals $F0  

 

2. To select a function that is a combination of two sources, look for  the minterms by both 

of the circles (their intersection). For example,  the combination AB (A "and" B) is 
represented by the area common to both  the A and B circles, or minterms 7 and 6.  
 

    Minterm Numbers   7 6 5 4 3 2 1 0  

    Selected Minterms 1 1 0 0 0 0 0 0  

                      ---------------  

                             C 0       equals $C0  
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3. To use a function  that is the inverse, or "not", of one of the  
                 _ 

sources, such as A, take all of the minterms  not enclosed by the circle  represented by 

A on the above Figure . In this case, we have minterms  0,  1, 2, and 3.  
 

    Minterm Numbers   7 6 5 4 3 2 1 0  

    Selected Minterms 0 0 0 0 1 1 1 1  

                      ---------------  

                            0 F        equals $0F  

 

4. To combine minterms, or "or" them, "or" the values together. For  example, the 
equation AB+BC becomes  
 

    Minterm Numbers  7 6 5 4 3 2 1 0  

    AB               1 1 0 0 0 0 0 0  

    BC               1 0 0 0 1 0 0 0  

                     ---------------  

    AB+BC            1 1 0 0 1 0 0 0  

                     ---------------  

                             C 8       equals $C8 

 

SHIFTS AND MASKS  
 
Up to now we have dealt with the blitter only in moving words of memory  around and 
combining them with logic operations. This is sufficient for  moving graphic images around, 
so long as the images stay in the same  position relative to  the beginning of a word. If our 
car image has its  left -most pixel on the second pixel from the left, we can easily draw it  
on the screen in any position where the leftmost pixel also starts two  pixels from the 
beginning of some word. But often we want to draw that  car shifted left or right by a few 
pixels. To this end, both the A and B  DMA channels have a barrel shifter that can shift an 
image between 0 and  15 bits.  
 
This shifting operation is completely free; it requires no more time to  execute a blit wit h 

shifts than a blit without shifts, as opposed to  shifting with the 68000. The shift is 
normally towards the right. This  shifter allows movement of images on pixel boundaries, 
even though the  pixels are addressed 16 at a time by each word address  of the b it -plane  
image.  
 
So if the incoming data is shifted to the right, what is shifted in from  the left? For the first 
word of the blit, zeros are shifted in; for each  subsequent word of the same blit, the data 
shifted out from the previous  word is shifted in.  
 
The shift value for the A channel is set with bits 15 through 12 of  BLTCON0; the B shift 
value is set with bits 15 through 12 of BLTCON1. For  most operations, the same value will 
be used for both shifts. For shifts  of greater than fifteen bits, load the a ddress register 
pointer of the  destination with a higher address; a shift of 100 bits would require the  
destination pointer to be advanced 100/16 or 6 words (12 bytes), and a  right shift of the 

remaining 4 bits to be used.  
 
As an example, let us say we are  doing a blit that is three words wide,  two words high, 
and we are using a shift of 4 bits. For simplicity , let  us assume we are doing a straight 
copy from A to D. The first word that  will be written to D is the first word fetched from A, 
shifted right fou r bits  
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with zeros shifted in from the left. The second word will be the second  word fetched from 
the A, shifted right, with the least significant  (rightmost) four bits of the first word shifted 
in. Next, we will write  the firs t word of the second row fetched from A, shifted four bits, 
with  the least significant four bits of the last word from the first row  shifted in. This would 

continue until the blit is finished.  
 
On shifted blits, therefore, we only get zeros shifted in for the first  word of the first row. 
On all other rows the blitter will shift in the  bits that it shifted out of the previous row. For 
most graphics  applications, this is undesirable. For this reason, the blitter has the  
ability to mask the first and last word  of each row coming through the A  DMA channel. 
Thus, it is possible to extract rectangular data from a  source whose right and left edges 

are between word boundaries. These two  registers are called BLTAFWM and BLTALWM, for 
blitter A channel first and  last w ord masks.  When not in use, both should be initialized to 
all ones  ($FFFF).  
 
NOTE 
Text fonts on the Amiga are stored in a packed bit map. Individual  characters from the 
font are extracted using the blitter, masking out  unwanted bits. The character may the n 
be positioned to any pixel  alignment by shifting it the appropriate amount.  
 
These masks are "anded" with the source data, before any shifts are  applied. Only when 
there is a 1 bit in the first -word mask will that bit  of source A actually appear in the l ogic 
operation. The first word of  each row is anded with BLTAFWM, and the last word is 
"anded" with  BLTALWM. If the width of the row is a single word, both masks are applied  
simultaneously.  

 
The masks are also useful for extracting a certain range of "col umns"  from some bitplane. 
Let us say we have, for example, a predrawn rectangle  containing text and graphics that 
is 23 pixels wide. The leftmost edge is  the leftmost bit in its bitmap, and the bitmap is two 
words wide. We wish  to render this rectangle sta rting at pixel position 5 into our 320 by 
200  screen bitmap, without disturbing anything that lies outside of the  rectangle.  
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             |______________2 word source bitmap_______ _____|  

             |                                              |  

             |___Extract a 23 - bit image_____|               |  

             |                              |               |  

             |_____16 bit word______|       |               |  

             |                      |       |               |  

             |______________________|_______|_______________|  

             |                                              |  

 Source      | 00000000    00000000    00000000    00000000 |  

  DMA B      | 11111111    11111111    11111111    11111111 |  

             | 10101010    01010101    10101010    01010101 |  

             |______________________________________________|  

                  |           |           |           |     *  

                 \ |/         \ |/         \ |/         \ |/  

              ____V___________V_____   ___V___________V_____  

             |                      | |                     |  

 Mask on     | 11111111    11111111 | |11111110    00000000 |  

  DMA A      |   First word mas k    | |  Second word mask   |  

             |______________________| |_____________________|  

                  |            |          |  |  _|_   _|_  

                 \ |/          \ |/        \ |/ \ |/  

              ____V____________V__________V__V___________ ___  

  Final      |                                              |  

destination  | 00000000    00000000    00000001    11111111 |  

  DMA D      | 11111111    11111111    11111111    11111111 |  

(points to   | 10101010    01010101    10101011    11111111 |  

 same address|______________________________________________|  

  as DMA C)                                  ^     ^   ^   ^  

                 ___          ___       ___ /| \    /| \  /| \  /| \  

                  |            |         |   |     |   |   |  

              ____|____________|_________|___|_____|___|___| **  

 Destination |                                              |  

 before blit | 11111111    11111111    11111111    11111111 |  

   DMA C     | 11111111    11111111    11111111    11111111 |  

   (to be    | 11111 111    11111111    11111111    11111111 |  

overwritten) |______________________________________________|  

 

* Source is passed through mask when it is a one, otherwise the  

destination is copied.  

** Destination does not change where mask is 0.  

 

               Figure  6- 4: Extracting a Range of Columns  

 

To do this, we point the B DMA channel at the bitmap containing the  source image, and 
the D DMA channel at the screen bitmap. We use a shift  value of 5. We also point the C 
DMA channel at the screen bitmap. We use  a blit width of 2 words. What we need is a 
simple copy operation, except  we wish to leave the first five bits of the first word, and the 
last four  bits (2 times 16, less 23, less 5) of the last word alone. The A DMA  channel 
comes to the rescue. We preload  the A data register with $FFFF  (all ones), and use a first 
word mask with the most significant five bits  set to zero ($07FF) and a last word mask 
with the least significant four  bits set to zero ($07FF).   
 
We do not enable the A DMA channel, but only the B, C, and D channels,  since we want to  
use the A channel as a simple row mask. We then wish to  pass the B (source) data along 
wherever the A channel is 1 (for a minterm  of AB) and pass along the original destination 
data (from the C channel)  wherever A is  0 (for a minte rm of AC), yielding our classic 

cookie -cut  function of AB+AC, or $CA.  
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NOTE 
Even though the A channel is disabled, we use it in our logic function  and preload the data 
register. Disabling a channel simply turns off  the  memory fetches for that channel; all 
other operations are still performed, only from a constan t value stored in the channel's 

data register  
 
An alternative but more subtle way of accomplishing the same thing is to  use an A shift of 
five, a first word mask of all ones, and a last word  mask w ith the rightmost nine bits set 
to zero. All other registers remain  the same.  
 
NOTE 

Be sure to load the blitter immediate data registers only after setting  the shift count in 
BLTCON0/BLTCON1, as loading the data regi sters first  will lead to unpredic Table  results. 
For instance, if the last person left  BSHIFT to be "4", and I load BDATA with "1" and then 
change BSH1 to "2",  the resulting BDATA that is used is "1<<4", not "1<<2". The act of  
loading one of the data regist ers "draws" the data through the machine  and shifts it.  
 
DESCENDING MODE  
 
Our standard memory copy blit works fine if the source does not overlap  the destination. 
If we want to move an image one row down (towards  increasing addresses), however, we 
run into  a problem -  we overwrite the  second row before we get a chance to copy it! The 
blitter has a special  mode of operation -  descending mode - that solves this problem 
nicely.  
 

Descending mode is turned on by setting bit one of BLTCON1 (defined as  BLITREVERSE). 
If you use descending mode the address pointers will be  decremented by two (bytes) 
instead of incremented by two for each word  fetched. In addition, the modulo values will 
be subtracted rather than  added. Shifts are then towards the left, rather than th e right, 
the first  word mask masks the last word in a row (which is still the first word  fetched, and 
the last word mask masks the first word in a row.  
 
Thus, for a standard memory copy, the only difference in blitter setup  (assuming no 
shifting or masking ) is to initialize the address pointer  registers to point to the last word in 
a block, rather than the first  word. The modulo values, blit size, and all other parameters 
should be  set the same.  
 
NOTE 
This differs from predecrement versus postincrement in t he 68000, where  an address 

register would be initialized to point to the word after the  last, rather than the last word.  
 
Descending mode is also necessary for area filling, which will be covered  in a later section.  
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COPYING ARBITRARY REGIONS  
 
One of the most common uses of the blitter is to move arbitrary  rectangles of data from 
one bitplane to another, or to different  positions within a bitplane. These rectangles are 

usually on arbitrary  bit coordinates, so shifting and masking are necessary. There are 
further  complications. It may take several readings and some experimentation  before 
everything in this section can be understood.  
 
A source image that spans only two words may, when copied with certain  shifts, span 
three words. Our 23 pixel wide rectangle above, for  instance, when shifted 12 bits, will 
span three words. Alternatively , an  image spanning three words may fit in two for certain 

shifts. Under all  such circumstances, the blit size shou ld be set to the larger of the two  
values, such that both source and destination will fit within the blit  size. Proper masking 
should be applied to mask out unwanted data.  
 
Some general guidelines for copying an arbitrary region are as follows.  
 
1. Use the  A DMA channel, disabled, preloaded with all ones and the  appropriate mask 
and shift values, to mask the cookie cut function. Use  the B channel to fetch the source 
data, the C channel to fetch the  destination data, and the D channel to write the 
destinatio n data. Use  the cookie -cut function $CA.  
 
2. If shifting, always use ascending mode if bit shifting to the right,  and use descending 
mode if bit shifting to the left.  
 

NOTE 
These shifts are the shifts of the bit position of the leftmost edge  within a word,  rather 
than absolute shifts, as explained previously.  
 
3. If the source and destination overlap, use ascending mode if the  destination has a 
lower memory address (is higher on the display) and  descending mode otherwise.  
 
4. If the source spans more words than the destination, use the same  shift value for the A 
channel as for the source B channel and set the  first and last word masks as if they were 
masking the B source data.  
 
5. If the destination spans more words than the source, use a shift value  of zero  for the A 
channel and set the first and last word masks as if  they were masking the destination D 
data.  
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6. If the source and destination span the same number of words, use the A  channel to  
mask either the source, as in 4, or the destination, as in 5.  
 
NOTE 

Conditions 2 and 3 can be contradictory if, for instance, you are trying  to move an image 
one pixel down and to the right. In this case, we would  want to use descending mode so 
our destin ation does not overwrite our  source before we use the source, but we would 
want to use ascending mode  for the right shift. In some situations, it is possible to get 
around  general guideline 2 above with clever masking. But occasionally just  masking the 
fir st or last word may not be sufficient; it may be necessary  to mask more than 16 bits on 
one or the other end. In such a case, a mask  can be built in memory for a single raster 

row, and the A DMA channel  enabled to explicitly fetch this mask. By setting the  A modulo 
value to  the negative of the width of the mask, the mask will be repeatedly  fetched for 
each row.  
 
AREA FILL MODE  
 
In addition to copying data, the blitter can simultaneously perform a  fill operation during 
the copy. The fill operation has only o ne restriction -  the area to fill must be defined first 
by drawing  untextured lines with only one bit set per horizontal row. A special line  draw 
mode is available for this operation. Use a standard copy blit (or  any other blit, as area 
fills take place af ter all shifts, masks and  logical combination of sources). Descending 
mode must be used. Set either  the inclusive -fill -enable bit (FILL OR, or bit 3) or the 
exclusive - fill -enable bit (FILL XOR, or bit 4) in BLTCON1. The inclusive fill mode fills  
between li nes, leaving the lines intact. The exclusive fill mode fills  between lines, leaving 

the lines bordering the right edge of filled  regions but deleting the lines bordering the left 
edge. Exclusive fill  yields filled shapes one pixel narrower than the same pattern  filled with  
inclusive fill.  
 
For instance, the pattern:  
 
    00100100 -00011000  
 
filled with inclusive fill, yields:  
 
    00111100 -00011000  
 
with exclusive fill, the result would be  
 

    00011100 -00001000  
 
(Of course, fills are always done on full 16 -bit words.)  
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There is another bit (FILL_CARRYIN or bit 3 in BLTCON1) that forces the  area "outside" 
the lines be filled; for the above example, with  inclusive fill, the output would be;  
 
    11 100111 -11111111  

 
with exclusive fill, the output would be;  
 
    11100011 -11110111  
 

          BEFORE                   AFTER  

    ____________________    ___________________  

   |                    |  |                   |  

   |   1   1    1   1   |  |   1111 1    11111  |  

   |   1   1    1   1   |  |   11111    11111  |  

   |    1  1     1  1   |  |    1111     1111  |  

   |     1 1      1 1   |  |     111      111  |  

   |      11       11   |  |      11       11  |  

   |     1 1      1 1   |  |     111      111  |  

   |    1  1     1  1   |  |    1111     1111  |  

   |   1   1    1   1   |  |   11111    11111  |  

   |____________________|  |___________________|  

 

              Figure  6- 5: Use of the FCI Bit -  Bit Is a 0  

 

 

If the FCI bit is a 1 instead of a 0, the are a outside the lines is  filled with ls and the area 
inside the lines is left with 0s in between.  
 

           BEFORE                 AFTER  

    ____________________    ___________________  

   |                    |  |                   |  

   |   1   1    1   1   |  |111   1111111    11|  

   |   1   1    1   1   |  |111   11111111   11|  

   |    1  1     1  1   |  |1111  111111111  11|  

   |     1 1      1 1   |  |11111 1111111111 11|  

   |      11       11   |  |1111111111111111111|  

   |     1 1      1 1   |  |11111  1111111111 11|  

   |    1  1     1  1   |  |1111  111111111  11|  

   |   1   1    1   1   |  |111   11111111   11|  

   |____________________|  |___________________|  

 

               Figure  6- 6: Use of the FCI Bit -  Bit Is a 1  

 

 

If you wish to produce very sha rp, single -point vertices, exclusive - fill  enable must be 
used. Figure  6-7 shows how a single -point vertex  is produced using exclusive -fill enable.  
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          BEFORE           AFTER EXCLUSIVE FILL  

    ____________________    ___________________  

   |                    |  |                   |  

   |   1   1    1   1   |  |   1111     1111   |  

   |    1  1     1  1   |  |    111      111   |  

   |     1 1      1 1   |  |     11       11   |  

   |      1 1       11   |  |      1        1   |  

   |     1 1      1 1   |  |     11       11   |  

   |    1  1     1  1   |  |    111      111   |  

   |   1   1    1   1   |  |   1111     1111   |  

   |____________________|  |___________________|  

 

                 Figu re  6- 7: Single - Point Vertex Example  

 

 

The blitter uses the fill carry - in bit as the starting fin state  beginning at the right most 
edge of each line. For each "1" bit in the  source area, the blitter flips the fill state, either 
filling or not  filling the s pace with ones. This continues for each line until the left  edge of 
the blit is reached, at which point the filling stops.  

 
BLITTER DONE FLAG  
 
When the BLTSIZE register is written the blit is started. The processor  does not stop while 
the blitter is workin g, though; they can both work  concurrently, and this provides much of 
the speed evident in the Amiga.  This does require some amount of care when using the 
blitter.  

 
A blitter done flag, also called the blitter busy flag, is provided as  DMAF BLTDONE in 
DMACONR. This flag is set when a blit is in progress.  
 
NOTE 
If a blit has just been started but has been locked out of memory access  because of, for 
instance, display fetches, this bit may not yet be set.  The processor, on the other hand, 

may be running comple tely uninhibited  out of FAST memory or its internal cache, so it will 
continue to have  memory cycles.  
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The solution is to read a chip memory or hardware register address with  the proc essor 
before testing the bit. This can easily be done with the  sequence:  
 

    btst.b #DMAB_BLTDONE - 8,DMACONR(a1) 

    btst.b #DMAB_BLTDONE - 8,DMACONR(a1) 

 

where a 1 has been preloaded with the address of the hardware registers.  The first "test"  
of the blitte r done bit may not return  the correct  result, but the second blit . 
 
NOTE 
Starting with the Fat Agnus the blitter busy bit has been "fixed" to be  set as soon as you 
write to BLTSIZE to start the blit, rather than when  the blitter gets its first DMA cycle. 
However, not all  machines will use  the  newer chips, so it is best to rely on the above 
method of testing.  
 
MULTITASKING AND THE BLITTER  
When a blit is in progress, none of the blitter registers should be  written. For details on 
arbitration of blitter access  in the system,  please refer to the ROM Kernel  Manual. In 

particular, read the discussion  about the OwnBlitter() and DisownBlitter() functions. Even 
after the  blitter has been "owned", a blit may still be finishing up, so the  blitter done flag 
should  be ch ecked before using it even the first time.  Use of the ROM kernel function 
WaitBlit() is recommended.  
 
You should also check the blitter done flag before using results of a  blit. The blit may not 
be finished, so the data may not be ready yet.  This can lead to difficult to find bugs, 
because a 68000 may be slow  enough for a blit to finish without checking the done flag, 
while a  68020, perhaps running out of its cache, may be able to get at the data  before the 
blitter has finished writing it.  
 
Let us say that we have a subroutine that displays a text box on top of  other imagery 
temporarily. This subroutine might allocate a chunk of  memory to hold the original screen 
image while we are displaying our text  box, then draw the text box. On exit, the 

subroutine migh t blit the  original imagery back and then free the allocated  memory. If the 
memory  is freed before the blitter done flag is checked, some other process  might allocate  
that memory and store new data into it before the blit is  finished, trashing the blitter  
source and, thus, the screen imagery being  restored.  
 
INTERRUPT FLAG 
 
The blitter also has an interrupt flag that is set whenever a blit  finishes. This flag, INTF 
BLIT, can generate a 68000 interrupt if  enabled. For more information on interrupts, see 
Chap ter 7 "System  Control Hardware."  
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ZERO FLAG 
 
A blitter zero flag is provided that can be tested to determine if the  logic operation 
selected has resulted in zero bits for all destination  bits, even if those destination bits are 

not written due to the D DMA  channel being disabled. This feature is often useful for 
collision  detection, by performing a logical "and" on two source images to test for  overlap. 
If the images do not overlap, the zero fla g will stay true.  
 
The Zero flag is only valid after the blitter has completed its operation  and can be read 
from bit DMAF_BLTNZERO of the DMACONR register.  
 

PIPELINE REGISTER  
The blitter performs many operations in each cycle -  shifting and masking  source  words, 
logical combination of sources, and area fill and zero  detect on the output. To enable so 
many things to take place so quickly,  the blitter is pipelined. This means that rather than 
performing all of  the above operations in one blitter cycle, the o perations are spread over  
two blitter cycles. (Here "cycle" is used very loosely for simplicity.)  To clarify this, the 
blitter can be imagined as two chips connected in  series. Every cycle, a new set of source 
operations come in, and the  first chip perform s its operations on the data. It then passes 
the half -processed data to the second chip to be finished during the next cycle,  when the 
first chip will be busy at work on the next set of data. Each  set of data takes two "cycles" 
to get through the two chips , overlapped  so a set of data can be pumped through each 
cycle.  
 
What all this means is that the first two sets of sources are fetched  before the first 

destination is written. This allows you to shift a  bitmap up to one word to the right using 
ascending mo de, for instance,  even though normally parts of the destination would be 
overwritten before  they were fetched.  
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Table  6- 2: Typical Blitter Cycle Sequence  

 

USE Code 

   in      Ac tive  

BLTCON0   Channels                    Cycle Sequence  

 

   F      A B C D      A0 B0 C0  -  A1 B1 C1 D0 A2 B2 C2 D1 D2  

   E      A B C        A0 B0 C0 A1 B1 C1 A2 B2 C2  

   D      A B   D      A0 B0  -  A1 B1 D0 A2 B2 D1  -  D2 

   C      A B          A0 B0  -  A1 B1  -  A2 B2  

   B      A   C D      A0 C0  -  A1 C1 D0 A2 C2 D1  -  D2 

   A      A   C        A0 C0 A1 C1 A2 C2  

   9      A     D      A0  -  A1 D0 A2 D1  -  D2 

   8      A            A0  -  A1  -  A2 

   7        B C D      B0 C0  -   -  B1 C1 D0  -  B2 C2 D1  -  D2 

   6        B C        B0 C0  -  B1 C1  -  B2 C2  

   5        B   D      B0  -   -  B1 D0  -  B2 D1  -  D2 

   4        B          B0  -   -  B1  -   -  B2 

   3          C D      C0  -   -  C1 D0  -  C2 D1  -  D2 

   2          C        C0  -  C1  -  C2 

   1            D      D0  -  D1  -  D2 

   0          none  

 

Notes for the above Table :  
 
o No fill.  
 
o No competing bus activity.  
 
o Three -word blit.  
 
o Typical operation involves fetching all sources twice before the first  destination becomes 
available. This is due to inte rnal  pipelining. Care  must be taken with overlapping source 
and destination regions.  

 
NOTE 
This Table  is only meant to be an illustration of the typical order of  blitter cycles on the 
bus. Bus cycles are dynamically allocated based on  blitter operating mod e; competing bus 
activity from processor, bitplanes,  and other DMA channels; and other factors. 
Commodore Amiga does not  guarantee the accuracy of or future adherence to this chart. 
We reserve  the right to make product improvements or design changes in thi s area  

without notice.  
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LINE MODE  
 
In addition to all of the functions described above, the blitter can draw  patterned lines. 
The line draw mode is selected by setting bit 0  (LINEMODE) of BLT CON1, which changes 

the meaning of some other bits in  BLTCON0 and BLTCON1. In line draw mode, the blitter 
can draw lines up to  1024 pixels long, it can draw them in a variety of modes, with a 
variety  of textures, and can even draw them in a special way for  simple area  fill.  
 
Many of the blitter registers serve other purposes in line -drawing mode.  Consult Appendix 
A for more detailed descriptions of the use of these  registers and control bits in line -
drawing mode.  

 
In line mode, the blitter draws a line from  one point to another, which  can be viewed as a 
vector. The direction of the vector can lie in any of  the following eight octants. (In the 
following diagram, the standard  Amiga convention is used, with x increasing towards the 
right and y  increasing down.)  The number in parenthesis is the octant numbering; the  
other number represents the value that should be placed in bits 4 through  2 of BLTCON1.  
 

 

Figure  6- 8: Octants for Line Drawing  

 

 

Line drawing based on octants is a simplification that takes advantage of  symmetries 
between x and -x, y and -y. The following Table  lists the  octant number and 
corresponding values:  
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Table  6- 3: BLTCON1 Code Bits for Octant Line Drawing  

 

BLTCON1 Code Bits       Octant #  

 

      0 1 1                2  

      1 1 1                3  

      1 0 1                4  

      0 1 0                5  

      0 0 0                6  

      1 0 0                7  

 

We initialize BLTCON1 bits 4 through 2 according to t he above Table . Now,  we introduce 

the variables dx and dy, and set them to the absolute values  of the difference between 
the x coordinates and the y coordinates of the  endpoints of the line, respectively.  
 

    dx = abs (x2 -  x1)  

    dy = abs (y2 -  y1)  

 

Now , we rearrange them if necessary so dx is greater than dy.  
 

    if (dx < dy)  

        {  

        temp = dx;  

        dx = dy;  

        dy = temp;  

        }  

 

Alternately , set dx and dy as follows:  
 

    dx = max(abs(x2 -  x1), abs(y2 -  y1)) ;  

    dy = min(abs(x2 -  x1), abs(y2 -  y1)) ;  

 

These calculations have the effect of "normalizing" our line into octant  0; since we have 
already informed the blitter of the real octant to use,  it has no difficulty drawing the line.  

 
We initialize the A pointer register to 4 * dy  -  2 * dx. If this value is  negative, we set the 
sign bit (SIGNFLAG in BLTCONl), otherwise we clear  it.  
We set the A modulo register to 4 * (dy -  dx) and the B modulo  register to 4 * dy.  
 
The A data register should be preloaded with $8000. Both word masks  should be set to $ 
The A shift value should be set to the x coordinate of  the first point (x1) modulo 15.  
 
The B data register should be initialized with the line texture pattern , if any, or $FFFF for a 
solid line. The B shift value should be set to the  bit number at which to start the line 
texture (zero means the last  significant bit.)  
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